000126330 001__ 126330
000126330 005__ 20240319081023.0
000126330 0247_ $$2doi$$a10.1039/d2ja00026a
000126330 0248_ $$2sideral$$a129647
000126330 037__ $$aART-2022-129647
000126330 041__ $$aeng
000126330 100__ $$aOjeda, D.
000126330 245__ $$aExploring the boundaries in the analysis of large particles by single particle inductively coupled plasma mass spectrometry: application to nanoclays
000126330 260__ $$c2022
000126330 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126330 5203_ $$aThe analysis of microparticles by single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) requires sample introduction systems that guarantee transport efficiencies similar to those obtained with dissolved standards across the size range covered. The utilization of a nebulisation system based on a linear pass spray chamber and a micronebuliser is discussed and optimized for the introduction of large inorganic particles. Limitations caused by incomplete ionisation or the counting limit of detectors affecting particle size characterisation are also considered. The procedure developed has been applied to the characterisation of suspensions of a natural clay (kaolinite), with a thickness in the range of a few nanometers and lateral dimensions up to 1 mu m. The application of different sensitivity conditions by the modification of the ion transmission allowed us to cover the whole size range of the suspension monitoring the Al-27 isotope and achieve a quantitative mass recovery with respect to ICP-MS analysis. Finally, the migration of nanoclays (montmorillonite) from food containers and their detection by SP-ICP-MS are presented. The results have been compared to those obtained by TEM, showing that nanoclays migrated from the containers into water.
000126330 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E29-17R$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096111-B-100
000126330 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000126330 590__ $$a3.4$$b2022
000126330 592__ $$a0.702$$b2022
000126330 591__ $$aSPECTROSCOPY$$b7 / 41 = 0.171$$c2022$$dQ1$$eT1
000126330 593__ $$aSpectroscopy$$c2022$$dQ2
000126330 591__ $$aCHEMISTRY, ANALYTICAL$$b29 / 86 = 0.337$$c2022$$dQ2$$eT2
000126330 593__ $$aAnalytical Chemistry$$c2022$$dQ2
000126330 594__ $$a6.4$$b2022
000126330 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000126330 700__ $$0(orcid)0000-0001-5382-0561$$aBolea, E.$$uUniversidad de Zaragoza
000126330 700__ $$0(orcid)0000-0002-4681-3934$$aPérez-Arantegui, J.$$uUniversidad de Zaragoza
000126330 700__ $$0(orcid)0000-0002-4169-0357$$aLaborda, F.$$uUniversidad de Zaragoza
000126330 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000126330 773__ $$g37, 7 (2022), 1501-1511$$pJ. anal. at. spectrom.$$tJournal of Analytical Atomic Spectrometry$$x0267-9477
000126330 8564_ $$s1927256$$uhttps://zaguan.unizar.es/record/126330/files/texto_completo.pdf$$yPostprint
000126330 8564_ $$s795177$$uhttps://zaguan.unizar.es/record/126330/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000126330 909CO $$ooai:zaguan.unizar.es:126330$$particulos$$pdriver
000126330 951__ $$a2024-03-18-16:25:48
000126330 980__ $$aARTICLE