000126313 001__ 126313
000126313 005__ 20230706131813.0
000126313 0247_ $$2doi$$a10.1002/admi.202300133
000126313 0248_ $$2sideral$$a133675
000126313 037__ $$aART-2023-133675
000126313 041__ $$aeng
000126313 100__ $$0(orcid)0000-0002-3576-5156$$aHerrer, Lucia$$uUniversidad de Zaragoza
000126313 245__ $$aSheathed molecular junctions for unambiguous determination of charge-transport properties
000126313 260__ $$c2023
000126313 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126313 5203_ $$aFuture applications of single-molecular and large-surface area molecular devices require a thorough understanding and control of molecular junctions, interfacial phenomena, and intermolecular interactions. In this contribution the concept of single-molecule junction and host-guest complexation to sheath a benchmark molecular wire–namely 4,4′-(1,4-phenylenebis(ethyne-2,1-diyl))dianiline – with an insulating cage, pillar[5]arene 1,4-diethoxy-2-ethyl-5-methylbenzene is presented. The insertion of one guest molecular wire into one host pillar[5]arene is probed by 1H-NMR (nuclear magnetic resonance), whilst the self-assembly capabilities of the amine-terminated molecular wire remain intact after complexation as demonstrated by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy). Encapsulation of the molecular wire prevents the formation of π- π stacked dimers and permits the determination of the true single molecule conductance with increased accuracy and confidence, as demonstrated here by using the STM–BJ technique (scanning tunneling microscopy– break junction). This strategy opens new avenues in the control of single-molecule properties and demonstrates the pillararenes capabilities for the future construction of arrays of encapsulated single-molecule functional units in large-surface area devices.
000126313 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-20R$$9info:eu-repo/grantAgreement/ES/DGA/E47-20R$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2021-122882NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-097583-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-105881RB-I00
000126313 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126313 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126313 700__ $$aNaghibi, Saman
000126313 700__ $$aMarín, Ivan$$uUniversidad de Zaragoza
000126313 700__ $$aWard, Jonathan S.
000126313 700__ $$aBonastre, Jose María$$uUniversidad de Zaragoza
000126313 700__ $$aHiggins, S. J.
000126313 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, Santiago$$uUniversidad de Zaragoza
000126313 700__ $$aVezzoli, Andrea
000126313 700__ $$aNichols, Richard John
000126313 700__ $$0(orcid)0000-0001-9866-6633$$aSerrano, José Luis$$uUniversidad de Zaragoza
000126313 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000126313 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000126313 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000126313 773__ $$g10, 16 (2023), 2300133 [9 pp.]$$pAdv. mater. interfaces$$tAdvanced Materials Interfaces$$x2196-7350
000126313 8564_ $$s1121022$$uhttps://zaguan.unizar.es/record/126313/files/texto_completo.pdf$$yVersión publicada
000126313 8564_ $$s2609955$$uhttps://zaguan.unizar.es/record/126313/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126313 909CO $$ooai:zaguan.unizar.es:126313$$particulos$$pdriver
000126313 951__ $$a2023-07-06-12:25:52
000126313 980__ $$aARTICLE