000126025 001__ 126025
000126025 005__ 20241125101152.0
000126025 0247_ $$2doi$$a10.1002/cctc.202201632
000126025 0248_ $$2sideral$$a133595
000126025 037__ $$aART-2023-133595
000126025 041__ $$aeng
000126025 100__ $$aLosada-Garcia, Noelia
000126025 245__ $$aSolid-Phase Lipase-CuNPs Biohybrids as Catalysts for One-Pot Parallel Synthesis of 2,3,4-Triacetyl-D-Gluconic Acid
000126025 260__ $$c2023
000126025 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126025 5203_ $$aSolid-phase lipase/metal nanobiohybrids, generated by growth of copper nanoparticles on enzyme matrixes immobilized on graphene, were used as heterogeneous catalysts with dual-activity for the regioselective production of 2,3,4-triacetyl-D-gluconic acid from α-peracetylated-glucose in a one-pot parallel process combining a lipase-mediated regioselective hydrolytic monodeprotection with a metal-catalyzed oxidation in aqueous media. A novel synthetic strategy, based on the in situ fabrication of Cu nanoparticles induced by lipase molecules specifically immobilized on a multi-layer graphene material by interfacial adsorption fixing them in the active open conformation, has been described. Thermomyces lanuginosus lipase was firstly used to prepare the functionalized multi-layer graphene from graphite as a biographene preparation (Biographene, BIOG), support used to successfully immobilize Candida rugosa lipase (CRL). This immobilized form BIOG-CRL was further used to create successful active bifunctional enzyme-metal nanoarchitectures. Two different Cu-lipase hybrids were synthesised, where Cu species and nanoparticles size were different depending on the methodology. Regioselectivity and stability of the hybrids were evaluated successfully in the production of monosaccharide building blocks, besides the robustness of the hybrids in recyclability experiments. These findings highlight the potential of these solid-phase nanoarchitectures as useful tools in the synthesis of complex glycoderivatives for use in food, medicine, and cosmetics.
000126025 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E19-20R$$9info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101060130/EU/Twinning for intensified enzymatic processes for production of prebiotic-containing functional food and bioactive cosmetics/TwinPrebioEnz$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-106394GB-I00
000126025 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000126025 590__ $$a3.8$$b2023
000126025 592__ $$a1.034$$b2023
000126025 591__ $$aCHEMISTRY, PHYSICAL$$b74 / 178 = 0.416$$c2023$$dQ2$$eT2
000126025 593__ $$aInorganic Chemistry$$c2023$$dQ1
000126025 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ1
000126025 593__ $$aOrganic Chemistry$$c2023$$dQ1
000126025 593__ $$aCatalysis$$c2023$$dQ2
000126025 594__ $$a8.1$$b2023
000126025 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126025 700__ $$0(orcid)0000-0001-9779-5820$$aUrriolabeitia, Esteban P.
000126025 700__ $$aPalomo, Jose M.
000126025 773__ $$g15, 9 (2023), e202201632 [9 pp.]$$pChemCatChem$$tChemCatChem$$x1867-3880
000126025 8564_ $$s8499790$$uhttps://zaguan.unizar.es/record/126025/files/texto_completo.pdf$$yVersión publicada
000126025 8564_ $$s3034551$$uhttps://zaguan.unizar.es/record/126025/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126025 909CO $$ooai:zaguan.unizar.es:126025$$particulos$$pdriver
000126025 951__ $$a2024-11-22-12:07:21
000126025 980__ $$aARTICLE