000126468 001__ 126468
000126468 005__ 20241125101153.0
000126468 0247_ $$2doi$$a10.1016/j.renene.2023.03.125
000126468 0248_ $$2sideral$$a133844
000126468 037__ $$aART-2023-133844
000126468 041__ $$aeng
000126468 100__ $$0(orcid)0000-0002-0787-8938$$aHerrando, María
000126468 245__ $$aNumerical analysis of the fluid flow and heat transfer of a hybrid PV-thermal collector and performance assessment
000126468 260__ $$c2023
000126468 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126468 5203_ $$aIn recent years, new materials and absorber configurations have been proposed to improve the performance of hybrid photovoltaic-thermal (PV-T) collectors. This work analyses the fluid flow and the energy performance of an uncovered water-based PV-T collector with a roll-bond thermal absorber. A detailed CFD model was developed and the results were compared with the experimental performance features provided by the PV-T manufacturer. The fluid flow results show uneven flow distribution among the roll-bond microchannels which leads to areas with larger PV cell temperatures and thus a lower electricity generation. The PV-T collector layers were also modelled using the energy transfer equations layer-by-layer. The model was run for several water inlet temperatures and water flow-rates to obtain the thermal performance curve. The results show that the electrical efficiency of the PV-T collector is 14.5–10.3% larger than for a PV-only system for water inlet temperatures of 20–30 °C, respectively. The developed CFD model reproduces accurately the thermal performance of the PV-T collector, with a maximum error of 6.5% for inlet water temperatures of 20–60 °C. Therefore, this model can be used with confidence to propose alternative designs that achieve a homogeneous temperature distribution in the PV layer and improve the overall PV-T collector performance.
000126468 536__ $$9info:eu-repo/grantAgreement/ES/MCIU-FEDER/RTC-2017-6026-3$$9info:eu-repo/grantAgreement/ES/MCIU/IJC-2020-043717-I
000126468 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126468 590__ $$a9.0$$b2023
000126468 592__ $$a1.923$$b2023
000126468 591__ $$aGREEN & SUSTAINABLE SCIENCE & TECHNOLOGY$$b16 / 91 = 0.176$$c2023$$dQ1$$eT1
000126468 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000126468 591__ $$aENERGY & FUELS$$b24 / 171 = 0.14$$c2023$$dQ1$$eT1
000126468 594__ $$a18.4$$b2023
000126468 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126468 700__ $$aFantoni, Guillermo
000126468 700__ $$0(orcid)0000-0003-3432-310X$$aCubero, Ana$$uUniversidad de Zaragoza
000126468 700__ $$0(orcid)0000-0003-0978-3489$$aSimón-Allué, Raquel
000126468 700__ $$aGuedea, Isabel
000126468 700__ $$0(orcid)0000-0001-6205-5160$$aFueyo, Norberto$$uUniversidad de Zaragoza
000126468 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000126468 773__ $$g209 (2023), 122-132$$pRenew. energy$$tRenewable Energy$$x0960-1481
000126468 8564_ $$s6744405$$uhttps://zaguan.unizar.es/record/126468/files/texto_completo.pdf$$yVersión publicada
000126468 8564_ $$s2517765$$uhttps://zaguan.unizar.es/record/126468/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126468 909CO $$ooai:zaguan.unizar.es:126468$$particulos$$pdriver
000126468 951__ $$a2024-11-22-12:07:53
000126468 980__ $$aARTICLE