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Anexos A

Materiales Básicos

Los materiales básicos son aquellos con BSDF sencilla de calcular y cuya

combinación da lugar a la gran mayoŕıa del resto de materiales, estando entre ellos

el referente al objetivo de este estudio.

Como materiales básicos nos encontramos el material difuso, el material conductor

(especular) y el material dieléctrico (reflexión y refracción), diferenciándose como se

ha comentado previamente en el comportamiento de la luz cuando incide sobre dicho

material.

Los materiales de origen difuso son aquellos que reflejan la luz a partes iguales por

toda la hemiesfera tal y resuelven el factor fr con la ecuación A.1 siendo kd el coeficiente

difuso que indica la cantidad de luz reflejada por el material difuso y π la hemiesfera

sobre la que se trazan todos los rayos de salida.

fr =
kd
π

(A.1)

En la Figura A.1 se ilustra el comportamiento de un material difuso y un ejemplo

del mismo.

(a) Comportamiento (b) Ejemplo

Figura A.1: Material difuso; comportamiento de la luz al intersectar con él y ejemplo

Los materiales conductores (especulares) son aquellos que reflejan la luz de manera

perfecta, es decir, el ángulo del rayo de salida es el espejo (con respecto a la normal de

la geometŕıa) al ángulo del rayo de entrada, siguiendo la siguiente ecuación:

47



Figura A.2: Ilustración de reflexión perfecta

θr = θi (A.2)

Este tipo de materiales resuelven el factor fr con la ecuación A.3 siendo δ una función

con valor uno para un parámetro de entrada espećıfico y 0 para todos los demas; y

wi · n un factor encargado de anular el factor idéntico en la Ecuación de Render pues

la dirección a la fuente de luz carece de importancia en estos materiales ya que el rayo

saliente solo tiene una dirección posible.

fr =
δr(wi)

wi · n
(A.3)

En la Figura A.3 se muestra a mano izquierda el comportamiento de la capa y a mano

derecha un ejemplo de la misma.

(a) Comportamiento (b) Ejemplo

Figura A.3: Material especular; comportamiento de la luz al intersectar con él y ejemplo

Acabando con los 3 materiales básicos se encuentran aquellos denominados

dieléctricos, esto es, que parte de la luz se ve reflejada y otra parte se ve refractada

-transmitida- como sucede por ejemplo en las esferas de cristal.

Al propagarse la luz por dos medios separados por una capa de material dieléctrico

hay que tener en cuenta el llamado ı́ndice de refracción, que se define como el cociente

de la velocidad de la luz en el vacio y la velocidad de la luz en el medio sobre el que se

quiera calcular (n = c
v
) y cuyo uso es necesario para el cálculo del ángulo con el que el

rayo se ve refractado.

Concretamente el uso de estos ı́ndices de refracción se encuentra en la Ley de Snell ;

ley que dados sendos ı́ndices de refracción pertenecientes a dos medios y el ángulo de
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entrada, posibilita el cálculo del ángulo con el que el rayo se ve refractado. Siendo n el

ı́ndice de refracción del medio indicado por su sub́ındice y θ los ángulos, se tiene que

dada la imagen A.4 los cálculos de los ángulos v́ıa Ley de Snell quedaŕıan como en la

ecuación A.4.

Figura A.4: Refracción perfecta (no existe en la realidad)

ni sin θi = nr sin θr (A.4)

En este tipo de material dieléctrico no basta con propagar los rayos de luz de la manera

que indican las ecuaciones, sino que también hay que tener en cuenta la conservación

de enerǵıa de forma más espećıfica, es decir, la suma de enerǵıa del rayo reflejado

y refractado ha de ser igual a la del rayo incidente y en ningún caso puede llegar a

superarla. Es por ello que hay que usar las ecuaciones de Fresnel, las cuales relacionan

las amplitudes de las ondas (cantidad de enerǵıa) reflejadas y refractadas en función

de la amplitud de la onda (cantidad de enerǵıa) incidente. Antes de exponer dichas

ecuaciones hay que saber qué es la luz s-polarizada y la p-polarizada:

− s-polarizada: la onda se propaga perpendicularmente, es decir, cambia de plano

al perpendicular.

− p-polarizada: la onda se propaga paralelamente, es decir, se mantiene en el mismo

plano.

Con esto en mente, y siguiendo la nomenclatura de la imágen A.4, a continuación se

establecen las ecuaciones siendo r el coeficiente de amplitud reflejado y t el refractado

-transmitido-, y con los sub́ındices indicando si es p-polarizado o s-polarizado:

rs =
ni cos θi − nr cos θr
ni cos θi + nr cos θr

ts =
2ni cos θi

ni cos θi + nr cos θr

rp =
nr cos θi − ni cos θr
ni cos θr + nr cos θi
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tp =
2ni cos θi

ni cos θr + nr cos θi
(A.5)

Para la resolución del factor fr en materiales dieléctricos se usa la ecuación A.6 donde el

primer sumando representa la parte especular multiplicada por su coeficiente especular

calculado con las ecuaciones de Fresnel (A.5) y el segundo la parte transmitida

multiplicada por el coeficiente de transmisión calculado igualmente por las ecuaciones

de Fresnel (A.5). Estos coeficientes se calculan con Fresnel (A.5) de manera que

ks = rs+rt
2

y kt = ts+tt
2

pues se asume misma cantidad de enerǵıa p-polarizada y

s-polarizada.

fr = ks(wi)
δr(wi)

wi · n
+ kt(wi)

δt(wi)

wi · n
(A.6)

A continuación en la FIgura A.5 se ilustra el comportamiento de un material dieléctrico

y a su derecha el ejemplo de uno con un ı́ndice de refracción interno igual al del diamante

(2.419):

(a) Comportamiento (b) Ejemplo

Figura A.5: Material dieléctrico; comportamiento de la luz al intersectar con él y
ejemplo
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Anexos B

Coloración y Caracteŕısticas
Estructurales en Serpientes

B.1. Caracteŕısticas Generales

Las serpientes poseen diferentes caracteŕısticas tanto a nivel macro-estructural como

a nivel micro-estructural, cuyas propiedades están dotadas de un interés notable para

este estudio [5, 6].

Hablando de la macro-estructura de las serpientes nos encontramos que estas,

al contrario que una gran cantidad de seres vivos, poseen escamas con patrones

estructurales de gran interés. En primer lugar hay que centrarse en la división más

genérica por capas, la epidermis y la dermis. La primera de ellas es la capa exterior

de la escama y por tanto la que impacta directamente con el medio, por lo que es más

robusta; la segunda de ellas es por ende la interna y en la que se encuentran los vasos

capilares y diversas glándulas. Dado que lo que interesa en este trabajo es el modelado

de apariencia, es importante el estudio más a fondo de la capa exterior, es decir, la

epidermis. Para un modelado de apariencia correcto es necesario el conocimiento de

dos aspectos fundamentales sobre esta capa; el primero de ellos aborda el patrón que

siguen las escamas, pues este difiere dependiendo de especies variando tanto la forma

como la unión entre las mismas; el segundo se basa en la división en subcapas de la

epidermis que nombradas de exterior a interior se obtiene: capa Oberhäutchen, capa

β-layer, capa mesos-layer, capa α-layer, capa lacunar tissue y por ultimo capa clear

layer tal y como se presenta en la Figura B.1. Como se ve, la capa Oberhäutchen es la

exterior por lo que la micro-estructura se va a estudiar sobre ella.

Con esta división establecida es de fundamental interés llevar a cabo un estudio

tanto a nivel macro-estructural como micro-estructural de la especie Xenopeltis

Unicolor desde la cual se va a generar un modelo de apariencia, por lo que en la

siguiente sub-sección se estudia senda estructura.
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Figura B.1: Diagrama de las capas de la epidermis en serpientes [6]

B.2. Xenopeltis Unicolor

La serpiente Xenopeltis Unicolor es la especie sujeta a estudio y cuya apariencia

se quiere modelar. Para dicho fin es importante conocer tanto su macro-estructura,

para un correcto modelado de su patrón de escamas, como su micro-estructura para

un modelado preciso de los colores iridiscentes obtenidos [14].

El estudio de la macro-estructura se centra en el patrón que siguen las escamas.

Este estudio ha sido principalmente de origen visual, y las conclusiones obtenidas son

que tal y como se puede ver en la Figura B.2 las escamas vistas en śı mismas poseen

formas hexagonales con ligeras irregularidades (no son hexágonos regulares), mientras

que vistas en conjunto se puede observar que estas forman un patrón simple; filas

perfectamente encajadas de sendos hexágonos los cuales no llegan a tocarse entre ellos

por mı́nimas separaciones.

Con la macro-estructura establecida ya se tiene el patrón de escamas a seguir durante

la modelación, por lo que ahora es el turno del estudio de la micro-estructura, de gran

importancia para la coloración de la serpiente.

La iridiscencia mostrada a la derecha de la Figura B.2 se obtiene gracias a la

micro-estructura que posee la serpiente Xenopeltis Unicolor. Esta micro-estructura

se basa en la existencia de iridóforos en la capa superior de las escamas del reptil

(recordemos denominada Oberhäutchen); estos iridóforos constan de pequeñas láminas

cristalinas que reflejan y refractan la luz, dando lugar a que las ondas de luz interfieran

y por ende se modifiquen creando estos colores tan llamativos que se pueden llegar

a ver. Si se tiene en cuenta lo mencionado en la sección de Coloración estructural

2.1, se ve que la descripción de los iridóforos encaja con la obtenida en la referente a

Interferencia de Capa Fina.
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Cabe destacar que debajo de estos denominados iridóforos se encuentra una capa de

pigmentos oscura que otorga ese color ennegrecido a las escamas cuando la iridiscencia

es menor o nula. Cuando la luz penetra por esta capa lo hace por un espacio reducido

hasta incidir sobre el fondo de la misma, momento en el cual la luz rebota y comienza

su camino a la superficie. Durante el camino por esta capa la luz sufre la denominada

absorción, es decir, pierde enerǵıa. Se tiene pues aqúı que esta capa de pigmentos

oscura se puede dividir en dos, una superficial que modele la absorción y una segunda

interior que modele el fondo de la misma y sea la encargada de aportar el color natural

de la serpiente.

Figura B.2: Sección aumentada de la Figura 1.1
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Anexos C

Interferencia de Capa Fina

Interferencia de Ondas

Para entender este fenómeno, es necesario saber lo que es la interferencia de ondas,

por qué se produce y qué genera. La interferencia de ondas sucede cuando un par de

ondas se encuentran por el espacio, esto hace que ambas se superpongan generando

una onda resultante formada por la suma de ambas superpuestas, por lo que es

necesario tener en cuenta tanto la amplitud de sendas ondas como la fase en la que se

encuentran.

En primer lugar existe la interferencia de ondas destructiva, esta se da cuando

ambas ondas tienen la misma amplitud pero están en contra fase tal y como se puede

ver en la imagen C.1. El resultado es la anulación de la ondas, es decir, la amplitud

de la onda resultante es cero. Vease que si no tuviesen la misma amplitud la onda no

se destruiŕıa hasta el punto de anularse.

Figura C.1: Ondas en contrafase creando una interferencia destructiva

Por otro lado existen las ondas constructivas, dadas cuando ambas ondas

superpuestas se encuentran en la misma fase tal y como se puede ver en la imagen

C.2. Lo que sucede en este tipo de interferencia es que al estar en fase la suma de las

ondas hace que la resultante obtenga un aumento de amplitud siendo este la suma de

ambas.
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Figura C.2: Ondas en fase creando una interferencia constructiva

Para poder llevar a cabo los cálculos de interferencia de ondas es necesario

formularlas. Una onda es matemáticamente representada por la ecuación C.1 donde A

es la amplitud de onda, w es la frecuencia angular, t es el instante de tiempo y ϕ la

fase de la onda.

y(t) = Aei(wt+ϕ) (C.1)

Esta representación de números complejos no es tan habitual pero tiene una

explicación. Dada la imagen C.3, si se establece z como el número complejo z = b+ ia

se puede calcular por trigonometŕıa básica que b = r cos θ y a = r sin θ. Lo que

implica que si se sustituyen a y b en la ecuación del número complejo quedaŕıa

r = r(cos θ + i sin θ). Por tanto, dada la fórmula de Euler (C.2) se tiene que z = reiθ,

fórmula en la que se basa la representación de ondas vista en la ecuación C.1.

eiθ = cos θ + i sin θ (C.2)

Figura C.3: Representación gráfica de un número complejo
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Dada esta formulación, el cálculo de la onda resultante por la superposición de

otras dos se puede calcular como la suma de dos ondas representadas con la fórmula

C.1.

Con la interferencia de ondas establecida, se puede ver que los rebotes dentro

de la capa que genera la Interferencia de Capa Fina van a hacer que la amplitud

de onda cambie y por tanto la cantidad de enerǵıa que esta posee. Como se ha

comentado anteriormente este cálculo de interferencia se lleva a cabo con ondas de

misma longitud de onda, lo que quiere decir que se calcula para cada color con el que

se quiera renderizar la imagen en cuestión, teniendo en este caso el sisteme RGB se

calcula entonces la cantidad de enerǵıa restante para cada color; va a ser esto lo que

produzca esos patrónes de colores.

Interferencia de Capa Fina

Una vez se ha explicado qué es la interferencia de ondas, se va a ver cómo se produce

en Interferencia de Capa Fina. Vease que lo que se quiere obtener es la amplitud para

cada canal del espectro RGB, pues esto dará la cantidad de enerǵıa restante en cada

color.

Establezcase que se tienen 3 materiales númerados; el material 0 es el material

externo; el 1 corresponde al material intermedio; y por último el 2 corresponde al

material interno. Con esta numeración, se va a establecer una nomenclatura necesaria:

− δ: representa la profundidad de la capa en cuestión.

− n: representa el ı́ndice de refracción de la capa en cuestión (cabe destacar que

dos capas consecuivas han de diferir en este parámetro).

− θ: representa el ángulo de incidencia del rayo por capa.

Sabiendo que por la Ley de Snell (A.4) se pueden calcular los ángulos θk de

incidencia en cada capa, estos no van a suponer un problema pues su cálculo va a ser

constante. También se tiene que por las ecuaciones de Fresnel (A.5) se puede calcular

la amplitud de onda resultante reflejada y refractada -transmitida- por lo que se puede

calcular de manera constante la cantidad de enerǵıa en cada caso. Para relacionar las

ecuaciones de Fresnel (A.5) con cada medio en cuestión, se va a establecer que ri|j es

el coeficiente de amplitud reflejado del medio i al j con la polarización requerida y lo

mismo pero referente a la refracción con ti|j.

Como caso base de interferencia de ondas se encuentra el que se muestra en la

Figura C.4 en el que la onda incidente refracta del medio 0 al 1, refleja del medio 1 al
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2 y seguidamente del 1 al 0 y concluye refractandose del medio 1 al 2. En resumen se

puede ver 4 puntos de intersección con las capas, en dos de ellos se refracta (primero

y último) y en los dos restantes se refleja (segundo y tercero). Por las ecuaciones de

Fresnel en cada punto la enerǵıa se ve dividida entre la reflejada y la refractada por lo

que el cálculo de la enerǵıa en una intersección dada es el producto de las ecuaciones

de Fresnel siguiendo el mismo camino que la onda en cuestión, lo cual se resuelve en

la siguiente ecuación:

t0|1r1|2r0|1t1|2 = t0|1t1|2r1|0r1|2

Figura C.4: Interferencia de capa fina caso base

Por tanto denotanto Ak como la amplitud de la onda k transmitida al medio interno,

se puede ver que el número que refracciones que ocurren durante su camino son siempre

dos, la de entrada al medio intermedio y la de entrada al medio interno; mientras que el

número de reflexiones vaŕıa dependiendo de la k de manera que en k+1 hay únicamente

dos más que en k una del medio 1 al 2 y otra del medio 1 al 0 sucediendose siempre

el mismo patrón como se puede ver en la Figura C.5. Al sucederse dos reflexiones más

y estas ser entre los mismos medios se tiene que Ak+1 = Ak ∗ r1|0 ∗ r1|2, desembocando

esto en la siguiente ecuación para k rebotes:

Ak = t0|1t1|2r
k
1|0r

k
1|2
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Figura C.5: Interferencia de capa fina caso general

Con esto se tiene el resultado de la amplitud refractada. Además, como se ha

comentado en la sección referente a interferencia de ondas (ver en C) la fase en la

que se encuentren ambas ondas al superponerse es importante. Si se tiene en cuenta

que k es la k-ésima onda transmitida y se denota ϕk como su fase, la siguiente fórmula

C.3 da el resultado de la fase en la que se encuentra dicha onda.

ϕk = k[
2π

λ
(2n1δ cos θ1) + ∆] (C.3)

En la fórmula C.3 cada śımbolo es constante dependiendo de la capa en la que se situa

y significa:

− λ: longitud de onda, constante pues previamente comentado que se realiza para

cada color del espectro RGB de manera individual.

− ∆: cantidad de cambio de fase en reflexión. Teniendo en cuenta que el ı́ndice

de refracción es una medida de la densidad de un medio, se puede calcular esta

constante con ello.

∆i|j =

{
0 si ni > nj,
π si ni < nj,

Y por tanto al ser reflejada dos veces antes de ser transmitida se tiene la ecuación:

∆ = ∆1|0 +∆1|2

− 1 : el sub́ındice 1 de las capas implica que se tiene en cuenta la capa intermedia,

desde la que pasan a la interior.

Como las ondas transmitidas se encuentran en un medio diferente al de incidencia

hay que tener en cuenta el ratio de indices de refracción debido a la diferencia de los
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mismos y el ratio de cosenos debido al cambio de ángulo de la luz refractada para la

conservación de enerǵıa tal y como se muestra en la siguiente ecuación:

n2 cos θ2
n0 cos θ0

(C.4)

Una vez se tiene el cálculo de la amplitud, de la fase y del ratio de conservación de

enerǵıa, el resultado final es la ecuación siguiente en la que el primer factor corresponde

al ratio de conservación y el segundo calcula la interferencia de ondas para k rebotes

siguiendo la formulación vista de las ondas:

IT =
n2 cos θ2
n0 cos θ0

∣∣∣∣∣
∞∑
k=0

Ake
iϕk

∣∣∣∣∣
2

Que simplificada se queda en:

IT =

(
n2 cos θ2
n0 cos θ0

)
|t0|1t1|2|2

|r1|0r1|2|2 − 2r1|0r1|2 cosϕ+ 1
(C.5)

Y como hay que tener en cuenta la conservación de enerǵıa se tiene:

IT + IR = 1 (C.6)

Una vez resuelto esto se ha resuelto el problema tratado, concretamente se han obtenido

los coeficientes de refracción -transmisión- IT y reflexión IR representados en la Figura

C.6, es decir, la cantidad de luz reflejada y refractada -transmitida-, más concretamente

la amplitud de la onda reflejada o refractada -transmitida- con respecto a la incidente.

Figura C.6: Interferencia de capa fina con el resultado de sus ondas reflejadas y
transmitidas
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Anexos D

Path Tracing y Position-Free Monte
Carlo

D.1. Path Tracing

Este método de simulación del transporte de luz es el usado durante el trabajo, lo

cual quiere decir que todas las imágenes obtenidas lo han sido gracias al uso de Path

Tracing, por lo que es importante tener unos conocimientos básicos sobre ello [7].

Definición de Path

Path Tracing es una técnica basada en trazado de rayos, anteriormente comentado

en la sección 2.3. La gran caracteŕıstica de este tipo de simulación es que se simula un

solo camino del rayo denominado path, obteniendo en cada intersección una dirección

aleatoria de salida que corresponda con el material en cuestión hasta que se encuentre

una fuente de luz o se absorba por completo. En la Figura D.3 se ve el ejemplo de un

path.

Figura D.1: Ejemplo de un Path; se puede ver como este sigue un solo camino rebotando
en los materiales sin dividirse en todos los posibles rayos hasta una última intersección
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D.1.1. Path Integral

Para la resolución de todo el conjunto de paths que se trazan en una imagen en el

algoritmo Path Tracing, se va a denotar un path con sus k puntos de intersección de la

manera x̄ = (x0, ..., xk), siendo xn cada punto de intersección, por lo que en resumen

viene definido por un conjunto de segmentos. Con ello, la ecuación de la resolución de

la radiancia en Path Tracing queda de la manera que se ve en la ecuación D.1, donde

I es la radiancia resultante, Ω es el conjunto de paths, f es la contribución del path

en cuestión y µ es la medida del producto de las areas de intersección de cada una de

sendo path.

I =

∫
Ω

f(x̄)dµ(x̄) (D.1)

La contribución de cada path denotada con f en la ecuación anterior (D.1) viene

dada por la resolución de la Ecuación de Render (2.1) para cada path. Por tanto,

la resolución del factor f para un único path viene dada por la expresión D.2 donde

Le(xk) es la luz emitida por el último objeto intersectado que será siempre una fuente

de luz o la absorción completa y por tanto cero; y el productorio indica la resolución

recursiva del path siendo que el factor Li de la Ecuación de Render (2.1) viene dado

por la contribución de la siguiente intersección del path, por lo que se van acumulando

multiplicaciones hasta llegar al objeto emisor de luz o a la absorción.

f(x̄) = Le(xk) ∗

(
k−1∏
j=1

fr(x,wij, woj) ∗ |nj · wij|

)
(D.2)

D.1.2. Monte Carlo

La integral denominada Path Integral (D.1) introducida anteriormente es una

integral cuyo rango está en Ω, es decir, todos los posibles paths en la imagen. La

resolución de tal integral es de una magnitud cuantiosa por lo que su resolución ha de

basarse en una técnica de resolución de integrales numéricas de manera aproximada.

Monte Carlo es una técnica aproximación de expresiones matemáticas complejas

como por ejemplo la integral nombrada. Este método se basa en la obtención de puntos

a evaluar aleatorios denominados muestras para la resolución de dichas integrales con

el fin de obtener de esa manera la resolución aproximada. Vease que la resolución de

la integral de la Figura D.2a aplicando el método de Monte Carlo se veŕıa resuelta

de la manera vista en la Figura D.2b. Por tanto, la resolución de una integral por

el método de Monte Carlo viene dada por la Fórmula D.3 donde N el número de

muestras utilizadas y prob(xi) es la función de distribución de probabilidad usada para

la obtención de muestras también denominada pdf (probability density function).
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(a) Integral a resolver (b) Integral resuelta por Monte Carlo

Figura D.2: Ejemplo de uso del método Monte Carlo para la resolución de una integral

∫
V

f(x) ≈ I =
1

N
∗

N∑
i=1

f(xi)

prob(xi)
(D.3)

Dada la Ley de los Grandes Números [17] que afirma que dado un número infinito de

muestras, un ensayo aproximado obtiene el valor correcto, se tiene que el método de

Monte Carlo converge dado el ĺımite D.4.

ĺım
x→ı́nf

I =

∫
V

f(x) (D.4)

D.1.3. Path Tracing

Para la resolución de Path Tracing basta con resolver la Path Integral aplicando

Monte Carlo de manera que el conjunto de muestras N es el número de paths

muestreados y la función de distribución de probabilidad pdf es la usada para obtener

cada path.

Figura D.3: Ejemplo de la resolución de un path con Path Tracing

Vease que para la Figura D.3 que ejemplifica el recorrido de un path, dada la Path

Integral y la aproximación por Monte Carlo la resolución de la raciancia Lo vendŕıa

dada por la ecuación D.5 donde prob(wi1) es la anteriormente mencionada pdf usada

porMonte Carlo. La ausencia de integral se debe a que se está siguiendo un solo camino.
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Lo(x1, wo1) =
Li(x1, wi1)fr(x,wi1, wo1)|n1 · wi1|

prob(wi1)
(D.5)

Siendo que el factor Li(x1, wi1) es la cantidad de luz que recibe el punto x1 desde la

dirección wi1 esta se va a resolver aplicando la Ecuación de Render recursivamenet de

manera que se simula que el observador ahora se encuentra en el punto x1, quedando

pues la resolución de Li(x1, wi1) como en la ecuación D.6.

Li(x1, wo2) =
Li(x2, wi2)fr(x,wi2, wo2)|n2 · wi2|

prob(wi2)
(D.6)

Esta recursividad seguiŕıa hasta encontrarse una fuente de luz o producirse absorción,

donde el factor Li quedaŕıa resuelto por la ecuación D.7.

Li(x4, wo4) = Le(x4, wo4) (D.7)

D.1.4. Luz Directa e Indirecta

Para el correcto cálculo de la radiancia en un punto hay que tener en cuenta las

dos divisiones de tipos de luz, la luz indirecta y la luz directa.

La luz indirecta es aquella que viene dada por la resultante de calcular la radiancia

del siguiente punto de intersección del path, es decir, es la que viene calculada por

la Path Integral (D.1) pues se calcula de manera recursiva hasta haber alcanzado la

fuente de luz. Para que tal cálculo sea posible es necesario llevar a cabo un muestreo

de la BSDF es decir, un cálculo del rayo de salida con respecto al de entrada teniendo

en cuenta el tipo de material sobre el que se ha intersectado. Es gracias a este cálculo

del rayo de salida que se va a poder continuar el path y por ende seguir intersectando

hasta el momento de intersectar con una fuente de luz y que se pueda resolver la Path

Integral, por lo que el muestreo de la BSDF es esencial. En la Figura D.4a se puede

ver un ejemplo de luz indirecta.

Por otro lado, la luz directa es aquella que solo tarda un rebote en llegar

al observador, por lo que la unión entre el punto de intersección y la fuente de

luz ha de carecer de objetos entre la misma. Tal iluminación puede darse en dos

ocasiones, aleatoriamente o de manera intencionada, siendo esta última la denominada

evaluación de una BSDF. Esto quiere decir que en ocasiones, cuando la fuente

de luz es muy dificil de encontrar de manera aleatoria es necesario encontrarla de

manera intencionada o la imagen no se verá iluminada, por lo que se lleva a cabo

la evaluación de la BSDF que se basa en que en cada intersección, posteriormente
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a haberse muestreado la BSDF en tal punto, se le añade a la radiancia indirecta la

incidente de luz directa correspondiente a la distancia entre fuente de luz e intersección

por la Ley de los Cuadrados Inversos la cual divide la radiancia de la luz directa

entre la distancia al cuadrado. En la Figura D.4b se puede ver un ejemplo de luz directa.

(a) Luz Indirecta (b) Luz Directa

Figura D.4: Ejemplos de tipos de luz

D.2. Position-Free Monte Carlo

En la Sección 2.4.1 se hace referencia a los materiales multicapa y a que existen

diferentes formas de simular el transporte de la luz por ellos. Position-Free Monte

Carlo [9] es un método de simulación del transporte de la luz en materiales multicapa,

modelando desde las intersecciones con las capas hasta el camino que sigue la luz entre

ellas.

Concretamente este método trata de evaluar una BSDF (obtener el factor fr de

la Ecuación de Render, vease 2.1) aplicando la técnica Path Tracing (D.1) dentro del

propio modelo multicapa para simular el paso de la luz por las capas intersectando

tanto con las propias capas como con el medio entre las mismas. La diferencia con

Path Tracing tradicional es que la Path Integral usada es position-free es decir, se

asume que aunque los puntos se encuentren en lugares diferentes con respecto al eje x

la variación en tal eje va a ser tan pequeña que se asume inexistente, en conclusión,

no importa la posición en el eje x pues se asume en todas las intersecciones del path

la misma. Esto hace que la definición de path cambie y esta venga dada en vez de

por puntos de intersección por vértices formados por pares de profundidad y dirección.

La profundidad denotada con z ∈ [0, 1] indica la profundidad de la capa en la que se

encuentra la intersección mientras que la dirección denotada con d denota la dirección
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de salida de la luz entre vértices. Esto implica que la definición de un path viene dada

por x̄ = d0, z1, d1, ..., zk, dk. En la Figura D.5 se encuentra el ejemplo de un path que

evalua una BSDF mediante Position-Free Monte Carlo.

Figura D.5: Imagen ejemplo de la asunción de mismo punto de salida y entrada ∆x;
también muestra el camino simulado -path- seguido por un rayo, siendo las estrellas los
puntos de cálculo del color y las flechas el camino que sigue [9]

Finalmente se tiene que la evaluación queda resuelta pues con la ecuación D.8 donde

(wi, wo) indica que se está evaluando la BSDF con tales rayos de incidencia y de salida.

fr(wi, wo) =

∫
Ω(wi,wo)

f(x̄)dµ(x̄) (D.8)
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