000126289 001__ 126289
000126289 005__ 20241125101151.0
000126289 0247_ $$2doi$$a10.1016/j.jmaa.2023.127253
000126289 0248_ $$2sideral$$a133614
000126289 037__ $$aART-2023-133614
000126289 041__ $$aeng
000126289 100__ $$0(orcid)0000-0001-9211-4475$$aGarcía-Lirola, Luis C.$$uUniversidad de Zaragoza
000126289 245__ $$aLipschitz-free spaces, ultraproducts, and finite representability of metric spaces
000126289 260__ $$c2023
000126289 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126289 5203_ $$aWe study several properties and applications of the ultrapower of a metric space M. We prove that the Lipschitz-free space is finitely representable in . We also characterize the metric spaces that are finitely Lipschitz representable in a Banach space as those that biLipschitz embed into an ultrapower of the Banach space. Thanks to this link, we obtain that if M is finitely Lipschitz representable in a Banach space X, then is finitely representable in . We apply these results to the study of cotype in Lipschitz-free spaces and the stability of Lipschitz-free spaces and spaces of Lipschitz functions under ultraproducts.
000126289 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/ MTM2017-83262-C2-2-P$$9info:eu-repo/grantAgreement/ES/DGA/E48-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C32
000126289 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126289 590__ $$a1.2$$b2023
000126289 592__ $$a0.816$$b2023
000126289 591__ $$aMATHEMATICS$$b80 / 490 = 0.163$$c2023$$dQ1$$eT1
000126289 593__ $$aAnalysis$$c2023$$dQ1
000126289 591__ $$aMATHEMATICS, APPLIED$$b140 / 332 = 0.422$$c2023$$dQ2$$eT2
000126289 593__ $$aApplied Mathematics$$c2023$$dQ2
000126289 594__ $$a2.5$$b2023
000126289 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126289 700__ $$aGrelier, Guillaume
000126289 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000126289 773__ $$g526, 2 (2023), 127253 [14 pp.]$$pJ. math. anal. appl.$$tJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS$$x0022-247X
000126289 8564_ $$s357618$$uhttps://zaguan.unizar.es/record/126289/files/texto_completo.pdf$$yVersión publicada
000126289 8564_ $$s1898303$$uhttps://zaguan.unizar.es/record/126289/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126289 909CO $$ooai:zaguan.unizar.es:126289$$particulos$$pdriver
000126289 951__ $$a2024-11-22-12:06:58
000126289 980__ $$aARTICLE