000125985 001__ 125985
000125985 005__ 20241125101137.0
000125985 0247_ $$2doi$$a10.3390/photonics10040467
000125985 0248_ $$2sideral$$a133593
000125985 037__ $$aART-2023-133593
000125985 041__ $$aeng
000125985 100__ $$0(orcid)0000-0001-5186-1837$$aConsejo, Alejandra$$uUniversidad de Zaragoza
000125985 245__ $$aCorneal densitometry with Galilei dual Scheimpflug analyzer
000125985 260__ $$c2023
000125985 5060_ $$aAccess copy available to the general public$$fUnrestricted
000125985 5203_ $$aThis study aims to apply the densitometry distribution analysis (DDA) method to study corneal densitometry depending on age and corneal region from Galilei Dual Scheimpflug Analyzer tomography. A total of 83 healthy participants aged 39.02 ± 18.34 years (range 9–81 years) were screened using a Ziemer Galilei G2. Images were analysed using the DDA, and two parameters, α (corneal transparency) and β (corneal homogeneity), were estimated. A two-way ANOVA analysis was performed to investigate whether α and β are influenced by age, corneal región (four concentric areas were considered), and their interaction. The parameters α and β statistically change with age and corneal region. A statistically significant interaction effect of 13% (α) and 11% (β) exists between age and corneal region. However, the corneal region plays a more significant role than aging in corneal densitometry; 31% (α) and 51% (β) of the variance can be attributed to the corneal region, while 28% (α) and 5% (β) can be attributed solely to aging. Corneal densitometry can be objectively assessed from Galilei G2 images using the DDA method. The corneal region plays a more significant role than aging in corneal densitometry. Consequently, general results on corneal densitometry and aging should be taken cautiously.
000125985 536__ $$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130723A-I00
000125985 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000125985 590__ $$a2.1$$b2023
000125985 592__ $$a0.457$$b2023
000125985 591__ $$aOPTICS$$b59 / 119 = 0.496$$c2023$$dQ2$$eT2
000125985 593__ $$aAtomic and Molecular Physics, and Optics$$c2023$$dQ2
000125985 593__ $$aRadiology, Nuclear Medicine and Imaging$$c2023$$dQ2
000125985 593__ $$aInstrumentation$$c2023$$dQ2
000125985 594__ $$a2.6$$b2023
000125985 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000125985 700__ $$aBasabilbaso, Silvia
000125985 700__ $$0(orcid)0000-0002-3979-4528$$aRemon, Laura$$uUniversidad de Zaragoza
000125985 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000125985 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000125985 773__ $$g10, 4 (2023), 467 [10 pp.]$$pPhotonics (Basel)$$tPhotonics$$x2304-6732
000125985 8564_ $$s1696503$$uhttps://zaguan.unizar.es/record/125985/files/texto_completo.pdf$$yVersión publicada
000125985 8564_ $$s2753566$$uhttps://zaguan.unizar.es/record/125985/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000125985 909CO $$ooai:zaguan.unizar.es:125985$$particulos$$pdriver
000125985 951__ $$a2024-11-22-12:01:24
000125985 980__ $$aARTICLE