000126422 001__ 126422
000126422 005__ 20241125101138.0
000126422 0247_ $$2doi$$a10.1016/j.memsci.2023.121697
000126422 0248_ $$2sideral$$a133831
000126422 037__ $$aART-2023-133831
000126422 041__ $$aeng
000126422 100__ $$aYu, M.
000126422 245__ $$aCO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1
000126422 260__ $$c2023
000126422 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126422 5203_ $$aThe polymer of intrinsic microporosity PIM-1 was synthesized with different topologies and negligible network content. A more rapid heating rate from room temperature yielded a predominantly di-substituted PIM-1 (D-PIM-1), whereas a marginally lower heating rate produced a more branched structure (B-PIM-1). Both polymers were acid-hydrolyzed to give carboxylic acid functionalization (cPIM-1), as indicated by FT-IR, 1H NMR, and elemental analysis. Both PIM-1 and cPIM-1 were processed into self-supported membranes and into thin film composite (TFC) membranes on a polyacrylonitrile support. For a 70% hydrolyzed polymer (D-cPIM-1-70%), the initial CO2 permeance reached 7700 GPU, with ideal selectivity of 56 for CO2/N2 and 37 for CO2/CH4. D-PIM-1 and D-cPIM-1-70% showed 85% and 52% CO2 permeance drop after 60 days’ aging, respectively. B-PIM-1, with initial CO2 permeance of 3100 GPU and ideal selectivity of 19 for CO2/N2 and 11 for CO2/CH4, showed only a 65% decrease. Polymer that was both branched and hydrolyzed (B-cPIM-1-73&81%), with CO2 permeance of 3200 GPU and selectivity of 64 for CO2/N2 and 45 for CO2/CH4, showed no decrease of CO2 permeance after 60 days. The branched structure is crucial for reducing membrane aging. Plasticization gave rise to reduced selectivity in mixed gas experiments, but nevertheless TFC membranes prepared from B-cPIM-1-81% were able to concentrate CO2 to 38% from a 10% CO2/90% N2 mixture at 4.8 bar.
000126422 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RYC2019-027060-I$$9info:eu-repo/grantAgreement/ES/UZ/LMA-ICTS ELECMI-CIBER-BBN
000126422 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126422 590__ $$a8.4$$b2023
000126422 592__ $$a1.848$$b2023
000126422 591__ $$aPOLYMER SCIENCE$$b5 / 95 = 0.053$$c2023$$dQ1$$eT1
000126422 593__ $$aBiochemistry$$c2023$$dQ1
000126422 591__ $$aENGINEERING, CHEMICAL$$b13 / 170 = 0.076$$c2023$$dQ1$$eT1
000126422 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ1
000126422 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000126422 593__ $$aFiltration and Separation$$c2023$$dQ1
000126422 594__ $$a17.1$$b2023
000126422 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126422 700__ $$aFoster, A. B.
000126422 700__ $$aAlshurafa, M.
000126422 700__ $$0(orcid)0000-0001-5002-7197$$aLuque-Alled, J. M.$$uUniversidad de Zaragoza
000126422 700__ $$0(orcid)0000-0002-6905-714X$$aGorgojo, P.$$uUniversidad de Zaragoza
000126422 700__ $$aKentish, S. E.
000126422 700__ $$aScholes, C. A.
000126422 700__ $$aBudd, P. M.
000126422 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000126422 773__ $$g679 (2023), 121697 [13 pp.]$$pJ. membr. sci.$$tJOURNAL OF MEMBRANE SCIENCE$$x0376-7388
000126422 8564_ $$s5625596$$uhttps://zaguan.unizar.es/record/126422/files/texto_completo.pdf$$yVersión publicada
000126422 8564_ $$s2523843$$uhttps://zaguan.unizar.es/record/126422/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126422 909CO $$ooai:zaguan.unizar.es:126422$$particulos$$pdriver
000126422 951__ $$a2024-11-22-12:01:45
000126422 980__ $$aARTICLE