000125980 001__ 125980
000125980 005__ 20241125101137.0
000125980 0247_ $$2doi$$a10.3390/nano13091516
000125980 0248_ $$2sideral$$a133574
000125980 037__ $$aART-2023-133574
000125980 041__ $$aeng
000125980 100__ $$aJurczyk, Jakub
000125980 245__ $$aLigand size and carbon-chain length study of silver carboxylates in focused electron-beam-induced deposition
000125980 260__ $$c2023
000125980 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125980 5203_ $$aGas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.
000125980 536__ $$9info:eu-repo/grantAgreement/EC/H2020/722149/EU/Low energy ELEctron driven chemistry for the advantage of emerging NAno-fabrication methods/ELENA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 722149-ELENA
000125980 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125980 590__ $$a4.4$$b2023
000125980 592__ $$a0.798$$b2023
000125980 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b146 / 439 = 0.333$$c2023$$dQ2$$eT2
000125980 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000125980 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b62 / 141 = 0.44$$c2023$$dQ2$$eT2
000125980 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2
000125980 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b70 / 231 = 0.303$$c2023$$dQ2$$eT1
000125980 591__ $$aPHYSICS, APPLIED$$b47 / 179 = 0.263$$c2023$$dQ2$$eT1
000125980 594__ $$a8.5$$b2023
000125980 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125980 700__ $$aHöflich, Katja
000125980 700__ $$aMadajska, Katarzyna
000125980 700__ $$aBerger, Luisa
000125980 700__ $$aBrockhuis, Leo
000125980 700__ $$aEdwards, Thomas Edward James
000125980 700__ $$aKapusta, Czeslaw
000125980 700__ $$aSzymanska, Iwona B.
000125980 700__ $$aUtke, Ivo
000125980 773__ $$g13, 9 (2023), 1516 [14 pp.]$$pNanomaterials (Basel)$$tNanomaterials$$x2079-4991
000125980 8564_ $$s2184103$$uhttps://zaguan.unizar.es/record/125980/files/texto_completo.pdf$$yVersión publicada
000125980 8564_ $$s2759989$$uhttps://zaguan.unizar.es/record/125980/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125980 909CO $$ooai:zaguan.unizar.es:125980$$particulos$$pdriver
000125980 951__ $$a2024-11-22-12:01:22
000125980 980__ $$aARTICLE