000126225 001__ 126225 000126225 005__ 20241125101131.0 000126225 0247_ $$2doi$$a10.1039/d3lc00075c 000126225 0248_ $$2sideral$$a133408 000126225 037__ $$aART-2023-133408 000126225 041__ $$aeng 000126225 100__ $$aGonzález-Lana, Sandra 000126225 245__ $$aSurface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model 000126225 260__ $$c2023 000126225 5060_ $$aAccess copy available to the general public$$fUnrestricted 000126225 5203_ $$aThe tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices. 000126225 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DI2017-09585$$9info:eu-repo/grantAgreement/ES/ISCIII/PFIS/IF16-00050$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 829010-PRIME$$9info:eu-repo/grantAgreement/EC/H2020/829010/EU/Advanced and versatile PRInting platform for the next generation of active Microfluidic dEvices/PRIME$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 778354-CISTEM$$9info:eu-repo/grantAgreement/EC/H2020/778354/EU/Heart On chip based on induced pluripotent Stem cell Technology for personalized Medicine/CISTEM$$9info:eu-repo/grantAgreement/ES/DGA/T62-20R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/LMP221_21$$9info:eu-repo/grantAgreement/ES/DGA/E47-20R$$9info:eu-repo/grantAgreement/ES/DGA/E15-20R$$9info:eu-repo/grantAgreement/ES/AEI/PID2021-126051OB-C41$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-118485RB-I00 000126225 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000126225 590__ $$a6.1$$b2023 000126225 592__ $$a1.246$$b2023 000126225 591__ $$aBIOCHEMICAL RESEARCH METHODS$$b5 / 85 = 0.059$$c2023$$dQ1$$eT1 000126225 593__ $$aBiochemistry$$c2023$$dQ1 000126225 591__ $$aCHEMISTRY, ANALYTICAL$$b8 / 106 = 0.075$$c2023$$dQ1$$eT1 000126225 593__ $$aBioengineering$$c2023$$dQ1 000126225 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b7 / 76 = 0.092$$c2023$$dQ1$$eT1 000126225 593__ $$aBiomedical Engineering$$c2023$$dQ1 000126225 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b51 / 231 = 0.221$$c2023$$dQ1$$eT1 000126225 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1 000126225 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b39 / 141 = 0.277$$c2023$$dQ2$$eT1 000126225 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ2 000126225 594__ $$a11.1$$b2023 000126225 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000126225 700__ $$0(orcid)0000-0001-7232-7588$$aRandelovic, Teodora 000126225 700__ $$0(orcid)0000-0002-8666-622X$$aCiriza, Jesús$$uUniversidad de Zaragoza 000126225 700__ $$aLópez-Valdeolivas, María 000126225 700__ $$aMonge, Rosa 000126225 700__ $$0(orcid)0000-0003-3900-2866$$aSánchez-Somolinos, Carlos 000126225 700__ $$0(orcid)0000-0003-2410-5678$$aOchoa, Ignacio$$uUniversidad de Zaragoza 000126225 7102_ $$11003$$2443$$aUniversidad de Zaragoza$$bDpto. Anatom.Histolog.Humanas$$cArea Histología 000126225 773__ $$g23, 10 (2023), 2434-2446$$pLab chip$$tLab on a chip$$x1473-0197 000126225 8564_ $$s3130526$$uhttps://zaguan.unizar.es/record/126225/files/texto_completo.pdf$$yVersión publicada 000126225 8564_ $$s2510189$$uhttps://zaguan.unizar.es/record/126225/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000126225 909CO $$ooai:zaguan.unizar.es:126225$$particulos$$pdriver 000126225 951__ $$a2024-11-22-11:59:06 000126225 980__ $$aARTICLE