000126453 001__ 126453
000126453 005__ 20230621161010.0
000126453 0247_ $$2doi$$a10.3389/fcell.2021.633465
000126453 0248_ $$2sideral$$a122634
000126453 037__ $$aART-2021-122634
000126453 041__ $$aeng
000126453 100__ $$aMillán, Ángel
000126453 245__ $$aThe thermodynamics of medial vascular calcification
000126453 260__ $$c2021
000126453 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126453 5203_ $$aMedial vascular calcification (MVC) is a degenerative process that involves the deposition of calcium in the arteries, with a high prevalence in chronic kidney disease (CKD), diabetes, and aging. Calcification is the process of precipitation largely of calcium phosphate, governed by the laws of thermodynamics that should be acknowledged in studies of this disease. Amorphous calcium phosphate (ACP) is the key constituent of early calcifications, mainly composed of Ca2+ and PO43– ions, which over time transform into hydroxyapatite (HAP) crystals. The supersaturation of ACP related to Ca2+ and PO43– activities establishes the risk of MVC, which can be modulated by the presence of promoter and inhibitor biomolecules. According to the thermodynamic parameters, the process of MVC implies: (i) an increase in Ca2+ and PO43– activities (rather than concentrations) exceeding the solubility product at the precipitating sites in the media; (ii) focally impaired equilibrium between promoter and inhibitor biomolecules; and (iii) the progression of HAP crystallization associated with nominal irreversibility of the process, even when the levels of Ca2+ and PO43– ions return to normal. Thus, physical-chemical processes in the media are fundamental to understanding MVC and represent the most critical factor for treatments’ considerations. Any pathogenetical proposal must therefore comply with the laws of thermodynamics and their expression within the medial layer.
000126453 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E11-17R$$9info:eu-repo/grantAgreement/EC/H2020/801305/EU/Nanoparticles-based 2D thermal bioimaging technologies/NanoTBTech$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 801305-NanoTBTech$$9info:eu-repo/grantAgreement/EC/H2020/829162/EU/Redesigning biocatalysis: Thermal-tuning of one-pot multienzymatic cascades by nanoactuation/HOTZYMES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 829162-HOTZYMES$$9info:eu-repo/grantAgreement/ES/MICIU/PGC2018-095795-B-I00$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-098635-B-I00
000126453 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126453 590__ $$a6.081$$b2021
000126453 591__ $$aDEVELOPMENTAL BIOLOGY$$b6 / 40 = 0.15$$c2021$$dQ1$$eT1
000126453 591__ $$aCELL BIOLOGY$$b68 / 195 = 0.349$$c2021$$dQ2$$eT2
000126453 592__ $$a1.44$$b2021
000126453 593__ $$aDevelopmental Biology$$c2021$$dQ1
000126453 593__ $$aCell Biology$$c2021$$dQ1
000126453 594__ $$a3.5$$b2021
000126453 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000126453 700__ $$aLanzer, Peter
000126453 700__ $$0(orcid)0000-0003-3457-323X$$aSorribas, Víctor$$uUniversidad de Zaragoza
000126453 7102_ $$11002$$2807$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Toxicología
000126453 773__ $$g9 (2021), 1-20$$tFrontiers in Cell and Developmental Biology$$x2296-634X
000126453 8564_ $$s5227679$$uhttps://zaguan.unizar.es/record/126453/files/texto_completo.pdf$$yVersión publicada
000126453 8564_ $$s2312131$$uhttps://zaguan.unizar.es/record/126453/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126453 909CO $$ooai:zaguan.unizar.es:126453$$particulos$$pdriver
000126453 951__ $$a2023-06-21-14:50:34
000126453 980__ $$aARTICLE