On the integral solution of elliptic Kepler’s equation

Calvo, M. (Universidad de Zaragoza) ; Elipe, A. (Universidad de Zaragoza) ; Rández, L. (Universidad de Zaragoza)
On the integral solution of elliptic Kepler’s equation
Resumen: In a recent paper, Philcox, Goodman and Slepian obtain an explicit solution of the elliptic Kepler’s equation (KE) as a quotient of two contour integrals along a Jordan curve C=C(M,e) that contains the unique real solution of KE but not includes other complex zeros of KE in its interior. The aim of this paper is to study the main issues that arise in the practical implementation of this integral solution. Thus, after a study of the complex zeros of KE, several families of Jordan contours C=C(M,e) that are suitable for this integral solution are proposed. Since contours with minimal length turn out to be the more accurate for numerical purposes, several families that minimize their length are constructed. Secondly, the approximation of the contour integrals by the composite trapezoidal rule is considered. Recall that this rule is employed in the fast Fourier transform and, in spite of its lower order, displays a spectral convergence as a function of the number of nodes, which implies a very fast convergence. Finally, the results of some numerical experiments are presented to show that such a combination of appropriate contours with the composite trapezoidal rule leads to a powerful numerical method to solve KE with any desired accuracy for all values of eccentricity.
Idioma: Inglés
DOI: 10.1007/s10569-023-10142-7
Año: 2023
Publicado en: Celestial Mechanics and Dynamical Astronomy 135, 3 (2023), 26 [18 pp.]
ISSN: 0923-2958

Factor impacto JCR: 1.6 (2023)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 70 / 135 = 0.519 (2023) - Q3 - T2
Categ. JCR: ASTRONOMY & ASTROPHYSICS rank: 51 / 84 = 0.607 (2023) - Q3 - T2

Factor impacto CITESCORE: 3.0 - Mathematical Physics (Q2) - Computational Mathematics (Q2) - Applied Mathematics (Q2) - Astronomy and Astrophysics (Q3) - Space and Planetary Science (Q3) - Modeling and Simulation (Q3)

Factor impacto SCIMAGO: 0.521 - Applied Mathematics (Q2) - Astronomy and Astrophysics (Q2) - Computational Mathematics (Q2) - Mathematical Physics (Q2) - Modeling and Simulation (Q2) - Space and Planetary Science (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-109045GB-C31
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-117066GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-12:01:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Matemática Aplicada



 Registro creado el 2023-06-21, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)