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A B S T R A C T

Sensors attached to unmanned aerial vehicles (UAVs) allow estimating a large number of forest
attributes related to forest fuels. This study assesses photogrammetric point clouds and multispec-
tral indices obtained from a fixed-wing UAV for the classification of Prometheus fuel types in 82
forest plots in Aragón (NE Spain). Images captured by an RGB camera and a multispectral sensor
allowed generating high density photogrammetric point clouds (RGB: 3000 points/m2; multi-
spectral: 85 points/m2), which were normalized using alternatively a Digital Elevation Model
(DEM) of 0.5, 1, and 2 m resolution. A set of structural and textural variables were derived from
the normalized point cloud heights, and for the latter, the gray-level co-occurrence matrix
(GLCM) approach was used. Multispectral images were also used to create seven spectral vegeta-
tion indices. The most relevant structural, textural, and spectral variables to introduce into the
fuel types classification models were selected using Dunn's test, which included: the vegetation
height at the 50th percentile, the coefficient of variation of the heights, the percentage of returns
above 4 m, the mean textural dissimilarity, and the mean of the Green Chlorophyll Index. Three
different data samples were introduced in the models: i) the relevant structural and textural vari-
ables from the RGB camera (RGB data sample); ii) the relevant structural, textural, and spectral
variables from the multispectral sensor (MS data sample); and iii) the relevant structural and tex-
tural variables from the RGB camera plus the relevant spectral variable from the multispectral
sensor (integrated data sample). After comparing three machine learning classification tech-
niques (Random Forest, and Linear and Radial Support Vector Machine), the best results were ob-
tained with Random Forest with k-fold cross-validation (k-10) and the integrated data sample
with normalized point clouds at 0.5 m DEM resolution (overall accuracy = 71%). The variables
successfully identified the Prometheus main fire carriers (i.e., shrubs or trees) and confusions
were mainly located within the fuel types of the same dominant stratum, especially in fuel types 3
and 6. These results demonstrate the ability of UAV imagery to classify forest fuels in Mediter-
ranean environments when RGB and multispectral data are combined.

1. Introduction
Forest fires are a recurrent disturbance of Mediterranean ecosystems (Oliveira et al., 2012). Moreover, their exposure to fire may

grow in the future due to the increase of wildfires globally (Varol et al., 2021; Venäläinen et al., 2020), making these ecosystems
even more vulnerable. Therefore, it is essential to understand fire behavior in a forest stand in order to mitigate the detrimental ef-
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fects of wildfires on the environment. Forest fuels allow estimating and quantifying fire spread over vegetation to assess fire risk and
develop mitigation plans (Ferraz et al., 2016). They consist of all living or dead organic matter available for combustion in a wild-
fire. They are usually grouped by fuel types associated with vegetation classes that exhibit similar fire behavior. Several fuel types
classifications have been developed to identify forest fuels in heterogeneous environments (e.g., Albini, 1976; Rothermel, 1972),
but one specifically to Mediterranean ecosystems: The Prometheus fuel model (Prometheus, 1999), which considers vegetation
height, density, and vertical continuity as the main fire spreaders and comprises seven fuel types (FT) for three main fire carriers: FT1
for grasslands; FT2, FT3, and FT4 for shrublands; and FT5, FT6, and FT7 for tree canopies. Shrub fuel types are determined by areas
with more than 60% shrub cover at different mean heights, which are 0.30–0.60 m for FT2, 0.60–2 m for FT3, and 2–4 m for FT4. In
terms of tree canopy types, these areas are characterized by tree cover greater than 50% at more than 4 m, with no associated under-
story for FT5, with a vertical difference between understory and canopies greater than 0.5 m for FT6, and with complete vertical con-
tinuity of fuels for FT7.

In last decades, remote sensing has shown great potential for estimating forest attributes and identifying forest fuels. Specifically,
Airborne Laser Scanners (ALS) have been widely used because of their ability to penetrate the canopy cover and provide accurate de-
tails of forest structure, allowing for a comprehensive assessment of forest fuels. Several studies have also shown that the integration
of ALS with multispectral imagery improves the identification of fuel types (e.g., Domingo et al., 2020; Marino et al., 2016). Never-
theless, few studies have used sensors on unmanned aerial vehicles (UAVs) to identify forest fuels (e.g., Fernández-Álvarez et al.,
2019; Hillman et al., 2021; Shin et al., 2018), despite their ability to collect vegetation spectral response from multispectral sensors
with unprecedented spatial resolution, and to estimate vegetation structure and textural features from three-dimensional point
clouds. The latter can be derived directly from active sensors, such as LiDAR, or indirectly from optical images, such as RGB or multi-
spectral sensors, through “Structure from Motion” algorithm, which is based on traditional photogrammetry (Messinger et al., 2016)
using a collection of overlapping images taken from different viewpoints (Puliti et al., 2015). Although photogrammetric point
clouds cannot penetrate the canopy, they can be an affordable option for estimating forest attributes over much more expensive Li-
DAR systems. For instance, photogrammetric point clouds were used by Fritz et al. (2013) to map tree stem in open stands, by Shin
et al. (2018) to estimate fuels and forest canopy structure in a ponderosa pine stand, and by Carbonell-Rivera et al. (2022) to clas-
sify Mediterranean shrub species.

In this context, the main objective of this study is to assess the suitability of UAV-derived photogrammetric point clouds and multi-
spectral indices for the identification of fuel types based on the Prometheus model in Mediterranean forest plots, as well as for their
classification using machine learning techniques. We hypothesize that optical UAVs can be a cost-effective alternative to less afford-
able active sensors (such as ALS and LiDAR UAVs), as they are capable of estimating a wide range of forest attributes, including struc-
tural, textural and spectral features of vegetation using a single instrument, whereas with active sensors spectral information is lost.
This capability ultimately allows the identification of forest fuels at an unprecedented detail, representing a very valuable and accessi-
ble tool to prevent and mitigate forest fires at local and regional scales in Mediterranean ecosystems.

2. Materials and methods
2.1. Study area

UAV flights were performed in 82 forest plots of 15 m of circular radius distributed in 5 sectors of the Aragón region (NE Spain)
(Fig. 1), located nearby Almudévar (12 plots), Ayerbe (36 plots), Uncastillo (11 plots), Villarluengo (15 plots), and Zuera (8 plots) The
average annual temperature of the entire region is 12.3 °C. All the sectors have a Mediterranean climate, but there are differences be-
tween them. The Almudévar, Ayerbe and Zuera sectors are located in the center of the Ebro Valley, characterized by very hot sum-
mers and cold winters, high daily temperature gradients, and low rainfall localized mainly in the equinoctial seasons (Almudévar:
∼350 mm/year; Ayerbe: ∼700 mm/year; Zuera: ∼250 mm/year). The Uncastillo sector is located at the interface between the Ebro
Valley and the foothills of the Pre-Pyrenean mountain range, which results in lower daily and annual thermal gradients than in the
center of the valley, although still high, and mean annual rainfall of ∼700 mm/year. The Villarluengo sector is placed in the Iberian
mountain range, whit less hot summers and colder winters than in the other sectors due to its higher altitude, and a mean annual rain-
fall of ∼600 mm/year. Convective storms can be frequent in late spring and summer in all sectors, but are especially important in the
Villarluengo sector, where they are often accompanied by lightning that threaten the possibility of wildfires. The Prometheus fuel
types for each plot were estimated in-situ in previous field work (see Montealegre et al., 2016; Domingo et al., 2020), but they
were validated in each flight campaign, constituting the ground-truth for the classification models (Table 1). Plots were selected using
a stratified random sampling in order to ensure a wide range of different environments (i.e., slope, exposure, vegetation cover, etc.)
and, thus, fuel types. The center of the plots was located using a Leica VIVA® GS15 CS10 GNSS real-time kinematic Global Position-
ing System with sub-meter accuracy. Plots were mainly dominated by grassland, shrublands, and forest of Aleppo pine (Pinus halepen-
sis Mill.) and bog pine (Pinus nigra Mill.) with understory of oaks (Quercus ilex subsp. rotundifolia, Quercus coccifera, Quercus faginea),
junipers (Juniperus oxycedrus), boxwood (Buxus sempervirens), rosemary (Rosmarinus officinalis), and thymes (Thymus vulgaris).

2.2. UAV data acquisition and processing
A fixed-wing UAV (eBee Classic of SenseFly) equipped with two optical sensors (RGB and multispectral) was used in this study

(Fig. 2). The RGB camera was a SONY WX camera of 18.2 MP resolution and the multispectral sensor (MS) was a Parrot Sequoia of
1.2 MP single band resolution with a sunshine sensor and capable of recording surface reflectance in the green (550 nm ± 40 nm),
red (660 nm ± 40 nm), red edge (735 nm ± 10 nm), and near infrared (790 nm ± 40 nm) spectral bands. A total of 49 flight cam-
paigns were conducted between June and October 2021 over 82 plots, resulting in 12,007 individual images processed. Each cam-



Remote Sensing Applications: Society and Environment 31 (2023) 100997

3

R. Hoffrén et al.

Fig. 1. Study area and examples of seven circular plots, one for each Prometheus fuel type.

Table 1
Summary of the forest plots and their associated Prometheus fuel types.

FT1 FT2 FT3 FT4 FT5 FT6 FT7

Number of plots 10 11 8 7 10 13 23

Fig. 2. Above: (a) Main materials used in this study: SenseFly eBee Classic UAV unit with SONY WX camera and Parrot Sequoia multispectral sensor. Below: Examples
of the same single image captured by the UAV in different spectral bands: (b) RGB; (c) Green band; (d) Red band; (e) Red edge band; and (f) Near infrared band. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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paign included two flights, one for each sensor attached to the UAV, making a total of 98 flights. All of them were automated using
eMotion v.3.5.0 software, with specified parameters including a serpentine mapping, a flight altitude of 116.5 m from the ground, an
angle of incidence of 90°, and an overlap between photographs of 90%–80% (cross- and along-track, respectively). Radiometric cali-
bration was performed on the multispectral sensor to adjust it to the prevailing light conditions. For this, we followed the manufac-
turer-recommended method, combining the use of a reference panel and the sunshine sensor for calibrating the images. According to
Poncet et al. (2019), this procedure can be comparable to empirical calibration methods. Thus, we took four pictures of an Airinov
calibration reference panel of known reflectance with the Parrot Sequoia camera prior to the start of each flight, while the sunshine
sensor captured the current light conditions during the flights. The spatial resolutions of the RGB and multispectral images were 4
cm/px and 12 cm/px, respectively. Finally, in each flight area, at least four ground control points (GCPs) were measured with the Le-
ica VIVA® GS15 CS10 GNSS. This allowed georeferencing the UAV images at centimetric scale to the ETRS89 UTM 30N reference sys-
tem, while the vertical coordinates were converted from WGS84 ellipsoidal heights to EGM-96 geoidal heights model.

The data collected were processed using PIX4Dmapper v.4.5.6 software to obtain structural metrics, textural features, and spectral
vegetation indices (Fig. 3). Multispectral images, captured with the Parrot Sequoia camera, were automatically calibrated by the
PIX4Dmapper software during data processing (Poncet et al., 2019). Structural data were obtained from photogrammetric point
clouds using “Structure from Motion” and stereo-matching algorithms included in PIX4Dmapper. These algorithms enabled image
alignment and multi-view stereo reconstruction by detecting and matching image feature points in the acquired highly overlapping
images (Domingo et al., 2019). Two photogrammetric point cloud datasets were generated, one for each sensor, with a higher aver-
age density in the RGB point clouds (3000 points/m2) than in the multispectral point clouds (85 points/m2). The “lidR” package
(Roussel et al., 2020) for R environment v.4.2.0 (R Core Team, 2022) was used to clip both point cloud datasets in each forest plot
and normalize their absolute heights. Normalization was performed using alternatively Digital Elevation Models (DEMs) with spatial
resolutions of 0.5, 1, and 2 m, to examine the effect of DEM resolution on the accuracy of estimated heights and classification of forest
fuels. DEMs were obtained from public ALS data from the PNOA project (Spanish National Aerial Orthophotography Plan). Noise and
overlapping returns were removed, and ground points were classified following Montealegre et al. (2016) using the MCC-LiDAR
v.2.1 command line tool (Evans and Hudak, 2007). The ground points were then interpolated using a TIN-to-Raster method
(Renslow, 2013) to create the final DEMs. From the normalized UAV point clouds, a set of structural and textural variables was gen-
erated. Forest structural metrics were extracted at plot scale using FUSION/LDV v.4.21 software (McGaughey, 2021). They were re-
lated to height distribution (i.e., the minimum, mean and maximum elevation, and different height percentiles: P01, P05, P10 ….
P99), height variability (i.e., the coefficient of variation, kurtosis, skewness, standard deviation, and variance of the heights), and
canopy cover density (i.e., statistics of the returns at different height strata: 0.6, 2 and 4 m). Textural features were calculated from

Fig. 3. Methodological scheme of the study.
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the gray-level co-occurrence matrix (GLCM) (Haralick et al., 1973), using the “glcm” package for R environment (Zvoleff, 2020).
GLCM were applied to previously created Canopy Height Models (CHM) in each plot using the “rasterize_canopy” function of the
“lidR” package. Different window sizes were tested (3x3, 5x5, 7x7, and 9x9), with the 3x3 window providing the best results. Then,
the mean values of four different offsets (0°, 45°, 90°, 135°) were analyzed and seven textural features were extracted at the three spa-
tial resolutions of the DEM (contrast, dissimilarity, entropy, homogeneity, mean, second moment, and variance). Finally, four zonal
statistics were calculated for each plot-scale metric (minimum, maximum, mean, and median).

In addition, seven spectral vegetation indices were calculated from reflectance data of multispectral images: the Advanced Vegeta-
tion Index (AVI) (Equation (1); Roy et al., 1996), the Green Chlorophyll Index (GCI) (Equation (2); Gitelson et al., 2003), the Green
Normalized Difference Vegetation Index (GNDVI) (Equation (3); Gitelson et al., 1996), the Normalized Difference Red Edge Index
(NDRE) (Equation (4); Barnes et al., 2000), the Normalized Difference Vegetation Index (NDVI) (Equation (5); Rouse et al., 1974),
the Normalized Difference Water Index (NDWI) (Equation (6); Gao, 1996), and the Soil Adjusted Vegetation Index (SAVI) (Equation
(7); Huete, 1988). For each of the seven indices, the same four zonal statistics at plot scale as in the textural metrics were calculated.

AVI = [NIR × (255 − R) × (NIR − R)]1∕31)

GCI =

(
NIR

G

)
− 12)

GNDVI =
NIR − G

NIR + G
3)

NDRE =
NIR − RedEdge

NIR + RedEdge
4)

NDVI =
NIR − R

NIR + R
5)

NDWI =
G − NIR

G + NIR
6)

SAVI =
(1 + L) × (NIR − R)

NIR + R + L
(L = 0.5)7)

Where NIR is near infrared band, R is red band, G is green band, RedEdge is red edge band.

2.3. Prometheus fuel types classification and model validation
A total of 138 variables were generated for input into the classification models, which included 82 structural metrics, 28 textural

features, and 28 spectral indices. The post hoc non-parametric Dunn's test of multiple comparison was used to select the most relevant
variables. This method is similar to Kruskal-Wallis test but with the ability to determine the groups that are statistically different for
the classification of forest attributes on machine learning models (García-Galar et al., 2023). From each of the three groups of vari-
ables, including the three subgroups of structural metrics, we finally selected those with a high ability to differentiate between the
pairs for input into the classification models.

Three different data samples were tested: the relevant structural and textural variables from the RGB sensor (RGB data sample),
the relevant structural, textural, and spectral variables from the multispectral sensor (MS data sample), and the relevant structural
and textural variables from the RGB sensor combined with the relevant spectral variable from the multispectral sensor (integrated
data sample). For each of these three data samples, the three normalized point cloud datasets from the different DEM resolutions were
tested, totalizing 9 data samples to introduce into the classification models. Three non-parametric predictive models were then tested
through the “caret” package (Kuhn, 2008) for R environment: Random Forest (RF) and Support Vector Machine with both linear
(SVM-L) and radial (SVM-R) kernels. RF classifiers were parametrized by applying between 2 and 10 decision trees at each node and
SVM models were fitted by applying a cost parameter within the interval 1-1000. Models were validated using the k-fold cross-
validation method, recommended for small datasets (Anderson et al., 2005), testing in groups of 5 and 10 observations, and 10, 50,
and 100 repeats in each case. Finally, the most accurate data sample, model, and validation method was assessed based on the overall
accuracy (OA) coefficient and the producer's and user's accuracies of the confusion matrices, which are determined by the commission
and omission errors, respectively (Pontius et al., 2008).

3. Results
3.1. Most significant variables for the classification models

Dunn's test revealed the variables with the highest distinguishability among the 21 pairs of Prometheus fuel types. In general,
Prometheus main fire carriers were well differentiated, while more difficulties were observed in fuels of the same dominant stratum.
As shown in Fig. 4, a maximum of 109 variables were able to differentiate between the FT1-FT7, which was the peer group with the
highest distinguishing ability. High differentiation abilities were also found between FT2-FT5 (84 variables), FT1-FT6 (83 variables),
FT1-FT5 (80 variables), FT3-FT5 (66 variables), FT2-FT7 (69 variables), and FT2-FT6 (60 variables). The ability to differentiate be-
tween grassland and shrub fuel types was somewhat lower (FT1-FT2: 40 variables; FT1-FT3: 29 variables; FT1-FT4: 35 variables). As
for differentiation within tree fuel types, 39 variables differentiated between FT5-FT7, 9 variables between FT5-FT6, and only 2 vari-
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Fig. 4. Number of variables and percentage with respect to the total of variables able to differentiate the 21 pairs of Prometheus fuel types according to Dunn's test.

ables between FT6-FT7. Finally, only 3 variables differentiated between FT2-FT4 shrub fuel types, and none of them distinguished be-
tween FT2-FT3 and FT3-FT4.

Out of the three sub-groups of structural metrics, 9 variables related to vegetation height distribution were able to differentiate up
to 11 pairs of fuel types, the coefficient of variation from the height variability subgroup distinguished 9 pairs, and 6 variables related
to the canopy cover density were able to discern up to 12 pairs. In addition, 6 variables from the textural features statistics were able
to distinguish up to 7 pairs, and 12 variables from the spectral indices statistics distinguished a maximum of 7 pairs. All relevant vari-
ables are shown in Table 2 and full results are described in Table S1 of the Supplementary Materials.

Based on the results obtained and in order to generate parsimonious models after testing different combinations, the variables se-
lected from each group for inclusion in the classification models were the vegetation height at the 50th percentile, the coefficient of
variation of the heights, the percentage of returns above 4 m, the mean dissimilarity, and the mean of the Green Chlorophyll Index
(Table 3).

3.2. Performance of prometheus fuel types classification
The best performing models were obtained systematically using the integrated data sample and the RF classification method

(Table 4). Overall, best k-fold cross validation method was obtained with 10 observations and 10 repeats in each case. The SVM-L and
SVM-R models had significantly lower accuracies in all cases (see Tables S2 and S3 of the Supplementary Materials). The best classifi-
cation of the Prometheus fuel types was reached with the point cloud normalized to the DEM of 0.5 m resolution, yielding an OA of

Table 2
Relevant variables for their high ability to distinguish between pairs of Prometheus fuel types according to Dunn's test.

Groups of variables Variables Maximum number of pairs able to
differentiate

Height distribution Elev. maximum, Elev. P50 – Elev. P99 11
Height variability Elev. CV 9
Canopy cover

density
Elev. strata >4 m: max, mean, median, mode, return proportion; Percentage of returns >4 m 12

Textural features GLCM dissimilarity: mean; GLCM mean: max, median, min; GLCM variance: max, min 7
Spectral indices GCI: max, mean, median; GNDVI: max, median; NDRE: max; NDVI: max, mean, median; NDWI:

median, mean; SAVI: max
7

Table 3
Final variables introduced in the classification models.

Groups of variables Variable Description

Height distribution Elev. P50 Vegetation height at the 50th percentile
Height variability Elev. CV Coefficient of variation of the heights
Canopy cover density Percentage of returns >4 m Percentage of returns above 4 m
Textural features GLCM dissimilarity mean Mean dissimilarity
Spectral indices GCI mean Mean of the Green Chlorophyll Index
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Table 4
Summary of overall accuracies of Prometheus fuel types classification for the nine RF model data samples with k-10 cross validation and 10 repeats in each case.

DEM resolution Data sample Overall Accuracy

0.5 m RGB 63%
MS 66%
Integrated 71%

1 m RGB 64%
MS 61%
Integrated 70%

2 m RGB 59%
MS 62%
Integrated 65%

71%. When the MS data sample was introduced, the best OA was 7.58% lower than the integrated data sample (OA = 66%) using the
same DEM resolution to normalize the point cloud. The best OA of the RGB data sample was 10.94% and 3.13% lower than the inte-
grated and MS data samples, respectively (OA = 64%), in this case with the point cloud normalized to the DEM of 1 m resolution, al-
though the classification with the 0.5 DEM had very similar accuracies (OA = 63%) (Table 4).

The confusion matrix of the best model shows the classification accuracy of each of the 7 Prometheus fuel types (Table 5). FT1 had
the best hit rate, with a 98% of producer's accuracy and 83% of user's accuracy. FT2 and FT7 were the types with the best hit rate
among the shrub and tree types, respectively, followed by FT4 and FT5. On the other hand, the highest confusion rates were found in
FT3 and FT6. In general, confusions occurred between fuel types of the same main fire carrier, with some exceptions. For instance, a
high percentage of FT3 plots were misclassified as FT2 and some as FT4, although commission errors due to incorrect classification in
grasslands (FT1) were also found. Regarding confusion in FT6, many plots were misclassified as FT7 and, to a lesser extent, FT5, with
no errors outside of tree fuel types. The main confusion between fuel types of different strata occurred between FT4 and FT7 (dense
shrub and tree fuel types, respectively), and there were a few omission errors in FT1 due to misclassifications in FT3 and FT4. Regard-
ing confusion matrices of the best MS and RGB data samples (Tables S4 and S5 of the Supplementary Materials), more confusion rates
were observed in all fuel types, but still, very few errors were found between the different strata.

The percentage of hits and misclassification errors in the fuel types can be explained by observing the distribution values of the
five variables of the classification models, as shown in Fig. 5. Both the three shrub and the three tree fuel types present similar pat-
terns that, in general, make their correct differentiation difficult. The values of FT1 (grassland fuel type) are quite different from the
rest, which explains the high percentages of success obtained in their classification. The values of the shrub and tree fuel types are
very different from each other, although they present a similar distribution in the GCI spectral index. Thus, confusions within types of
the same stratum are to be expected, since their distribution values are similar, especially between FT2-FT3 in the three structural
variables. In the tree types, the FT5 and FT7 values of the structural and spectral variables are distributed differently, while FT6 val-
ues overlap with those of FT5 and FT7, which explains the greater confusion in this type compared to the other two.

4. Discussion
UAV-derived photogrammetric point clouds and multispectral indices allowed classifying fuel types in the Prometheus scale with

good levels of accuracy, with most of the confusions found in types belonging to the same dominant stratum. Our results suggest that
the combined use of RGB and multispectral data is the best option to classify fuel types. Furthermore, better classifications were ob-
served when using the point cloud normalized to the DEM of 0.5 m resolution and when classifying with RF, which proved to be sub-
stantially better than SVM-L and SVM-R. The main fire carriers were well distinguished, and confusions were observed mainly within
the three shrub and tree fuel types, especially in the shrub strata.

The integrated data sample obtained the best results in the classification models, reaching accuracies similar to those of Marino et
al. (2016), who used ALS-LiDAR, Landsat-8 OLI multispectral imagery, and decision-based algorithms to classify specific Canary Is-
land fuel types (OA = 70%). Domingo et al. (2020) obtained lower accuracies when classifying Prometheus fuel types in Mediter-
ranean forest stands using low-density ALS-LiDAR and Sentinel-2 imagery by means of machine learning. However, they got better
accuracies with SVM-R (OA = 59%) than RF (OA = 56%). We assume that the better performance of the integrated data sample was

Table 5
Confusion matrix of the best model (RF, integrated data sample, and point-cloud normalized at 0.5 m DEM resolution) for Prometheus fuel types classification.

Fuel type FT1 FT2 FT3 FT4 FT5 FT6 FT7 User's accuracy

FT1 98 0 10 10 0 0 0 83%
FT2 2 90 37 0 0 0 0 70%
FT3 0 16 31 10 0 0 0 54%
FT4 0 4 2 47 0 0 9 76%
FT5 0 0 0 0 73 29 10 65%
FT6 0 0 0 0 17 54 29 54%
FT7 0 0 0 3 10 37 192 79%
Prod.‘s accuracy 98% 82% 39% 67% 73% 45% 80%
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Fig. 5. Distribution values of the five UAV variables introduced into the classification models for the identification of the Prometheus fuel types.

due to the higher average of the point clouds from RGB images compared to the point clouds of the multispectral images, which al-
lowed for more normalized point heights and consequently more accurate structural and textural variables. Kandare et al. (2016)
also found higher accuracy in individual tree crowns delineation with higher ALS point cloud density, and Ruiz et al. (2014)
achieved better correlation values in forest attributes prediction with high LiDAR data density. In addition, Domingo et al. (2019)
obtained better accuracies when using UAV photogrammetric point clouds derived from RGB cameras than from multispectral sen-
sors. Our integrated data sample used both RGB and multispectral data, which could imply a higher time cost in data acquisition
when these sensors cannot collect information simultaneously, requiring two flights of the UAV, as in our case. Accuracies for the MS
data sample were lower than for the integrated data sample due to the lower density of the point cloud, and confusions between fuel
types were higher in all cases. Here, the OA was higher when the 0.5 m resolution DEM was used to normalize the point clouds, un-
derscoring the importance of using fine-scale DEMs for this purpose, as noted by other authors (e.g., Cao et al., 2019; Shin et al.,
2018).

The confusion matrices indicated the presence of significant misclassification error rates between fuel types belonging to the same
main fire carrier (i.e., within the three shrub fuel types and the three tree fuel types). According to the results of the Dunn's test, only 3
variables were able to distinguish between FT2-FT4 and none were able to distinguish between the others two pairs of shrub fuel
types. There were also few variables capable of distinguishing between the tree types. These confounds were to be expected, as there
are no absolutely unequivocal plots in terms of fuel type, even though we worked on plots as homogeneous as possible for each type in
order to avoid confusion. However, this may also indicate a limitation of optical UAVs to differentiate between similar fuel types,
given the inability of photogrammetric point clouds to penetrate the canopy. Therefore, medium to high confusion among shrub fuels
can be expected when using optical UAVs, especially in the closest types (FT2-FT3 and FT3-FT4), since they present few differences in
terms of height criteria and similar features. The same is true for the confusion observed between tree types. In contrast, no significant
problems were observed between the fuel types of different main fire carriers, except for FT4-FT7, which has also been noted using
ALS-LiDAR data (Domingo et al., 2020). This confusion is due to the high density of understory and canopy and the vertical continu-
ity of the fuel in both types. The low capability of optical UAVs to collect fuel information in medium and low strata could be over-
come by using LiDAR UAVs (e.g., Dalla Corte et al., 2020; Neuville et al., 2021), although their economic costs are considerably
high. However, previous work related to forest structure estimation and mapping have obtained successful results using photogram-
metric point clouds (e.g., Carbonell-Rivera et al., 2022; Shin et al., 2018). Additionally, Wallace et al. (2016) and Cao et al.
(2019) shown that UAV-derived photogrammetric point clouds can be useful and effective substitutes for UAV-LiDAR point clouds for
estimating structural attributes of forests. Based on the results obtained in this study, optical UAVs can be considered as suitable alter-
natives to ALS-LIDAR systems, especially ALS flights of systematic coverage for large extensions carried out by public or private initia-
tives, whose point density is usually low. In this sense, the higher point density that can be obtained with optical UAVs compared to
these low-density ALS flights may allow a better characterization of vegetation structure and forest fuels at local or regional scales. In
addition, UAV data can be obtained on demand, allowing for greater temporal flexibility. Photogrammetric point clouds can also be
integrated with ALS data to reduce misclassification errors in fuel types and improve their classification (e.g., Guerra-Hernández et
al., 2018; Yoshii et al., 2022). Another option to improve the classification could be to fuse canopy information from photogram-
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metric point clouds with understory data collected from terrestrial or mobile laser scanners (e.g., Brede et al., 2022; Panagiotidis et
al., 2022).

Regarding the multispectral indices, the Parrot Sequoia camera has proven to be able to capture the state of the vegetation (i.e.,
healthy or diseased). Previous studies have reported good overall performance for this camera. For instance, Fawcett et al. (2020)
compared vegetation indices generated by Parrot Sequoia camera, HyPlant airborne imaging spectrometer and Sentinel-2 imagery,
showing overall good agreement, although some bias was noticed in the Parrot Sequoia camera for high and low reflective surface. Lu
et al. (2020) demonstrated that the Parrot Sequoia offered similar performance to the DJI Phantom 4 multispectral camera, despite
having different spectral response functions, and that both accurately estimated NDVI when compared to spectroradiometer record-
ings. However, Pérez-Cardiel et al. (2022) found that the Parrot Sequoia had some underestimates in the red edge band and small
overestimates in the NIR band when compared to spectroradiometer records and Sentinel-2 images. Additionally, Stow et al. (2019)
observed slightly lower reflectance in the NIR band of the Parrot Sequoia around solar noon and noted the contrast between the shad-
owed and illuminated areas in all spectral bands. Therefore, some uncertainty must be assumed in the data recorded by our multispec-
tral sensor.

5. Conclusions
The identification of forest fuels is an important step for the prevention and mitigation of wildfires, as it allows forest managers to

understand the behavior and intensity of fire in a forest stand. This study used imagery from a fixed-wing UAV to derive a set of struc-
tural, textural, and spectral variables, which have been capable of classifying the Prometheus fuel models in Mediterranean forest en-
vironments with good levels of agreement. However, more research is needed to understand the capabilities and limitations of these
promising instruments. The results obtained allow validating optical UAVs as affordable tools to identify and monitor forest fuels at a
local and regional scale and contribute to the successful prevention of forest fires in Mediterranean ecosystems.
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