
Journal of Complex Networks (2023) 2, Advance Access Publication on 17 April 2023
https://doi.org/10.1093/comnet/cnad012

Targeted Community Merging provides an efficient comparison between collaboration
clusters and departmental partitions

F. J. Bauza†

Department of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain
†Corresponding author. Email: fbm.prof@hotmail.com

G. Ruiz-Manzanares

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza,
50018 Zaragoza, Spain

J. Gómez-Gardeñes

Department of Condensed Matter Physics, University of Zaragoza, 50009 Zaragoza, Spain

A. Tarancón and D. Íñiguez

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza,
50018 Zaragoza, Spain

[Received on 8 February 2023; editorial decision on 29 March 2023; accepted on 5 April 2023]

Community detection theory is vital for the structural analysis of many types of complex networks,
especially for human-like collaboration networks. In this work, we present a new community detection
algorithm, the Targeted Community Merging algorithm, based on the well-known Girvan–Newman algo-
rithm, which allows obtaining community partitions with high values of modularity and a small number
of communities. We then perform an analysis and comparison between the departmental and community
structure of scientific collaboration networks within the University of Zaragoza. Thus, we draw valuable
conclusions from the inter- and intra-departmental collaboration structure that could be useful to take
decisions on an eventual departmental restructuring.
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1. Introduction

Network theory has been widely used in modelling of all types of complex systems [1–3]. Complex
networks provide us with a versatile and easy to handle picture of the structure of interactions among
agents of a complex system, which allows studying both its structural and functional properties. The
analysis of structural properties of a complex system has been the focus of countless works in recent
years, either because of the importance of the structure of interactions itself (network robustness and
navigation properties, network dimension, community and k-core structures, etc.) [4–13], or because of
the crucial role that the interaction backbone has proven to play in the performance of dynamic models
of different types (epidemics, opinions, game theory and synchronization) [14–20].

One of the fundamental pillars of structural network analysis is the detection and analysis of com-
munities [21–23]. Within a network, a community is understood as a group of nodes among which
interactions are more frequent (or of greater weight) than would be expected if interactions were com-
pletely random [3]. The detection and analysis of this type of groups give us relevant information on
the characteristics of the structure of interactions at a mesoscopic scale, halfway between the global and
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local scale. In the last two decades, a large number of results have been obtained in the study of the
detection and analysis of communities in networks, with the corresponding development of a great vari-
ety of community detection algorithms. There exist two main branches in which most of these algorithms
are included. The first one consists of algorithms [24–27] maximizing a measure of the goodness of the
community partition called modularity [28]. Out of this wide range of algorithms, it could be pointed out
the iterative Girvan–Newman algorithm (GN) [29], being one of the best known and most widely used.
The second branch consists of algorithms that are framed within a recently developed model for graph
generation, called Stochastic Block Models [30–33].

One of the main applications of complex networks is in the field of collaboration networks. These
networks attempt to model complex systems of different nature (socioeconomic, industrial, biomedical
or research-oriented) in which one or many common goals are to be achieved through the collaboration
of agents, usually distributed among different collaboration groups [34–36]. The analysis of research
collaboration networks [37–42] has a special interest, aligned with the field of Science of Science [43],
since community detection analysis can be used straightforward to identify research alliances within
agents and disciplines with particular scientific advancements.

In this work, we present a new modularity maximization community detection algorithm called the
Targeted Community Merging (TCM), based on the well-known GN algorithm. Like the GN algorithm,
TCM is an iterative algorithm which allows to obtain different partitions with a different number of com-
munities per partition; however, the main advantage of this new algorithm is that it allows to reduce
considerably the number of communities per partition with hardly any damage to modularity. This fea-
ture is really useful when comparing the optimal community partition with some native partition in real
networks, especially for human-kind collaboration networks, where the number of groups in the native
partition is usually small. Here, we apply this new algorithm to obtain the optimal community partition
in different real-world researchers collaboration networks, for several macro-areas of the University of
Zaragoza.

Some universities are considering a modification of their departmental structure, generally estab-
lished many years ago and based on teaching criteria, in order to gain efficiency both in economic and
scientific terms. The point of obtaining these optimal partitions is that we could propose a restructuring
of the actual departmental partition of each macro-area, that would be more based on enhancing collabo-
ration than on branches of knowledge. Besides, we compare the community partitions with the partitions
into departments, so as we can unveil the insights of the inter- and intra-departmental collaborative struc-
ture. In addition, we make use of some part of the knowledge of similarity of sets, specifically the Rand
and Wallace similarity indices [44, 45], both for selecting the most appropriate community partition and
as part of the quantitative comparison between the community partition and the departmental one.

The article is organized as follows. First, in Section 2, we describe the data used and the assump-
tions considered to construct the researchers collaboration networks (Section 2.1), we present the TCM
algorithm (Section 2.2), and we introduce the similarity indices used to compare the community and
departmental partitions (Section 2.3). In Section 3, we show the main results of the out-performance
of the TCM algorithm over the usual GN algorithm (Section 3.1) and the main properties of the inter-
and intra-departmental collaborative structure of each macro-area of knowledge (Section 3.2). Finally, in
Section 4, we round off the article by discussing the results and giving some concluding remarks.

2. Network construction and analysis

In this section, we introduce the way of defining the researchers collaboration networks, the TCM
algorithm and the metrics used to compare these community partitions with the native (departmental)
partition.
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2.1 Network formulation

The data used to construct the collaboration networks come from the University of Zaragoza published
articles and researchers affiliation database, covering a period of time ranging from January 2002 to
January 2021, and have been processed by Kampal Data Solutions [46] (a spin-off of the University
of Zaragoza). We have information of 3844 researchers (we only take into account those researchers
who as of January 2021 are still affiliated to the University of Zaragoza) and 111706 published articles.
The researchers of the University of Zaragoza are divided in five macro-areas: Sciences, Health Science,
Engineering and Architecture, Social Sciences and Human Studies. The way of researching, publishing
and rating the articles is significantly different in natural sciences, social sciences and humanities. For this
reason, we have centred this work in the study of the three collaboration networks corresponding to the
macro-areas of Sciences, Health Science, and Engineering and Architecture. The information included
in these data for each researcher is:

• ID number

• Affiliation to macro-area

• Affiliation to department

and for each published paper:

• ID number

• Year of publication

• JCR impact factor

• ID number of authors (researchers).

Using these data, we construct the three undirected and weighted networks, based on the collabo-
ration among researchers through co-authorship in the published articles. Thus, each node in a network
corresponds to a researcher affiliated to the corresponding macro-areas, who has published at least one
article in a journal whose impact factor appears in the JCR, co-authored with another researcher of the
same macro-area. Two nodes are connected by a link if the corresponding researchers have published at
least one co-authored article in a journal whose impact factor appears in the JCR, in the case the article
has more than two authors, this is applied to each pair of authors. The weight of a link is computed in the
following way:

wij =
Mij∑

m=1

IFm
ij

Nm
ij − 1

, (2.1)

where wij is the weight of the link between nodes i and j, Mij is the number of co-authored articles
published by researchers corresponding to nodes i and j, IFm

ij is the impact factor of the mth co-authored
article, and Nm

ij the number of authors of the mth co-authored article.
In Table 1, it is shown the main information of each of the three networks constructed using this

approach, including the number of departments for the departmental partitions of each macro-area.
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Table 1 Properties of the scientific collaboration networks analysed

Macro-area Nodes Links Nodes GC (%) Links GC (%) N. of departments

Science 537 1760 94.6 99 14
Health Science 724 3060 97.7 99.7 11
Engineering and Architecture 628 2055 99.4 99.9 10

For each network, we report the number of nodes,Nodes, the number of links; Links, the percentage of nodes in theGiant Component
(percentagewith respect to the total number of nodes in the network);Nodes GC(%), the percentage of links in the Giant Component
(percentage with respect to the total number of links); Links GC(%), and the number of departments in the corresponding macro-
area, N. of departments.

2.2 Community detection with TCM

Here, we first introduce the modularity as a measure of the goodness of a community partition and
explain the GN algorithm since our algorithm uses the optimal partitions obtained with the GN as input.
Afterward, we present the TCM algorithm.

2.2.1 Modularity and GN algorithm The modularity [28] of a network community partition accounts
for the fraction of edges that fall within each community, minus the expected fraction in the random-
distributed case. For a weighted network G , the modularity of a given division into n communities,
{c1, . . . , cn}, is given by:

Q(G ; {c1, ..., cn}) = 1

2Wt

∑
i,j

[
wij − sisj

2m

]
δ(ci, cj) , (2.2)

where si is the strength of node i, si = ∑
j wij and Wt is the total weight of the network 2Wt = ∑

i si,
and the random edges distribution null model selected is one in which the probability that there exists an
edge between nodes i and j is proportional to the product of the strengths of nodes i and j. Thus, Q values
can go from −1, when the fraction of edges (weighted) inside communities is the least compared to the
random one, to 1 in the opposite case.

The GN algorithm is an iterative, modularity maximization heuristic algorithm, that is the solution
found is an approximate solution. The GN algorithm is based on the elimination of edges with the greatest
values of Betweenness Centrality (BC) [29, 47]. In each step, the values of BC for all the edges are
computed, using an algorithm from the Python library Networkx, proposed by Ulrik Brandes [48]; and
the edge with the greatest BC value is eliminated. The process ends when there are no edges in the
network. During the edges elimination process, the network is divided into disconnected components,
which finally are identified with the communities of the partition. Every time a disconnected component
is divided, a new partition, with one more community, is obtained. It is important to remark that the
algorithm only provides one partition for a given number of communities, this way, we can identify
each partition with its number of communities. In the case of a weighted network [49], the BC value is
divided by the weight of the corresponding edge before eliminating the edge with the greatest value, in
order to avoid the elimination of the heaviest edges within communities. Just as a clarification, to obtain
the shortest paths in the BC computation, we consider the inverse of the weight as the length of each
edge.
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2.2.2 Targeted Community Merging The GN algorithm returns then a set of community partitions,
each one identified with the number of communities. The optimal partition is just the partition with
the highest value of Q; however, this optimal partition usually has a very high number of communities.
This fact makes it very difficult to compare this optimal partition with partitions with a much reduced
number of communities, such as the departmental partitions. For this reason, we present a heuristic post-
processing algorithm called TCMwhich takes as input the iterative evolution of the community partitions
obtained with the GN algorithm (one partition for each number of communities) and returns, after an
iterative process, one (or several) optimal partition(s) with a reduced number of communities without
significantly reducing Q. This algorithm is based on the idea of detecting and removing community
splittings, by merging the formed communities corresponding to low Q increases.

To implement the TCM algorithm, it is necessary to assign an index to the communities resulting from
the GN algorithm evolution and track the changes in modularity for each community split. Therefore, in
the GN evolution we start by assigning the index i = 0 to the first community (the whole network), and in
each split (one old community is divided into two new ones), we call the new community with the higher
number of nodes the parent community, which is identified with the same index as the old community
(iparent = iold); and the smaller one is the child community, identified with a new index (ichild = C , where
C is the number of existing communities at the moment of split). Moreover, we assign the variation
of modularity of the split �Qi to the ‘birth’ of the child community i. With this information from the
evolution of community partition used as input, the TCM algorithm consists of the following:

1. We fixed a minimum modularity variation �Qmin

2. Startingwith the newest community (the child of the last division of the GN algorithm evolution), we
go back over all communities sequentially and mark the communities as relevant, which is not going
to be rejoined, or irrelevant, which is going to be joined to another community. One community i
is considered relevant if fulfils one of the following conditions:

�Qi > �Qmin, the birth of the community implies an important growth of Q. In this case, the
parent of the community i is automatically marked as relevant, without waiting for its ‘turn’.

The community has a relevant child

and is considered irrelevant in any other case. An irrelevant community is immediately, at the
moment of marking, joined to its parent community, if the latter is not relevant (irrelevant or not
yet classified).

3. After this first filtering, we go once more over all irrelevant communities that remain unjoined,
starting again with the newest. These remaining irrelevant communities are those that could not be
joined to its parent because the latter was relevant. We join each one of these irrelevant communities
to the community of the partition which implies the lowest decrease of Q , no matter if it is relevant
or not.

See Fig. 1 for a graphical explanation of the algorithm. The parameter �Qmin controls the balance
between the number of communities and the reduction in Q. Increasing the value of �Qmin the post-
processing returns an optimized partition with fewer communities by reducing Q. This implies that we
can obtain a more global landscape of several optimized partitions by scanning �Qmin as it is shown
in Fig. 3 (Section 3), this variety brings the possibility of choosing an optimal partition with a balance
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(I) (II)

(III)> : Community with significant growth of Modularity

′

: Community before marking and joining process

: Relevant community a�er marking process

: Irrelevant community with relevant parent

: Community modified because of addi�on of an
irrelevant community a�er the second filtering process

Fig. 1. Graphical explanation of the TCM algorithm using a simple synthetic case. (I) Performance of the usual GN algorithm (from
top to the bottom) obtaining an eight community partition by splitting one of the existing communities in each step, in this case,
we assume that only the ‘birth’ of communities four and six implies a relevant growth of Q for the fixed �Qmin (�Qi > �Qmin).
(II) First marking and filtering process, community 7 has joined to its parent community because in its turn both were irrelevant,
communities 4 and 6 are marked as relevant in their turn, as well as the respective parents (2 and 1), and communities 3 and 5
cannot be immediately joined to their parent, even though they are irrelevant, since in their turns community 1 was already marked
as relevant. (III) Second filtering, we check which are the remaining communities to which to join 3 and 5 leading to a minimum
decrease in Q, in this case, the best candidate are the 2 for community 5 and 6 for community 3. After the whole post-processing,
we end up with a reduced partition with five communities.

between modularity and number of communities which fits a specific problem needs. Moreover, there are
two partitions that are interesting in all cases, because of the outperforming of the TCM algorithm:

• The partition obtained by fixing �Qmin = 0. All the splittings of the GN algorithm that bring a
decrease of Q are eliminated, this way we obtain a partition with the highest possible modularity

• The partition resulting from pushing �Qmin to the limit of obtaining a value of Q just above or equal
to the maximum of GN. This way we obtain a partition at least as good as that of the GN algorithm,
but with a smaller number of communities.

However, in this work, we do not focus on these two partitions, we perform a more detailed analysis
in which we do not only look at modularity. We would like to propose a partition of each macro-area
that eventually could be used as a basis for restructuring the current departmental partitions, more based
on scientific collaboration structures than simply on branches of knowledge. However, we are interested
in partitions that are not too much different from the present ones. For this purpose, we need a way to
measure the similarity between different partitions of the same set of objects, in our case we will use
some well-known similarity indices.
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2.3 Partition similarity indices

Once we obtain the optimal community partitions using the TCM algorithm the idea is to compare these
partitions with the departmental partition for each network. Similarity indices give us quantitative infor-
mation about how similar are two partitions. We have used two well-known pair-based similarity indices:
Rand andWallace Index [44, 45]. Besides, we introduce the idea of adjusted for chance correction for the
indices, which is applied to the Rand Index (RI). Although there exist other possibilities for the similarity
measures, such as those based on information theory [50, 51], we concluded that pair-based measures
are more appropriate for this problem.

2.3.1 Pair-based indices Given a set of N objects and two different partitions of this set, U (with U
groups) and V (with V groups), we define ni· as the number of objects that are in group i in partition U ,
n·j as the number of objects that are in group j in partition V , and nij as the number of objects that are
in group i in partition U and in group j in partition V . With these definitions, we present the following
three pair-based measures:

P =
U∑

i=1

ni· (ni· − 1)

2
, (2.3)

Q =
V∑

j=1

n·j (n·j − 1)

2
, (2.4)

T =
U∑

i=1

V∑
j=1

nij (nij − 1)

2
, (2.5)

where P is the number of pairs of objects that are in the same group in first partition, Q is the number
of pairs of objects that are in the same group in second partition, and T is the number of pairs of objects
that are in the same group in both partitions. Notice that

(N
2

) = N (N−1)
2 is the total number of pairs of

objects, and we can express the number of pairs of objects that are in different groups in both partitions
as

(N
2

) − P − Q + T .
Given these numbers, the Wallace Index is expressed as follows:

W =
√

T

P
·
√

T

Q
= T√

Q · P
, (2.6)

that is, the geometric mean of the fraction T
P of nodes that being in the same group in first partition also

are in the same group in the second partition, and the fraction T
Q of nodes that being in the same group in

the second partition also are in the same group in the first partition. And the RI is computed as:

RI = T + (
(N
2

) − P − Q + T)(N
2

) = 2T + (
(N
2

) − P − Q)(N
2

) , (2.7)
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8 F. J. BAUZA ET AL.

that is, the sum of pairs of objects that are in the same group in both partitions and the pairs of objects that
are in different groups in both partitions, divided by the total number of pairs of objects. The RI assumes
that the similarity of two partitions is given by both types of pairs of objects.

In our case, the objects are the researchers (nodes in the networks), the first partition is the community
partition, and the second partition is the departmental partition.

2.3.2 Adjusted for chance correction of indices Even though these indices are two of the most used
in clustering comparison, several studies [52–55] have proven that the performance of the RI is clearly
improved by making a Correction for Chance of the index.

The idea of the Correction for Chance is to eliminate the influence of the randomness grouping of
objects on the index. Thus, the Adjusted Rand Index (ARI) is expressed as:

ARI = RI − E[RI ]
RImax − E[RI ] , (2.8)

where E[RI ] is the expected value and RImax is the maximum value of RI, both based on the generalized
hypergeometric distribution null model [52] for randomness which assumes that U and V partitions
are picked at random, subject to having the original number of groups and objects in each partition.
Therefore, we can express these quantities as [52]:

E[RI ] = E

[
2T + ((N

2

) − P − Q
)

(N
2

)
]

= 2E[ T ] + ((N
2

) − P − Q
)

(N
2

) , (2.9)

where

E[ T ] = E

[
U∑

i=1

V∑
j=1

(
nij

2

)]
=

U∑
i=1

V∑
j=1

(ni·
2

) (n·j
2

)
(N
2

) = P Q(N
2

) (2.10)

since the expected number of pairs of objects which belongs to Ui and Vj is equal to the product of pairs
of objects of Ui and the pairs of objects of Vj, divided by the total number of pairs of objects, that is

E
[(nij

2

)] = (
ni·
2 )(

n·j
2 )

(N
2)

, and

RImax = 2Tmax + ((N
2

) − P − Q
)

(N
2

) , (2.11)

while there is no complete consensus in the literature on the expression of Tmax, being some of the possi-
bilities Q, P, min[Q,P] or P+Q

2 , in general cases the preferred choice is P+Q
2 . Hence, the final expression

of ARI, substituting RI from Eq. 2.7, E[RI ] from Eqs. 2.9 and 2.10, and RImax from Eq. 2.11 being
Tmax = P+Q

2 ; stays as

ARI =
T − P Q

(N
2)

P+Q
2 − P Q

(N
2)

. (2.12)
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TARGETED COMMUNITY MERGING 9

Fig. 2. Performance of the GN algorithm for the detection of communities in each collaboration network. We show the values of
modularity for each partition into communities which correspond to one value of the Number of Communities (x-axis). Light blue
squares correspond to Science network, red triangles correspond to Health Science and dark green points correspond to Engineering
and Architecture. The vertical dashed lines mark the beginning of the steady zone for each macro-area.

This adjustment implies that the ARI value is always strictly greater than −1 and strictly less than
1 and is equal to 0 when the similarity matches what would be expected by chance according to the
null mode. For more information about the ARI extreme values and the generalized hypergeometric
distribution null model see the reference [52–55].

3. Results

We need to obtain the community partitions to be compared to the native (departmental) ones. For this
purpose, we applied the TCM algorithm, presented in the section above, to each of the networks of the
three macro-areas under study.

This section starts with the results of the performance of the TCM algorithm compared to the usual
GN algorithm, then we show the set of community partitions obtained with the new algorithm and the
selection of the ‘optimal’ partition for each macro-area network, based on modularity and similarity
criteria, which are going to be qualitatively compared with the departmental partitions.

3.1 Performance of TCM algorithm

In Fig. 2, we show the performance of the original GN algorithm for the three macro-areas, representing
the modularity of each obtained community partition (uniquely determined by its number of communi-
ties). The forward direction of the x-axis corresponds to the evolution of the algorithm, increasing the
number of communities by one at each step. We observe a marked growth at the beginning, with some
small plateaus; until it reaches a more steady zone (the beginning of these steady zones is marked with
vertical dashed lines in the figure) where it takes many steps to achieve themaximum, around the partition
of 70 communities in all cases.
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10 F. J. BAUZA ET AL.

Fig. 3. Performance of TCM algorithm on the three collaboration networks (left: Science, Centre: Health Science and right: Engi-
neering and Architecture). In the upper row, we represent the values of modularity (maroon circles) for each partition into
communities, obtained with TCM algorithm, which correspond to one value of the Number of Communities (x-axis). In the centre
row, we compare the performance of TCM and GN algorithms by showing the difference between the modularity of the partition
obtained with the TCM and the modularity of the partition obtained with the GN for each number of communities (blue diamonds),
and by showing the difference of the modularity of the partition obtained with the TCM for each number of communities and the
maximum modularity obtained with the GN (sandy-brown squares). In the bottom row, we show the similarity values, Wallace
(green stars) and Adjusted Rand Index (red triangles), between community (obtained with TCM) and departmental partitions.

Figure 3 corresponds to the application of the TCM algorithm. Here, the different community parti-
tions (again uniquely determined by the number of communities) correspond to different values of�Qmin.
For low values of �Qmin (right part of the graphs) the number of communities that have been rejoined is
small, implying a small decrease in modularity and a high number of communities. On the contrary, high
values of �Qmin imply a greater reduction of communities and modularity (see upper row of the figure).
We observe that this algorithm outperforms the usual GN algorithm (see centre row of the figure), we
obtain a partition with the same value of modularity as the maximum of GN for a number of communities
around 25 for Science, and Engineer and Architecture and just 15 for Health Science; and from that point
on all the partitions have more modularity than the GN maximum.

3.2 Partitions comparison in collaboration networks

Once checked the performance of the TCM algorithm, we must choose the optimal community partition,
for each macro-area network. For this purpose, we will take into account not only the modularity but
also the similarity with the departmental partition, as it is mentioned in the previous section. Therefore,
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TARGETED COMMUNITY MERGING 11

in the bottom row of Fig. 3, we show the similarity between the departmental partition (Adjusted Rand
and Wallace indices) ant the output community partitions of the TCM algorithm, for each macro-area.

In the three macro-areas, we see that both similarity indices have similar behaviour, with the dif-
ference that the Wallace index always takes slightly higher values. In the case of Engineering and
Architecture and Health Sciences, both indices have a peak at the beginning and then slightly decrease
to a steady zone. In Science network, on the contrary, at the beginning there is an increase in similarity,
although reaching a steady zone as well. What is important is that for the three cases, in the zone of
interest (high modularities and close to the maximum value of the usual GN) there are no large variations
of similarity. Taking this into account, our criterion for choosing the best partition has been qualitative
and based more on the modularity.

For the Health Sciences network, we have chosen the 16 community partition as the optimal one since
it has the least number of communities before the modularity is lower than the usual GN and starts a very
steep decrease. For the case of Sciences and Engineering and Architecture, we cannot take the smallest
partition with a modularity value higher than that of the usual GN, since that is given for a very large
number of communities, therefore, we choose qualitatively those partitions that have the least number of
communities before a sharp decrease in modularity, which are the 17 communities one for Sciences and
that of 13 communities for Engineering and Architecture.

For the qualitative comparison of the optimal community partitions and the departmental partitions,
for each network, we make a graphical crossing between both partitions using barplots. In this way, it is
possible to obtain information, in a very visual way, about how is the collaboration of researchers within
and between the different departments of each macro-area.

In Fig. 4, we represent the comparison of the optimal partition of 17 communities with the 14 depart-
ments partition for the Science network. The bars represent the communities, the height is the number of
researchers in each community, and the colours represent the departments (in the legend). We notice at
first glance that the departments are not very segregated in communities, a department appears at most
in three communities and a community is made up of three departments at most. Communities 1, 2, 6, 8
are those with more mixture, being:

• Community 1 formed by a main part of Applied mathematics and parts of Analytic chemistry and
Mathematics

• Community 2 represents the collaboration among Condensed matter physics (main part), Theoretical
Physics and Earth Science

• Community 6 is the last of the biggest communities and it is formed by Organic Chemistry and
Inorganic Chemistry almost at equal parts

• Community 8 is the most mixed with parts of Inorganic Chemistry, Mathematics and Organic
chemistry,

The rest of the communities are hardly mixed, and each of them can be uniquely identified with a depart-
ment.

In the comparison of the optimal partition of 16 communities with the 11 departments of the Health
Science macro-area, see Fig. 5, we observed a different behaviour from that of the Science macro-
area. There are a reduced number of communities which can be uniquely identified with a department,
namely: 2, 4, 10, 14 and 16, but three of these (4, 10, 14) correspond to the same department, Surgery.
The remaining 11 communities present collaboration between departments, and although in three of
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Fig. 4. Barplot comparing the optimal 17 community partition with the departmental partition for the Science macro-area collabo-
ration network. Bars correspond to communities, ordered from left to right in order from highest to lowest number of researchers,
and colours represent departments (striped textures used to avoid colour repetition). Y-axis represents the number of researchers
per community.

them (9, 12 and 13) the collaboration is only between two departments: Medicine, psychiatry and derma-
tology—Surgery; Microbiology and public health—Medicine, psychiatry and dermatology; and Animal
pathology—Animal production respectively, in the rest there is a great mix of departments, being three
the minimum number of departments that appear in them. In addition, it is interesting that there is a
pattern of interdepartmental collaboration that is repeated in several communities of different sizes, col-
laboration among Surgery; Physiatry and nursing; Medicine, psychiatry and dermatology; Microbiology
and public health; and Animal pathology can be observed in communities 1, 6, 7, 8 and 15.

Finally, we show in Fig. 6 the comparison between the optimal partition of 13 communities and
the 10 departments partition for the macro-area of Engineering and Architecture. In this case, inter- and
intra-departmental collaboration presents a landscape that is midway between the two other macro-areas.
There are several communities that can be almost uniquely identified with a department (3, 10, 11, 12, 13)
and, as in Science macro-area, all these departments are different. In the case of communities which
present departmental collaboration, there is not a great mixture but a little more than in Science, since in
some of the biggest communities (1, 2, 4, 6) around four departments are clearly represented. As in Health
Science, there is a pattern of collaboration (Computer science and systems engineering—Electronic engi-
neering and communications) that is repeated in several communities (1, 2, 4, 5, 7), although in this case,
in all these communities, these two are accompanied by different departments.

These differences in behaviour between the three macro-areas in terms of the mixture of inter- and
intra-departmental collaboration can be better observed in a more quantitative way with the value of
modularity of the partition into departments (Qdepts) and with the similarity with departments of the three
‘optimal’ community partitions ARIoptimal. The modularity of the departmental partition tells us how
good would be a network partition in which the communities were precisely the departments, there is
obviously a high correlation between these two measures, since a ‘good’ departmental partition is more
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Fig. 5. Barplot comparing the optimal 16 community partition with the departmental partition for the Health Science macro-area
collaboration network. Bars correspond to communities, ordered from left to right in order from highest to lowest number of
researchers, and colours represent departments (striped textures used to avoid colour repetition). Y-axis represents the number of
researchers per community.

Fig. 6. Barplot comparing the optimal 13 community partition with the departmental partition for the Engineering and Architecture
macro-area collaboration network. Bars correspond to communities, ordered from left to right in order from highest to lowest
number of researchers, and colours represent departments. Y-axis represents the number of researchers per community.

likely to resemble the optimal community partition found by our algorithm. In Table 2, we show these
two measures for the three macro-areas. We can observe, as expected, that the macro-area of Science
has the greatest values for both measures, followed by Engineering and Architecture, and the values for
Health Science are clearly the lowest.
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Table 2 This table shows the values of modularity of departmental par-
tition, and Similarity between optimal community and departmental parti-
tions for the three collaborations networks

Qdepts ARIoptimal

Science 0.79 0.46
Engineering and Architecture 0.75 0.23
Health Sciences 0.54 0.13

4. Conclusions and future work

The importance of the study of the structural properties of complex networks, where the detection and
analysis of community structures stands out, generates the need for continuous research and development
of algorithms in this field, especially when applied to the characterization of human-kind collaboration
networks.

In this article, we develop a community detection algorithm which improves the performance of the
GN algorithm and allows reducing the number of communities without reducing the goodness of the
partition. We apply this algorithm to different macro-areas of knowledge at the University of Zaragoza
in order to analyse the collaborative structure of the departmental partition of these macro-areas. For
this purpose, we make a comparison of each partition in departments with the partition in communities
obtained from each collaborative network.

The comparison between the performance of the GN algorithm and the TCM algorithm makes tan-
gible the usefulness of the latter to obtain much smaller partitions (more suitable for comparison with
native partitions of networks) with little harm to modularity. Not only that, even slightly relaxing the
condition of a reduced number of communities, we can obtain higher modularity values than in the usual
algorithm.

The collaborative structure of the departmental partitions presents different features depending on the
macro-area. These differences are manifested mainly in the mixture of departments for each macro-area,
going from the less mixed partition for Science to the more mixed for Health Science. This could indicate
that some partitions into departments were designed taking into account some scientific collaboration
criterion while the other might be more based simply on a criterion of branches of knowledge. But, more
probably, it could also be a consequence of the fact that in Science it is possible to investigate with the
focus on a specific field while in Health Science it is necessary, in general, the participation of several
disciplines.

Besides, the emergence of repeating patterns of collaboration in each macro-area can be observed.
Some of which might be expected due to their simplicity and the natural relationship among the depart-
ments forming them, such as: Organic chemistry and Inorganic chemistry in Science, or Computer
science and systems engineering—Electronic engineering and communications in Engineering and
Architecture. However, others need deeper unravelling as Surgery; Physiatry and nursing; Medicine,
psychiatry and dermatology; Microbiology and public health; and Animal pathology in Health Science,
since it is not a simple pattern and the relationship among these departments is not so obvious.

Definitely, our algorithm has proven to be a very useful tool to obtain good community parti-
tions with a small number of communities, comparable to the typical sizes of native partitions of
collaborative scientific networks among others, and allows us to perform meaningful analysis of this
type of structures. Besides, the method presented here could help to take decisions about an eventual

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/11/2/cnad012/7130216 by Biblioteca U
niversidad de Zaragoza user on 21 April 2023



TARGETED COMMUNITY MERGING 15

restructuring of researching groups or units within an academic or researching institution. Two particular
examples:

• The situation where the institutions must reduce management and administrative costs, and therefore
it may be necessary to decrease the number of departments or areas. To accomplish this, the TCM
algorithm can be used to obtain a community partition, with the specific number of communities
required by the institution, which can then be directly associated with the new departments.

• The scenario where an academic institution intends to create a structure of research institutes from
scratch, the number of which is usually smaller than the number of departments, and wants to know
to which institute it should assign each researcher in the institution. The TCM could be used to obtain
the community partition with the same number of communities than the number of institutes that is
intended to create.

However, the algorithm and the way of analysing the departmental structure have some limitations that
may provide an opportunity for future work. On one hand, it would be interesting to consider more
bindings in the post-processing beyond simply looking for the smallest decrease in modularity, or to
impose constraints on the communities that the algorithm joins, based on an a priori analysis of the native
partition to be analysed. On the other hand, further work would be needed in order to include Humanities
and Social Sciences in this kind of analysis. The great variability and the lack of a standardized indexation
of the journals of these disciplines make it very difficult to integrate them with the scientific fields in a
common basis. The present efforts of some academic publishing companies in order to include human
and social disciplines in the same indexation schemes as the scientific ones could help to work on this
integration in the future.
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Data and code availability

Data from University of Zaragoza used in this study are available upon proper request to Kampal Data
Solutions: info@kampal.com. The code is publicly available in github: https://github.com/Francho22/
TCM_algorithm.git. The reader will find, apart from a Python script correponding to the TCM algorithm,
two Python libraries with some methods required by the TCM algorithm, and two .txt files as example
of the input for the TCM algorithm.
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