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Anexos A

Materiales Basicos

Los materiales basicos son aquellos con BSDF sencilla de calcular y cuya
combinacion da lugar a la gran mayoria del resto de materiales, estando entre ellos
el referente al objetivo de este estudio.

Como materiales basicos nos encontramos el material difuso, el material conductor
(especular) y el material dieléctrico (reflexién y refraccién), diferencidndose como se
ha comentado previamente en el comportamiento de la luz cuando incide sobre dicho
material.

Los materiales de origen difuso son aquellos que reflejan la luz a partes iguales por
toda la hemiesfera tal y resuelven el factor f, con la ecuacion A.1 siendo k, el coeficiente
difuso que indica la cantidad de luz reflejada por el material difuso y 7 la hemiesfera
sobre la que se trazan todos los rayos de salida.

ka
o=t (A1)

En la Figura A.1 se ilustra el comportamiento de un material difuso y un ejemplo

del mismo.

(a) Comportamiento (b) Ejemplo

Figura A.1: Material difuso; comportamiento de la luz al intersectar con él y ejemplo

Los materiales conductores (especulares) son aquellos que reflejan la luz de manera
perfecta, es decir, el dngulo del rayo de salida es el espejo (con respecto a la normal de

la geometria) al angulo del rayo de entrada, siguiendo la siguiente ecuacién:
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0, = 0, (A.2)

Este tipo de materiales resuelven el factor f, con la ecuacién A.3 siendo § una funcién
con valor uno para un parametro de entrada especifico y 0 para todos los demas; y
wt - n un factor encargado de anular el factor idéntico en la Fcuacion de Render pues
la direccién a la fuente de luz carece de importancia en estos materiales ya que el rayo

saliente solo tiene una direccién posible.

;= oy (w;) (A.3)

we - n

En la Figura A.3 se muestra a mano izquierda el comportamiento de la capa y a mano

e

derecha un ejemplo de la misma.

14

(a) Comportamiento (b) Ejemplo

Figura A.3: Material especular; comportamiento de la luz al intersectar con él y ejemplo

Acabando con los 3 materiales basicos se encuentran aquellos denominados
dieléctricos, esto es, que parte de la luz se ve reflejada y otra parte se ve refractada
-transmitida- como sucede por ejemplo en las esferas de cristal.

Al propagarse la luz por dos medios separados por una capa de material dieléctrico
hay que tener en cuenta el llamado indice de refraccion, que se define como el cociente
de la velocidad de la luz en el vacio y la velocidad de la luz en el medio sobre el que se
quiera calcular (n = <) y cuyo uso es necesario para el cdlculo del angulo con el que el
rayo se ve refractado.

Concretamente el uso de estos indices de refraccion se encuentra en la Ley de Snell;

ley que dados sendos indices de refraccion pertenecientes a dos medios y el angulo de

48



entrada, posibilita el célculo del angulo con el que el rayo se ve refractado. Siendo n el
indice de refraccién del medio indicado por su subindice y # los angulos, se tiene que
dada la imagen A.4 los calculos de los angulos via Ley de Snell quedarian como en la

ecuacién A 4.

Figura A.4: Refraccién perfecta (no existe en la realidad)

n;sin@; = n, sin 0, (A.4)

En este tipo de material dieléctrico no basta con propagar los rayos de luz de la manera
que indican las ecuaciones, sino que también hay que tener en cuenta la conservacién
de energia de forma maés especifica, es decir, la suma de energia del rayo reflejado
y refractado ha de ser igual a la del rayo incidente y en ningun caso puede llegar a
superarla. Es por ello que hay que usar las ecuaciones de Fresnel, las cuales relacionan
las amplitudes de las ondas (cantidad de energia) reflejadas y refractadas en funcién
de la amplitud de la onda (cantidad de energia) incidente. Antes de exponer dichas

ecuaciones hay que saber qué es la luz s-polarizada y la p-polarizada:

— s-polarizada: la onda se propaga perpendicularmente, es decir, cambia de plano

al perpendicular.

— p-polarizada: la onda se propaga paralelamente, es decir, se mantiene en el mismo

plano.

Con esto en mente, y siguiendo la nomenclatura de la imagen A.4, a continuacién se
establecen las ecuaciones siendo r el coeficiente de amplitud reflejado y ¢ el refractado

-transmitido-, y con los subindices indicando si es p-polarizado o s-polarizado:

n; cos8; — n, cos 6,

ry =
n; cos 0; + n,. cos 0,
2n; cos 0,
ts =
n; cos 0; + n,. cos 0,
n, cos 0, — n; cos b,
T, =

n; cos 0, + n,. cos b;
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I ‘
n; cos 6, (A.5)

tp

- n; cos 6, + n,. cos 6;

Para la resolucion del factor f, en materiales dieléctricos se usa la ecuacion A.6 donde el
primer sumando representa la parte especular multiplicada por su coeficiente especular
calculado con las ecuaciones de Fresnel (A.5) y el segundo la parte transmitida
multiplicada por el coeficiente de transmisién calculado igualmente por las ecuaciones

de Fresnel (A.5). Estos coeficientes se calculan con Fresnel (A.5) de manera que

ke = =t y k= % pues se asume misma cantidad de energia p-polarizada y
s-polarizada.
57’ w; (5 w;
£ = k()22 () 20 (A.6)
wi-n wi-n

A continuacién en la Flgura A.5 se ilustra el comportamiento de un material dieléctrico

y a su derecha el ejemplo de uno con un indice de refraccion interno igual al del diamante
(2.419):

(a) Comportamiento (b) Ejemplo

Figura A.5: Material dieléctrico; comportamiento de la luz al intersectar con él y
ejemplo
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Anexos B

Coloracion y Caracteristicas
Estructurales en Serpientes

B.1. Caracteristicas Generales

Las serpientes poseen diferentes caracteristicas tanto a nivel macro-estructural como
a nivel micro-estructural, cuyas propiedades estan dotadas de un interés notable para

este estudio [5, 6].

Hablando de la macro-estructura de las serpientes nos encontramos que estas,
al contrario que una gran cantidad de seres vivos, poseen escamas con patrones
estructurales de gran interés. En primer lugar hay que centrarse en la divisién mas
genérica por capas, la epidermis y la dermis. La primera de ellas es la capa exterior
de la escama y por tanto la que impacta directamente con el medio, por lo que es mas
robusta; la segunda de ellas es por ende la interna y en la que se encuentran los vasos
capilares y diversas glandulas. Dado que lo que interesa en este trabajo es el modelado
de apariencia, es importante el estudio mas a fondo de la capa exterior, es decir, la
epidermis. Para un modelado de apariencia correcto es necesario el conocimiento de
dos aspectos fundamentales sobre esta capa; el primero de ellos aborda el patrén que
siguen las escamas, pues este difiere dependiendo de especies variando tanto la forma
como la unién entre las mismas; el segundo se basa en la divisién en subcapas de la
epidermis que nombradas de exterior a interior se obtiene: capa Oberhautchen, capa
B-layer, capa mesos-layer, capa a-layer, capa lacunar tissue y por ultimo capa clear
layer tal y como se presenta en la Figura B.1. Como se ve, la capa Oberhdautchen es la
exterior por lo que la micro-estructura se va a estudiar sobre ella.

Con esta division establecida es de fundamental interés llevar a cabo un estudio
tanto a nivel macro-estructural como micro-estructural de la especie Xenopeltis
Unicolor desde la cual se va a generar un modelo de apariencia, por lo que en la

siguiente sub-seccion se estudia senda estructura.
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N —» clear-layer (0.5 pm)
= [acunar-layer (1.0pm)

. = t-layer (1.0 pm)

Oberhdutchen
™ and B-layer (7.5 pm)

Figura B.1: Diagrama de las capas de la epidermis en serpientes [6]

B.2. Xenopeltis Unicolor

La serpiente Xenopeltis Unicolor es la especie sujeta a estudio y cuya apariencia
se quiere modelar. Para dicho fin es importante conocer tanto su macro-estructura,
para un correcto modelado de su patréon de escamas, como su micro-estructura para
un modelado preciso de los colores iridiscentes obtenidos [14].

El estudio de la macro-estructura se centra en el patron que siguen las escamas.
Este estudio ha sido principalmente de origen visual, y las conclusiones obtenidas son
que tal y como se puede ver en la Figura B.2 las escamas vistas en si mismas poseen
formas hexagonales con ligeras irregularidades (no son hexagonos regulares), mientras
que vistas en conjunto se puede observar que estas forman un patron simple; filas
perfectamente encajadas de sendos hexagonos los cuales no llegan a tocarse entre ellos
por minimas separaciones.

Con la macro-estructura establecida ya se tiene el patrén de escamas a seguir durante
la modelacién, por lo que ahora es el turno del estudio de la micro-estructura, de gran
importancia para la coloracion de la serpiente.

La iridiscencia mostrada a la derecha de la Figura B.2 se obtiene gracias a la
micro-estructura que posee la serpiente Xenopeltis Unicolor. Esta micro-estructura
se basa en la existencia de iridoforos en la capa superior de las escamas del reptil
(recordemos denominada Oberhdutchen); estos iridéforos constan de pequenas laminas
cristalinas que reflejan y refractan la luz, dando lugar a que las ondas de luz interfieran
y por ende se modifiquen creando estos colores tan llamativos que se pueden llegar
a ver. Si se tiene en cuenta lo mencionado en la seccién de Coloracion estructural
2.1, se ve que la descripcion de los iridoforos encaja con la obtenida en la referente a

Interferencia de Capa Fina.
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Cabe destacar que debajo de estos denominados iridoforos se encuentra una capa de
pigmentos oscura que otorga ese color ennegrecido a las escamas cuando la iridiscencia
es menor o nula. Cuando la luz penetra por esta capa lo hace por un espacio reducido
hasta incidir sobre el fondo de la misma, momento en el cual la luz rebota y comienza
su camino a la superficie. Durante el camino por esta capa la luz sufre la denominada
absorcion, es decir, pierde energia. Se tiene pues aqui que esta capa de pigmentos
oscura se puede dividir en dos, una superficial que modele la absorcién y una segunda
interior que modele el fondo de la misma y sea la encargada de aportar el color natural

de la serpiente.

Figura B.2: Seccién aumentada de la Figura 1.1
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Anexos C

Interferencia de Capa Fina

Interferencia de Ondas

Para entender este fenémeno, es necesario saber lo que es la interferencia de ondas,
por qué se produce y qué genera. La interferencia de ondas sucede cuando un par de
ondas se encuentran por el espacio, esto hace que ambas se superpongan generando
una onda resultante formada por la suma de ambas superpuestas, por lo que es
necesario tener en cuenta tanto la amplitud de sendas ondas como la fase en la que se
encuentran.

En primer lugar existe la interferencia de ondas destructiva, esta se da cuando
ambas ondas tienen la misma amplitud pero estan en contra fase tal y como se puede
ver en la imagen C.1. El resultado es la anulacion de la ondas, es decir, la amplitud
de la onda resultante es cero. Vease que si no tuviesen la misma amplitud la onda no

se destruiria hasta el punto de anularse.

Onda 1

A’ \/\/\ Onda 2

Onda Resultante

Figura C.1: Ondas en contrafase creando una interferencia destructiva

Por otro lado existen las ondas constructivas, dadas cuando ambas ondas
superpuestas se encuentran en la misma fase tal y como se puede ver en la imagen
C.2. Lo que sucede en este tipo de interferencia es que al estar en fase la suma de las
ondas hace que la resultante obtenga un aumento de amplitud siendo este la suma de

ambas.
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Onda 1

A /\—/\/ oni 2

2A

Onda Resultante

Figura C.2: Ondas en fase creando una interferencia constructiva

Para poder llevar a cabo los calculos de interferencia de ondas es necesario
formularlas. Una onda es matematicamente representada por la ecuacion C.1 donde A
es la amplitud de onda, w es la frecuencia angular, t es el instante de tiempo y ¢ la

fase de la onda.

y(t) = Ae'wi+9) (C.1)

Esta representacién de numeros complejos no es tan habitual pero tiene una
explicacién. Dada la imagen C.3, si se establece z como el niimero complejo z = b+ ia
se puede calcular por trigonometria bésica que b = rcosf y a = rsinf. Lo que
implica que si se sustituyen a y b en la ecuaciéon del nimero complejo quedaria
r = r(cosf + isinf). Por tanto, dada la férmula de Euler (C.2) se tiene que z = re,

formula en la que se basa la representacién de ondas vista en la ecuacién C.1.

¢ = cosf +isinf (C.2)
! (a,b)
r b
0
o] a R

Figura C.3: Representacién grafica de un niimero complejo
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Dada esta formulacion, el cdlculo de la onda resultante por la superposicion de
otras dos se puede calcular como la suma de dos ondas representadas con la formula
C.1.

Con la interferencia de ondas establecida, se puede ver que los rebotes dentro
de la capa que genera la Interferencia de Capa Fina van a hacer que la amplitud
de onda cambie y por tanto la cantidad de energia que esta posee. Como se ha
comentado anteriormente este calculo de interferencia se lleva a cabo con ondas de
misma longitud de onda, lo que quiere decir que se calcula para cada color con el que
se quiera renderizar la imagen en cuestion, teniendo en este caso el sisteme RGB se
calcula entonces la cantidad de energia restante para cada color; va a ser esto lo que

produzca esos patrénes de colores.

Interferencia de Capa Fina

Una vez se ha explicado qué es la interferencia de ondas, se va a ver cémo se produce
en Interferencia de Capa Fina. Vease que lo que se quiere obtener es la amplitud para
cada canal del espectro RGB, pues esto dara la cantidad de energia restante en cada
color.

Establezcase que se tienen 3 materiales numerados; el material 0 es el material
externo; el 1 corresponde al material intermedio; y por tultimo el 2 corresponde al

material interno. Con esta numeracion, se va a establecer una nomenclatura necesaria:

— 0: representa la profundidad de la capa en cuestion.

— n: representa el indice de refraccién de la capa en cuestién (cabe destacar que

dos capas consecuivas han de diferir en este pardmetro).

— 0: representa el angulo de incidencia del rayo por capa.

Sabiendo que por la Ley de Snell (A.4) se pueden calcular los dngulos 6, de
incidencia en cada capa, estos no van a suponer un problema pues su calculo va a ser
constante. También se tiene que por las ecuaciones de Fresnel (A.5) se puede calcular
la amplitud de onda resultante reflejada y refractada -transmitida- por lo que se puede
calcular de manera constante la cantidad de energia en cada caso. Para relacionar las
ecuaciones de Fresnel (A.5) con cada medio en cuestion, se va a establecer que r;; es
el coeficiente de amplitud reflejado del medio 7 al 5 con la polarizacién requerida y lo
mismo pero referente a la refraccién con t;;.

Como caso base de interferencia de ondas se encuentra el que se muestra en la

Figura C.4 en el que la onda incidente refracta del medio 0 al 1, refleja del medio 1 al
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2 y seguidamente del 1 al 0 y concluye refractandose del medio 1 al 2. En resumen se
puede ver 4 puntos de interseccién con las capas, en dos de ellos se refracta (primero
y tultimo) y en los dos restantes se refleja (segundo y tercero). Por las ecuaciones de
Fresnel en cada punto la energia se ve dividida entre la reflejada y la refractada por lo
que el calculo de la energia en una intersecciéon dada es el producto de las ecuaciones
de Fresnel siguiendo el mismo camino que la onda en cuestion, lo cual se resuelve en

la siguiente ecuacion:

tojim2To1tr2 = tojitaj2rijo1)2

Medio Externo (ng)

Medio Intermedia (n,)

tonn Mo

M2

tl|2 Medio Interno (n;)

Figura C.4: Interferencia de capa fina caso base

Por tanto denotanto Aj como la amplitud de la onda k transmitida al medio interno,
se puede ver que el niimero que refracciones que ocurren durante su camino son siempre
dos, la de entrada al medio intermedio y la de entrada al medio interno; mientras que el
nimero de reflexiones varia dependiendo de la & de manera que en k41 hay tinicamente
dos més que en k£ una del medio 1 al 2 y otra del medio 1 al 0 sucediendose siempre
el mismo patron como se puede ver en la Figura C.5. Al sucederse dos reflexiones mas
y estas ser entre los mismos medios se tiene que Ay = Ay * ry)o * 712, desembocando

esto en la siguiente ecuacion para k rebotes:

Ay = 150|1751\27Jf|07]1€2
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Medio Externo (n,)

tE:|:L Mo Mo Medio Intermedio (n,)
5]
M2 M2

t1\2 Medio Interno (n,)

ti2 12

Ay A,

Figura C.5: Interferencia de capa fina caso general

Con esto se tiene el resultado de la amplitud refractada. Ademéds, como se ha
comentado en la seccion referente a interferencia de ondas (ver en C) la fase en la
que se encuentren ambas ondas al superponerse es importante. Si se tiene en cuenta
que k es la k-ésima onda transmitida y se denota ¢, como su fase, la siguiente formula

C.3 da el resultado de la fase en la que se encuentra dicha onda.

i

o =k ) (2n1 cos by) + A (C.3)

En la formula C.3 cada simbolo es constante dependiendo de la capa en la que se situa

y significa:

— A: longitud de onda, constante pues previamente comentado que se realiza para

cada color del espectro RGB de manera individual.

— A: cantidad de cambio de fase en reflexién. Teniendo en cuenta que el indice
de refraccion es una medida de la densidad de un medio, se puede calcular esta
constante con ello.

A

{0 sini>nj,

il T sin < nj,

Y por tanto al ser reflejada dos veces antes de ser transmitida se tiene la ecuacion:

A=A+ Aqp

— 1: el subindice 1 de las capas implica que se tiene en cuenta la capa intermedia,

desde la que pasan a la interior.

Como las ondas transmitidas se encuentran en un medio diferente al de incidencia

hay que tener en cuenta el ratio de indices de refraccion debido a la diferencia de los
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mismos y el ratio de cosenos debido al cambio de angulo de la luz refractada para la

conservaciéon de energia tal y como se muestra en la siguiente ecuacion:

Ny cOS Oy
—_ C4
ng cos Gy (C.4)

Una vez se tiene el célculo de la amplitud, de la fase y del ratio de conservacion de
energia, el resultado final es la ecuacion siguiente en la que el primer factor corresponde
al ratio de conservacion y el segundo calcula la interferencia de ondas para k rebotes

siguiendo la formulacién vista de las ondas:

_ Mpcos 0,

Z Ake

" ng cos 90

Que simplificada se queda en:

0 toj1t112|?
I — (TIQCOS 2) . | toj1 )2 (C.5)
ngcosty ) |rijori2|> — 2ror2 cos ¢ + 1

Y como hay que tener en cuenta la conservacién de energia se tiene:

IT+IR: 1 (06)

Una vez resuelto esto se ha resuelto el problema tratado, concretamente se han obtenido
los coeficientes de refraccion -transmision- I y reflexion Ir representados en la Figura
C.6, es decir, la cantidad de luz reflejada y refractada -transmitida-, mas concretamente

la amplitud de la onda reflejada o refractada -transmitida- con respecto a la incidente.

Medio Externo (ng)

\/\/\ Medio Intermedio ()
5
It

Figura C.6: Interferencia de capa fina con el resultado de sus ondas reflejadas y
transmitidas
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Anexos D

Path Tracing y Position-Free Monte
Carlo

D.1. Path Tracing

Este método de simulacion del transporte de luz es el usado durante el trabajo, lo
cual quiere decir que todas las imégenes obtenidas lo han sido gracias al uso de Path

Tracing, por lo que es importante tener unos conocimientos bésicos sobre ello [7].

Definicion de Path

Path Tracing es una técnica basada en trazado de rayos, anteriormente comentado
en la seccion 2.3. La gran caracteristica de este tipo de simulacion es que se simula un
solo camino del rayo denominado path, obteniendo en cada interseccion una direccién
aleatoria de salida que corresponda con el material en cuestién hasta que se encuentre
una fuente de luz o se absorba por completo. En la Figura D.3 se ve el ejemplo de un

path.

Figura D.1: Ejemplo de un Path; se puede ver como este sigue un solo camino rebotando
en los materiales sin dividirse en todos los posibles rayos hasta una ultima interseccién
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D.1.1. Path Integral

Para la resolucién de todo el conjunto de paths que se trazan en una imagen en el
algoritmo Path Tracing, se va a denotar un path con sus k puntos de interseccion de la
manera T = (o, ..., ¥ ), siendo x, cada punto de interseccién, por lo que en resumen
viene definido por un conjunto de segmentos. Con ello, la ecuacion de la resolucion de
la radiancia en Path Tracing queda de la manera que se ve en la ecuacion D.1, donde
I es la radiancia resultante, € es el conjunto de paths, f es la contribucién del path
en cuestion y p es la medida del producto de las areas de interseccién de cada una de

sendo path.
1= [ 5@ (D.1)

La contribucién de cada path denotada con f en la ecuacién anterior (D.1) viene
dada por la resolucién de la Ecuacion de Render (2.1) para cada path. Por tanto,
la resolucion del factor f para un tnico path viene dada por la expresion D.2 donde
Le(z) es la luz emitida por el dltimo objeto intersectado que serd siempre una fuente
de luz o la absorciéon completa y por tanto cero; y el productorio indica la resolucién
recursiva del path siendo que el factor L; de la Ecuacion de Render (2.1) viene dado
por la contribuciéon de la siguiente interseccion del path, por lo que se van acumulando

multiplicaciones hasta llegar al objeto emisor de luz o a la absorcién.

f(Z) = Le(wy) * (1:[ Jr(@, wig, wo;) * |nj - wij!) (D.2)

Jj=1

D.1.2. Monte Carlo

La integral denominada Path Integral (D.1) introducida anteriormente es una
integral cuyo rango estda en 2, es decir, todos los posibles paths en la imagen. La
resolucion de tal integral es de una magnitud cuantiosa por lo que su resolucién ha de
basarse en una técnica de resolucion de integrales numéricas de manera aproximada.

Monte Carlo es una técnica aproximacion de expresiones matemadticas complejas
como por ejemplo la integral nombrada. Este método se basa en la obtencion de puntos
a evaluar aleatorios denominados muestras para la resoluciéon de dichas integrales con
el fin de obtener de esa manera la resoluciéon aproximada. Vease que la resolucién de
la integral de la Figura D.2a aplicando el método de Monte Carlo se veria resuelta
de la manera vista en la Figura D.2b. Por tanto, la resolucion de una integral por
el método de Monte Carlo viene dada por la Formula D.3 donde N el nimero de
muestras utilizadas y prob(x;) es la funcién de distribucién de probabilidad usada para

la obtencién de muestras también denominada pdf (probability density function).
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f(x) f(x)

N

[ fx)dx
a b x a b x

(a) Integral a resolver (b) Integral resuelta por Monte Carlo

Figura D.2: Ejemplo de uso del método Monte Carlo para la resolucién de una integral

f(x)zj’:i*zM (D.3)

Dada la Ley de los Grandes Numeros [17] que afirma que dado un nimero infinito de
muestras, un ensayo aproximado obtiene el valor correcto, se tiene que el método de
Monte Carlo converge dado el limite D.4.

lim [:/Vf(x) (D.4)

r—inf

D.1.3. Path Tracing

Para la resolucion de Path Tracing basta con resolver la Path Integral aplicando
Monte Carlo de manera que el conjunto de muestras N es el nimero de paths
muestreados y la funcién de distribucién de probabilidad pdf es la usada para obtener

cada path.

Figura D.3: Ejemplo de la resolucién de un path con Path Tracing

Vease que para la Figura D.3 que ejemplifica el recorrido de un path, dada la Path
Integral y la aproximacién por Monte Carlo la resolucién de la raciancia L, vendria
dada por la ecuacién D.5 donde prob(w;;) es la anteriormente mencionada pdf usada

por Monte Carlo. La ausencia de integral se debe a que se esta siguiendo un solo camino.
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Li($1, wil)fr(% W1, wol)‘nl - Wi
prob(w;)

(D.5)

Lo(xla wol) -

Siendo que el factor L;(x1,w;;) es la cantidad de luz que recibe el punto x; desde la
direccion w;; esta se va a resolver aplicando la Fcuacion de Render recursivamenet de
manera que se simula que el observador ahora se encuentra en el punto z;, quedando

pues la resolucién de L;(z1,w;) como en la ecuacién D.6.

Lz‘(l'z, wiQ)fr(xa W;2, wo2> ’712 * Wi2
prob(w;s)

Li(ﬂfl,ww) = (D-G)

Esta recursividad seguiria hasta encontrarse una fuente de luz o producirse absorcién,

donde el factor L; quedaria resuelto por la ecuacién D.7.

Li(m, wo4) = Le(l‘4, w04> (D-7)

D.1.4. Luz Directa e Indirecta

Para el correcto célculo de la radiancia en un punto hay que tener en cuenta las
dos divisiones de tipos de luz, la luz indirecta y la luz directa.

La luz indirecta es aquella que viene dada por la resultante de calcular la radiancia
del siguiente punto de interseccién del path, es decir, es la que viene calculada por
la Path Integral (D.1) pues se calcula de manera recursiva hasta haber alcanzado la
fuente de luz. Para que tal calculo sea posible es necesario llevar a cabo un muestreo
de la BSDF es decir, un céalculo del rayo de salida con respecto al de entrada teniendo
en cuenta el tipo de material sobre el que se ha intersectado. Es gracias a este cédlculo
del rayo de salida que se va a poder continuar el path y por ende seguir intersectando
hasta el momento de intersectar con una fuente de luz y que se pueda resolver la Path
Integral, por lo que el muestreo de la BSDF es esencial. En la Figura D.4a se puede
ver un ejemplo de luz indirecta.

Por otro lado, la luz directa es aquella que solo tarda un rebote en llegar
al observador, por lo que la unién entre el punto de interseccion y la fuente de
luz ha de carecer de objetos entre la misma. Tal iluminacién puede darse en dos
ocasiones, aleatoriamente o de manera intencionada, siendo esta tltima la denominada
evaluacion de una BSDF. Esto quiere decir que en ocasiones, cuando la fuente
de luz es muy dificil de encontrar de manera aleatoria es necesario encontrarla de
manera intencionada o la imagen no se vera iluminada, por lo que se lleva a cabo

la evaluacion de la BSDF que se basa en que en cada interseccién, posteriormente
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a haberse muestreado la BSDF' en tal punto, se le anade a la radiancia indirecta la
incidente de luz directa correspondiente a la distancia entre fuente de luz e interseccién
por la Ley de los Cuadrados Inversos la cual divide la radiancia de la luz directa

entre la distancia al cuadrado. En la Figura D.4b se puede ver un ejemplo de luz directa.

P P

(a) Luz Indirecta (b) Luz Directa

Figura D.4: Ejemplos de tipos de luz

D.2. Position-Free Monte Carlo

En la Seccion 2.4.1 se hace referencia a los materiales multicapa y a que existen
diferentes formas de simular el transporte de la luz por ellos. Position-Free Monte
Carlo [9] es un método de simulacién del transporte de la luz en materiales multicapa,
modelando desde las intersecciones con las capas hasta el camino que sigue la luz entre
ellas.

Concretamente este método trata de evaluar una BSDF (obtener el factor f, de
la Ecuacion de Render, vease 2.1) aplicando la técnica Path Tracing (D.1) dentro del
propio modelo multicapa para simular el paso de la luz por las capas intersectando
tanto con las propias capas como con el medio entre las mismas. La diferencia con
Path Tracing tradicional es que la Path Integral usada es position-free es decir, se
asume que aunque los puntos se encuentren en lugares diferentes con respecto al eje x
la variacién en tal eje va a ser tan pequena que se asume inexistente, en conclusién,
no importa la posicién en el eje z pues se asume en todas las intersecciones del path
la misma. Esto hace que la definiciéon de path cambie y esta venga dada en vez de
por puntos de interseccién por vértices formados por pares de profundidad y direccién.
La profundidad denotada con z € [0,1] indica la profundidad de la capa en la que se

encuentra la interseccion mientras que la direccion denotada con d denota la direccién
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de salida de la luz entre vértices. Esto implica que la definicién de un path viene dada
por ¥ = dy, 21,dq, ..., 2k, di.. En la Figura D.5 se encuentra el ejemplo de un path que

evalua una BSDF mediante Position-Free Monte Carlo.

\'/A—”/
VO,
N\ |

Figura D.5: Imagen ejemplo de la asunciéon de mismo punto de salida y entrada Ax;
también muestra el camino simulado -path- seguido por un rayo, siendo las estrellas los
puntos de calculo del color y las flechas el camino que sigue [9]

Finalmente se tiene que la evaluacién queda resuelta pues con la ecuacién D.8 donde

(w;, w,) indica que se esta evaluando la BSDF con tales rayos de incidencia y de salida.

fr(w;,w,) = /Q( | )f(i:)d,u(i‘) (D.8)
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