000126415 001__ 126415 000126415 005__ 20241125101137.0 000126415 0247_ $$2doi$$a10.1021/acs.cgd.2c01436 000126415 0248_ $$2sideral$$a133841 000126415 037__ $$aART-2023-133841 000126415 041__ $$aeng 000126415 100__ $$aSavchenko, M. 000126415 245__ $$aMagnetite mineralization inside cross-linked protein crystals 000126415 260__ $$c2023 000126415 5060_ $$aAccess copy available to the general public$$fUnrestricted 000126415 5203_ $$aCrystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography. Although the fundamental interest is clear, basic models at the laboratory scale are scarce mainly due to the difficulty in obtaining well-defined confined spaces allowing a simultaneous study of the mineralization process outside and inside the cavities. Herein, we have studied magnetite precipitation in the channels of cross-linked protein crystals (CLPCs) with different channel pore sizes, as a model of crystallization in confined spaces. Our results show that nucleation of an Fe-rich phase occurs inside the protein channels in all cases, but, by a combination of chemical and physical effects, the channel diameter of CLPCs exerted a precise control on the size and stability of those Fe-rich nanoparticles. The small diameters of protein channels restrain the growth of metastable intermediates to around 2 nm and stabilize them over time. At larger pore diameters, recrystallization of the Fe-rich precursors into more stable phases was observed. This study highlights the impact that crystallization in confined spaces can have on the physicochemical properties of the resulting crystals and shows that CLPCs can be interesting substrates to study this process. 000126415 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-118498GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PDC2021-121135-I00$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-116261GB-I00 000126415 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000126415 590__ $$a3.2$$b2023 000126415 592__ $$a0.649$$b2023 000126415 591__ $$aCRYSTALLOGRAPHY$$b5 / 33 = 0.152$$c2023$$dQ1$$eT1 000126415 593__ $$aChemistry (miscellaneous)$$c2023$$dQ2 000126415 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b97 / 231 = 0.42$$c2023$$dQ2$$eT2 000126415 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2 000126415 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 439 = 0.458$$c2023$$dQ2$$eT2 000126415 593__ $$aCondensed Matter Physics$$c2023$$dQ2 000126415 594__ $$a6.3$$b2023 000126415 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000126415 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, V.$$uUniversidad de Zaragoza 000126415 700__ $$aLópez-López, M. T. 000126415 700__ $$aRodríguez-Navarro, A. 000126415 700__ $$aÁlvarez de Cienfuegos, L. 000126415 700__ $$aJiménez-López, C. 000126415 700__ $$aGavira, J. A. 000126415 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química 000126415 773__ $$g23, 6 (2023), 4032–4040$$pCryst. growth des.$$tCRYSTAL GROWTH & DESIGN$$x1528-7483 000126415 8564_ $$s10315764$$uhttps://zaguan.unizar.es/record/126415/files/texto_completo.pdf$$yVersión publicada 000126415 8564_ $$s2794616$$uhttps://zaguan.unizar.es/record/126415/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000126415 909CO $$ooai:zaguan.unizar.es:126415$$particulos$$pdriver 000126415 951__ $$a2024-11-22-12:01:11 000126415 980__ $$aARTICLE