Rapid microwave heating and fast quenching for the highly efficient production of long-term stable supported Ag nanoclusters
Financiación H2020 / H2020 Funds
Resumen: Given the exciting potential of metallic clusters in a variety of fields, the development of novel preparation methods to accurately controlling the cluster size has become a research priority. Specifically, for catalytic applications, the synthesis and deployment of metallic nanoclusters on a proper substrate is perhaps the main bottleneck. Here, we have adopted an alternative reactor that uses simultaneous ice cooling and microwave heating (unlike water ice is a low microwave absorber) for the synthesis of Ag nanoclusters directly over a support with ordered mesopores (SBA-15). The reactor design exploits the selectivity of microwave heating, assuring a rapid localized nucleation followed by a nearly instantaneous quenching that largely avoids the aggregation of nascent clusters as well as Ostwald ripening mechanisms. We have compared this new synthesis approach with some previously reported methods for the production of supported silver nanoclusters: conventional batch reactor and also a continuous flow microreactor. The resulting Ag clusters were initially analyzed in terms of size distribution, textural properties and catalytic activity in the reduction of 4-nitrophenol. Finally, encouraged by the good results obtained, these nanoclusters were also employed in the production of different cyclic organic compounds, building blocks for pharmaceutical and photochemical applications. The nanoclusters displayed a high catalytic activity, lowering the metal loading required to achieve high yield and selectivity. Furthermore, the stabilization of the clusters over the mesoporous substrate allowed their reuse in several reaction cycles. In fact, the method produced exceptionally stable Ag clusters, whose catalytic properties were preserved even after one year of storage.
Idioma: Inglés
DOI: 10.1016/j.cattod.2023.114081
Año: 2023
Publicado en: Catalysis Today 420 (2023), 114081 [12 pp.]
ISSN: 0920-5861

Factor impacto JCR: 5.2 (2023)
Categ. JCR: CHEMISTRY, APPLIED rank: 13 / 74 = 0.176 (2023) - Q1 - T1
Categ. JCR: ENGINEERING, CHEMICAL rank: 35 / 170 = 0.206 (2023) - Q1 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 60 / 178 = 0.337 (2023) - Q2 - T2

Factor impacto CITESCORE: 11.5 - Chemistry (all) (Q1) - Catalysis (Q1)

Factor impacto SCIMAGO: 1.022 - Chemistry (miscellaneous) (Q1) - Catalysis (Q2)

Financiación: info:eu-repo/grantAgreement/EC/H2020/721290/EU/European Training Network for Continuous Sonication and Microwave Reactors/COSMIC
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-127847OB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Tecnologi. Medio Ambiente (Dpto. Ing.Quím.Tecnol.Med.Amb.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-11-22-12:07:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Tecnologías del Medio Ambiente
Artículos > Artículos por área > Ingeniería Química



 Registro creado el 2023-06-02, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)