000126347 001__ 126347
000126347 005__ 20241125101138.0
000126347 0247_ $$2doi$$a10.1016/j.pecs.2023.101072
000126347 0248_ $$2sideral$$a133774
000126347 037__ $$aART-2023-133774
000126347 041__ $$aeng
000126347 100__ $$0(orcid)0000-0002-0787-8938$$aHerrando, María
000126347 245__ $$aA review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems
000126347 260__ $$c2023
000126347 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126347 5203_ $$aIn this paper, we provide a comprehensive overview of the state-of-the-art in hybrid PV-T collectors and the wider systems within which they can be implemented, and assess the worldwide energy and carbon mitigation potential of these systems. We cover both experimental and computational studies, identify opportunities for performance enhancement, pathways for collector innovation, and implications of their wider deployment at the solar-generation system level. First, we classify and review the main types of PV-T collectors, including air-based, liquid-based, dual air–water, heat-pipe, building integrated and concentrated PV-T collectors. This is followed by a presentation of performance enhancement opportunities and pathways for collector innovation. Here, we address state-of-the-art design modifications, next-generation PV cell technologies, selective coatings, spectral splitting and nanofluids. Beyond this, we address wider PV-T systems and their applications, comprising a thorough review of solar combined heat and power (S–CHP), solar cooling, solar combined cooling, heat and power (S–CCHP), solar desalination, solar drying and solar for hydrogen production systems. This includes a specific review of potential performance and cost improvements and opportunities at the solar-generation system level in thermal energy storage, control and demand-side management. Subsequently, a set of the most promising PV-T systems is assessed to analyse their carbon mitigation potential and how this technology might fit within pathways for global decarbonization. It is estimated that the REmap baseline emission curve can be reduced by more than 16% in 2030 if the uptake of solar PV-T technologies can be promoted. Finally, the review turns to a critical examination of key challenges for the adoption of PV-T technology and recommendations.
000126347 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126347 590__ $$a32.0$$b2023
000126347 592__ $$a6.114$$b2023
000126347 591__ $$aENERGY & FUELS$$b4 / 171 = 0.023$$c2023$$dQ1$$eT1
000126347 591__ $$aTHERMODYNAMICS$$b1 / 78 = 0.013$$c2023$$dQ1$$eT1
000126347 591__ $$aENGINEERING, MECHANICAL$$b1 / 183 = 0.005$$c2023$$dQ1$$eT1
000126347 591__ $$aENGINEERING, CHEMICAL$$b2 / 170 = 0.012$$c2023$$dQ1$$eT1
000126347 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000126347 593__ $$aFuel Technology$$c2023$$dQ1
000126347 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000126347 594__ $$a59.3$$b2023
000126347 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000126347 700__ $$aWang, Kai
000126347 700__ $$aHuang, Gan
000126347 700__ $$aOtanicar, Todd
000126347 700__ $$aMousa, Osama Bany
000126347 700__ $$aAgathokleous, Rafaela A.
000126347 700__ $$aDing, Yulong
000126347 700__ $$aKalogirou, Soteris
000126347 700__ $$aEkins-Daukes, Ned
000126347 700__ $$aTaylor, Robert A.
000126347 700__ $$aMarkides, Christos N.
000126347 773__ $$g97 (2023), 101072 [74 pp.]$$pPror. energy combust. sci.$$tProgress in Energy and Combustion Science$$x0360-1285
000126347 8564_ $$s3682126$$uhttps://zaguan.unizar.es/record/126347/files/texto_completo.pdf$$yVersión publicada
000126347 8564_ $$s2646951$$uhttps://zaguan.unizar.es/record/126347/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126347 909CO $$ooai:zaguan.unizar.es:126347$$particulos$$pdriver
000126347 951__ $$a2024-11-22-12:01:44
000126347 980__ $$aARTICLE