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Abstract

Reduced-order models (ROMs) based on the proper orthogonal decomposition have been proposed to reduce the
omputational resources required by the full-order models (FOMs) to approximate partial differential equations. In this paper
Roe-based ROM is developed to solve the shallow water equations in presence of source terms more efficiently than the
oe-based FOM. The well-balanced property and other numerical corrections such as the entropy fix and the wet–dry treatment
re taken into account using augmented Riemann solvers to build the Roe-based FOM. In addition to this, a time averaging
pproach is necessary to develop the Roe-based ROM. This approach is validated by solving some cases and the computed
olutions are compared with those ones of Lax–Friedrichs-based ROMs. It is also studied whether the ROM preserves or not
he well-balancing, the entropy fix and the wet–dry treatment.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Reduced-order modelling; POD methods; Lax–Friedrichs method; Roe method; Computational resources; Shallow water equations

1. Introduction

The shallow water equations (SWE) are widely used to model non-stationary free surface flows such as rivers,
oastal flows, open channels and many other environmental flows where the dimensions in the vertical direction
re negligible compared to the horizontal dimensions [1–3]. Unfortunately, SWE have no analytical solution and
ave to be solved by numerical methods. Shallow flow numerical modelling has been a very active field of research
ecently, supported by the increasing availability of laboratory and field data. Developments in numerical methods
n recent years have led to a series of models applicable to a wide variety of geometries and flow types [4–7].

Among the options to solve 1D SWE numerically, a numerical scheme based on Godunov’s method is considered
ere. Godunov-type numerical methods allow the numerical resolution of wave discontinuities in hyperbolic
onservation systems by assuming a piece-wise constant distribution of the conserved variables within computational
ells [8,9]. When trying to capture the dynamics of realistic shallow flows the inclusion of source terms in the
imulation model that represent the effects of variable bed level and of the physical diffusion due to friction is
andatory. Several works indicate that the use of the numerical flux as defined for homogeneous equations is
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not adequate to solve situations involving source terms [10–13]. Of the many options that exist for constructing
numerical schemes of the SWE, the upwind augmented Roe’s method [11] has been chosen since it has been
reported to produce robust and stable solutions in all kind of situations and is not as diffusive as other numerical
methods such as the HLL in all its variants [12,14–16]. Furthermore, this first-order method has been chosen instead
of other more accurate methods, such as methods based on WENO reconstructions [17,18], for the sake of simplicity.

In order to ensure stable, robust and accurate solutions in presence of bed variations and friction terms over
ry beds, it is necessary to take into account numerical corrections, such as well-balancing, that keeps the discrete
quilibrium with machine precision [4,5,19]. Augmented Riemann solvers are designed to preserve equilibrium in
resence of source terms [20]. In addition to well-balancing, it is well known that other numerical corrections are
ecessary to fix some unphysical numerical solutions that may appear under certain circumstances, such as the
ntropy and the wet–dry front problems. The choice of Roe’s method provides the possibility of carrying out these
orrections and checking whether they are necessary or not in the ROM that is developed from it.

Furthermore, the numerical resolution of the SWE for realistic applications may involve large computational
eshes and integration in time over long periods, hence requiring a high computational cost. It is therefore required

o explore alternatives that help to speed up the calculations. Reduced-order models (ROMs) based on the proper
rthogonal decomposition (POD) are a widely extended mathematical tool that offer saving computational costs
ithout loss of accuracy. This is based on the fact that the variables of interest reside on a low-dimensional
anifold within the infinite-dimensional solution space associated with the partial differential equation [21]. POD
as originally introduced by Lumley [22] in 1967, and it has been given many names, such as Karhunen–Loève

expansions [23,24] and principal component analysis [25,26]. It has been used in different frameworks and with
many modifications [27–33]. The POD-based ROMs need to be trained using a set of high-fidelity solutions
(snapshots) computed with numerical schemes, which are known as full-order models (FOMs). This training phase
is called snapshot method [34]. After the training phase, in all numerical cases of this paper, the ROM is solved
up to the same training time to obtain highly accurate solutions in shorter CPU times. The prediction of solutions
beyond the training range is an issue of high complexity in advection-dominated problems, as shown in [35,36]. The
authors of this paper worked on this aspect in an earlier paper [37] proposing a time extrapolation technique based
on the method of the characteristics. Without the inclusion of this technique, ROMs are very inaccurate when solved
outside the training range. Furthermore, this technique would require higher computational resources if applied to
nonlinear problems with multiple shock and rarefaction waves.

In case of FOMs based on non-linear schemes such as Roe’s method, it is necessary to look for alternatives to
the standard Galerkin decomposition method [38]. In this direction, several techniques have been presented, such
as the dynamic mode decomposition [39,40] o the discrete empirical interpolation method (DEIM) [41–43]. There
are also multiple extensions of the standard POD method, such as the proper generalized decomposition (PGD),
with recent works applied to frequency response analysis [44], space separation of transient wave propagation
problem [45], 2D/3D flows and parametric Stokes problems [46] and the resolution of compressible/incompressible
flows with different Reynolds numbers [47–50]; or such as the tensorial POD, that allow to reduce the online
computational complexity of the reduced nonlinear terms for a SWEs model [51]. An interesting analysis of the
POD-based ROM methodology in comparison with other non-intrusive methods applied to 2D SWE is presented
in [39]. Other works on the combination of SWE and ROMs are focused on reducing the computational complexity
by using DEIM with implicit numerical schemes [43], parametric sensitivity analysis [52,53] or meshless radial basis
functions technique [47]. It is also worth mentioning interesting recent works investigating the combination of neural
networks with POD methods applied to Navier–Stokes equations [54,55] or even deep-learning techniques [56] and
Physics-informed neural networks [57]. However, in this work the time averaging approach in combination with
the proper interval decomposition (PID, see [58]), which has been reported as a useful tool [28,33], is used. To
validate the application of this approach to the Roe-based FOM used in this work, it has been first applied to a
centred Lax–Friedrichs-based FOM without time averages.

In short, the main objective of this work is to develop a Roe-based ROM that allow to solve the SWE more
efficiently than the FOM from which it is developed and with the minimum loss of accuracy. In addition, the
interest is focused on studying whether it is necessary or not to take into account the numerical corrections
aforementioned when designing the ROM and which properties of the FOM are preserved by the ROM or must be
explicitly accounted for. It is also very interesting to study whether ROMs can be trained with solutions calculated

with FOMs other than the one from which it was developed, i.e. the Roe-based ROM can be trained with the
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Lax–Friedrichs-based FOM and vice versa. The study in the present work can be framed within the concept of ROM
consistency as proposed by Ingimarson, Rebholz and Iliescu in a very recent work [59], in which they investigate
theoretically and numerically how the performance of the ROM is affected by the discretization model used with
respect to the FOM. Another very recent example dealing with the study of the concept of ROM consistency is
that of Garcı́a-Achilla, Novo and Rubino [60], in which the Navier–Stokes equations are considered. Finally, the
sensitivity of the ROMs to specific parameters of the POD method is studied, such as the number of POD modes
and the number of time steps per time window in terms of the differences between the solutions of the FOM and
the ROM and the CPU times they require.

The remainder of the paper is organized as follows. Section 2 introduces the 1D SWE. Section 3 outlines
he numerical methods used to solve them and Section 4, the POD-based ROM strategy and the different ROMs
eveloped. A brief description of the corrections aforementioned is also contained in this section. Section 5 presents
our numerical cases in which the ROMs developed and their characteristics are tested. Finally, concluding remarks
re drawn in Section 6.

. 1D shallow water equations

The study considered in this paper is focused on the resolution of the 1D SWE with source terms assuming a
ectangular channel of unit width

∂h
∂t

+
∂q
∂x

= 0,

∂q
∂t

+
∂

∂x

(
q2

h
+

1
2

gh2
)

= gh(S0 − S f ), (x, t) ∈ (0, L) × (0, T ] ,

(1)

where h(x, t) is the depth and q(x, t) is the discharge, with q(x, t) = h(x, t)u(x, t) and u(x, t), the depth averaged
elocity; the first source term is due to the gradient of the bed elevation z(x)

S0 = −
∂z
∂x

; (2)

and the second source term is due to channel friction

S f =
n2

bu |u|

h4/3 ,

here nb is the Manning coefficient. In addition, initial and boundary conditions for h and q have to be defined.
The hyperbolic system of partial differential Eqs. (1) can be written in a conservative form

∂U
∂t

+
∂F(U)

∂x
= S, (3)

here

U =

(
h
q

)
, F(U) =

⎛⎝ q
q2

h
+

1
2

gh2

⎞⎠ , S(U) =

(
0

gh(S0 − S f )

)
,

is the vector of conserved variables, F(U) are the physical fluxes and S(U) are the source terms. System (3) can
e written in quasi-linear form

∂U
∂t

+ J
∂U
∂x

= S,

and the Jacobian matrix J(U) of the convective fluxes is given by

J(U) =
∂F(U)
∂U

=

(
0 1

c2
− u2 2u

)
,

with c =
√

gh the surface wave velocity. Assuming that this system of equations is strictly hyperbolic, the Jacobian
atrix J(U) is diagonalizable with real eigenvalues. Its eigenvalues λ1 and λ2 and the corresponding eigenvectors

e1 and e2 are{
λ1 = u − c, em = (1, λm)T , m = 1, 2.

λ2 = u + c,

3
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3. Full-order model

The computational domain [0, L] is discretized using the finite volume method (FV) by means of Ix volume
cells of size ∆x = L/Ix . The positions of the centre and left and right interfaces of i th cell are xi , xi−1/2 and
xi+1/2, respectively, for i = 1, . . . , Ix . The FOM is obtained by discretizing (1) with the Godunov-type scheme

Un+1
i = Un

i −
∆t
∆x

(
Fn,−,∗

i+1/2 − Fn,+,∗
i−1/2

)
− ∆tSn

f,i , (4)

where

Un
i =

(
hn

i
qn

i

)
and Sn

f,i =

⎛⎝ 0

−g
n2

bun
i

⏐⏐un
i

⏐⏐
(hn

i )1/3

⎞⎠ .

hen, hn
i ≈ h(xi , tn), un

i ≈ u(xi , tn) and qn
i ≈ q(xi , tn) are the cell-averaged values of the water depth, velocity

and discharge over the cell
(
xi−1/2, xi+1/2

)
. The numerical fluxes Fn,−,∗

i+1/2 and Fn,+,∗
i−1/2 are reconstructed following

two different spatial discretizations: one based on the Roe numerical scheme and the other one based on the
Lax–Friedrichs numerical scheme, which are explained in detail below.

Considering explicit schemes, the time step ∆t = tn+1
−tn is selected dynamically using the Courant–Friedrichs–

Lewy (CFL) condition [61]

∆t = C F L
∆x

max {λ1, λ2}
, (5)

here the CFL number satisfies 0 < C F L ≤ 1.

.1. Roe-based FOM

The Roe-based FOM (Roe) is obtained by computing the numerical fluxes Fn,−,∗
i+1/2 and Fn,+,∗

i−1/2 as in [11,20]

Fn,∓,∗
i±1/2 = F(Un

i ) ±

2∑
m=1

(
λ̃∓

m γ̃m ẽm

)n

i±1/2
, (6)

here(
λ̃∓

m

)n

i+1/2
=

1
2

[(
λ̃m

)n

i+1/2
∓

⏐⏐⏐λ̃m

⏐⏐⏐n
i+1/2

]
, m = 1, 2.

The approximate eigenvalues (λ̃m)n
i+1/2 and eigenvectors (ẽm)n

i+1/2 are⎧⎪⎨⎪⎩
(
λ̃1

)n

i+1/2
= ũn

i+1/2 − c̃n
i+1/2,(

λ̃2

)n

i+1/2
= ũn

i+1/2 + c̃n
i+1/2,

(ẽm)n
i+1/2 =

(
1, (λ̃m)n

i+1/2

)T
, m = 1, 2,

ith the following expressions for the Roe average velocity ũn
i+1/2 and celerity c̃n

i+1/2

ũn
i+1/2 =

qn
i+1

√
hn

i+1 + qn
i

√
hn

i√
hn

i+1hn
i

(√
hn

i+1 +
√

hn
i

) , c̃n
i+1/2 =

√
gh̃n

i+1/2,

nd h̃n
i+1/2 = (hn

i+1 + hn
i )/2. The coefficients (γ̃m)

n
i+1/2 in (6) are designed to preserve the well-balanced property

(γ̃m)n
i+1/2 =

(
α̃m − β̃m/λ̃m

)n
, m = 1, 2,
i+1/2

4
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(α̃1)
n
i+1/2 =

δhn
i+1/2

(
λ̃2

)n

i+1/2
− δqn

i+1/2(
λ̃2

)n

i+1/2
−

(
λ̃1

)n

i+1/2

,

(α̃2)
n
i+1/2 =

δqn
i+1/2 − δhn

i+1/2

(
λ̃1

)n

i+1/2(
λ̃2

)n

i+1/2
−

(
λ̃1

)n

i+1/2

,

⎧⎨⎩(β̃1)n
i+1/2 =

1
2

c̃n
i+1/2δzi+1/2,

(β̃2)n
i+1/2 = −(β̃1)n

i+1/2,

nd δzi+1/2 = zi+1 − zi .

.2. Numerical corrections

The numerical method as presented in Eqs. (4)–(6) may lead to solutions that have no physical meaning in
ituations such as the advance of water front over a dry bed. To circumvent such issues, the numerical fixes indicated
n [10, Section 2.3] and [13, Section4.2.2] are applied in this work.

ource term correction to ensure positive water depths
As proposed in [13], two intermediate states are defined in the augmented Roe solver

(h∗)n
i+1/2 = hn

i + (α̃1)
n
i+1/2 −

(
β̃1

λ̃1

)n

i+1/2

,

(h∗∗)n
i+1/2 = hn

i − (α̃2)
n
i+1/2 +

(
β̃2

λ̃2

)n

i+1/2

.

The intermediate states have to satisfy that (h∗)n
i+1/2, (h∗∗)n

i+1/2 ≥ 0; otherwise the coefficients (β̃m)n
i+1/2 are

edefined as follows: If (h∗)n
i+1/2 < 0, then they are given by

(β̃1)n
i+1/2 = (hn

i + (α̃1)n
i+1/2)(λ̃1)n

i+1/2, (β̃2)n
i+1/2 = −(β̃1)n

i+1/2;

nd if (h∗∗)n
i+1/2 < 0, then

(β̃2)n
i+1/2 = (hn

i − (α̃2)n
i+1/2)(λ̃2)n

i+1/2, (β̃1)n
i+1/2 = −(β̃2)n

i+1/2.

et–dry treatment
Taking into account the above intermediate states, the wet–dry treatment proposes the following algorithm

• If hn
i+1 = 0 and (h∗∗)n

i+1/2 < 0, then

Fn,−,∗
i+1/2 = Fn,−,∗

i+1/2 + Fn,+,∗
i+1/2 and Fn,+,∗

i+1/2 = 0.

• If hn
i = 0 and (h∗)n

i+1/2 < 0, then

Fn,+,∗
i+1/2 = Fn,−,∗

i+1/2 + Fn,+,∗
i+1/2 and Fn,−,∗

i+1/2 = 0.

ntropy fix
Non-physical values can also be generated with the Roe scheme in transcritical accelerations. To avoid this,

he Harten–Hyman entropy fix [62] can be used. Following [13], the eigenvalues are decomposed
(
λ̃k

)n
=

i+1/2

5
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(
λ̃−

k

)n

i+1/2
+

(
λ̃+

k

)n

i+1/2
where

(
λ̃−

k

)n

i+1/2
= (λk)

n
i

(λk)
n
i+1 −

(
λ̃k

)n

i+1/2

λk
i+1 − λk

i
,

(
λ̃+

k

)n

i+1/2
= (λk)

n
i+1

(
λ̃k

)n

i+1/2
− (λk)

n
i

(λk)
n
i+1 − (λk)

n
i

, k = 1, 2, i = 1, . . . , Ix .

ith (λ1)
n
i = un

i − cn
i and (λ2)

n
i = un

i + cn
i . By construction,

(
λ̃−

k

)n

i+1/2
< 0 and

(
λ̃+

k

)n

i+1/2
> 0. This idea is applied

lso to the decomposition of the source terms β̃k
i+1/2, as indicated in [13].

.3. Lax–friedrichs-based FOM

The Lax–Friedrichs’ method [63] is used in the present work to validate the development of the Roe-based ROM.
his FOM is based on the numerical fluxes (4):

Fn,∓,∗
i+1/2 =

1
2

[
F
(
Un

i

)
+ F

(
Un

i+1

)
∓ Sn

0,i+1/2

]
−

1
2
ν
∆x
∆t

(
Un

i+1 − Un
i

)
, (7)

here

F(Un
i ) =

(
qn

i

(un
i )2hn

i +
1
2

g(hn
i )2

)
, Sn

0,i+1/2 =

(
0

−gh̃n
i+1/2δzi+1/2

)
,

ith C F L ≤ ν ≤ 1. In the numerical experiments will take ν = 0.9.

. Reduced-order model strategy

The POD-based ROM strategy consists of two parts: (I) the off-line part, in which the ROM is trained using
olutions computed with the FOM (4) up the training time; and (II) the on-line part, in which the ROM is solved
p to the same training time.

The off-line part starts with the snapshot method [34], according to which a set of NT numerical solutions
omputed with the FOM, also called snapshots, is used to construct the snapshot matrices, one for each variable

Mh =

⎛⎜⎝ h1
1 . . . hNT

1
...

...
...

h1
Ix

. . . hNT
Ix

⎞⎟⎠ , Mu =

⎛⎜⎝ u1
1 . . . uNT

1
...

...
...

u1
Ix

. . . uNT
Ix

⎞⎟⎠ , Mq =

⎛⎜⎝q1
1 . . . hNT

1
...

...
...

q1
Ix

. . . q NT
Ix

⎞⎟⎠ .

n order to avoid loss of accuracy, the snapshot matrix is built using all the time levels computed with the FOM
nd the ROM is solved at the same time levels than the FOM.

The Galerkin decomposition method [38] is applied to each of the variables

hn
i ≈

MPOD∑
k=1

ĥn
kφi,k, un

i ≈

MPOD∑
k=1

ûn
kξi,k, qn

i ≈

MPOD∑
k=1

q̂n
k ηi,k, (8)

here φi,k , ξi,k and ηi,k are the functions of the basis of each variable, being MPOD a positive integer, also known
s the number of POD modes, such that MPOD ≪ min {NT , Ix }. In other works, [28,33], the optimal value of
he POD modes is obtained by means of a minimization problem taking into account the decay rate of the POD
nergy represented by these modes. However, in this work the interest is focused on analysing the performance of
he different ROMs as a function of the number of POD modes they solve. As a final result, the optimal value is
hosen attending to the accuracy of the solution computed as an a posteriori criterion.

To assess the accuracy of the solutions computed with the ROM, they have been compared with those of the

orresponding FOM, by computing the L1 norm of the water depth and water discharge at the final time T . Recall

6
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that, given a mesh function z = (z1, . . . , z Ix ) with ∆x = L/Ix the diameter of the cells, the L1 norm of u is given
by:

∥z∥1 = ∆x
Ix∑

i=1

|zi |,

and the differences in the L1 norm for the depth and water discharge are denoted by ∥dh∥1 and ∥dq∥1, respectively.
The POD basis of functions is computed by applying the singular value decomposition to each snapshot matrix,

as in the following case on the snapshot matrix of the water depth

Mh MT
h = ΦΣΣ TΦT ,

where Σ ∈ RIx ×NT is a diagonal matrix whose entries are the singular values of Mh and matrix Φ = (φ1, . . . , φIx ) ∈

RIx ×Ix with φk = (φ1,k, . . . , φIx ,k)T consists of the orthogonal eigenvectors of Mh MT
h . The procedure for obtaining

the basis of the snapshot matrices for water velocity and discharge is similar to that for water depth.
To complete the off-line part, these POD bases of h, u and q are used to train the ROM by building its training

matrices. The following is the procedure for developing the ROM:

(i) introduce the Galerkin decomposition method (8) into the FOM, i.e. each time one of the variables h, u or q
appears, it is replaced by its corresponding reduced variable ĥ, û or q̂;

(ii) multiply each resulting equation by φi,p and ηi,p, respectively;
(iii) sum up over the cells to complete the projection of both equations into the reduced space.

This procedure requires some modifications in order to be successfully applied to the Roe method. These
modifications are explained below.

4.1. Time windows and time averaging approach

The Galerkin decomposition method cannot be applied directly to some FOMs. This is, for example, the case
of the SWE with the Roe method (6) which includes variables in square roots or in denominators of quotients of
functions (see Section 3.1).

In addition to this, when solving the ROM, the conserved variables (water depth h and discharge q) are updated
at each time step in the reduced space, but it is also necessary at each time step to calculate the variables in the
physical space in order to update the water velocity u. This implies an extra cost of computational resources. This
problem can be reduced by applying the Galerkin decomposition method only to the conserved variables h and q
and excluding u.

For the above two reasons, to fully develop the Roe-based ROM, the time averaging approach introduced in [33]
is applied as follows

h̄w
i =

1
Ns

wNs∑
n=w1

hn
i , ūw

i =
1
Ns

wNs∑
n=w1

un
i , i = 1, . . . , Ix ,

here Ns is the number of snapshots per time window and w1 and wNs are the initial and final components of the
th time window, so that the time averaging approach is directly related to the PID method [27,30,33]. According

o this method, the total simulation time T is divided into homogeneous Nw non-overlapping time windows[
0, t N1

]
∪
[
t N1+1, t N2

]
∪ · · · ∪

[
t Nw−1+1, t Nw

]
,

here 0 < t N1 < t N2 < · · · < t Nw = t NT = T . The snapshot matrices can also be divided into Nw time windows
ollowing the PID to improve the accuracy of the solutions computed with the ROM, so that a different snapshot
atrix is built for each time window with its corresponding POD basis.
The time averaging approach is applied only to the water depth h and the water velocity u, because the ROM

atrices depend on λ1, λ2 and c, which depend only on these variables, but not on the water discharge q .
In short, the Roe-based ROM is developed using time averages and validated by comparing the solutions of

ax–Friedrichs-based ROMs with and without time averages. These ROMs are shown below.
7
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4.2. Roe-based ROM

First, a time-averaged ROM based on the Roe method (TRRoe) is considered

ĥn+1
= ĥn

+
1
4
∆t
∆x

Aĥn
+

1
4
∆t
∆x

Bq̂n
−

1
4
∆t
∆x

C,

q̂n+1
= q̂n

−
1
4
∆t
∆x

Dĥn
+

1
4
∆t
∆x

E q̂n
+

1
4
∆t
∆x

F − ∆tgG,

(9)

where the elements of the training matrices A =
(

Akp
)
, B =

(
Bkp

)
, C =

(
C p
)
, D =

(
Dkp

)
, E =

(
Ekp

)
, F =

(
Fp
)

and G =
(
G p
)

are

Akp = a1φ1,p +

Ix −1∑
i=2

[(
φi+1,k − φi,k

)
āw

i+1/2 −
(
φi,k − φi−1,k

)
āw

i−1/2

]
φi,p + aIx φIx ,p,

Bkp = b1φ1,p +

Ix −1∑
i=2

[(
ηi+1,k − ηi,k

)
b̄w

i+1/2 +
(
ηi,k − ηi−1,k

)
b̄w

i−1/2

]
φi,p + bIx φIx ,p,

C p = c1φ1,1 +

Ix −1∑
i=2

[
δzi+1/2c̄w

i+1/2 − δzi−1/2c̄w
i−1/2

]
φi,p + cIx φIx ,p,

Dkp = d1η1,p +

Ix −1∑
i=2

[(
φi+1,k − φi,k

)
d̄w

i+1/2 +
(
φi,k − φi−1,k

)
d̄w

i−1/2

]
ηi,p + dIx ηk,Ix ,

Ekp = e1η1,1 +

Ix −1∑
i=2

[(
ηi+1,k − ηi,k

)
ēw

i+1/2 +
(
ηi,k − ηi−1,k

)
ēw

i−1/2

]
ηi,p + eIx ηIx ,p,

Fp = f1η1,p +

Ix −1∑
i=2

[
δzi+1/2 f̄ w

i+1/2 + δzi−1/2 f̄ w
i−1/2

]
ηi,p + f Ix ηIx ,p,

G p =

Ix∑
i=1

n2
buw

i

⏐⏐uw
i

⏐⏐(
hw

i

)1/3 ηi,p,

(10)

ith

āw
i+1/2 =

⎡⎣
⏐⏐⏐λ̃1

⏐⏐⏐ λ̃2 −

⏐⏐⏐λ̃2

⏐⏐⏐ λ̃1

c̃

⎤⎦w

i+1/2

, b̄w
i±1/2 =

⎡⎣
(
λ̃1 ∓

⏐⏐⏐λ̃1

⏐⏐⏐)−

(
λ̃2 ∓

⏐⏐⏐λ̃2

⏐⏐⏐)
c̃

⎤⎦w

i±1/2

,

c̄w
i+1/2 =

⎡⎣c̃

⎛⎝
⏐⏐⏐λ̃1

⏐⏐⏐
λ̃1

−

⏐⏐⏐λ̃2

⏐⏐⏐
λ̃2

⎞⎠⎤⎦w

i+1/2

,

d̄w
i±1/2 =

[
λ̃1λ̃2

c̃

]w

i±1/2

[(
λ̃1 ∓

⏐⏐⏐λ̃1

⏐⏐⏐)−

(
λ̃2 ∓

⏐⏐⏐λ̃2

⏐⏐⏐)]w

i±1/2
,

ēw
i±1/2 =

⎡⎣
(
λ̃1 ∓

⏐⏐⏐λ̃1

⏐⏐⏐) λ̃1 −

(
λ̃2 ∓

⏐⏐⏐λ̃2

⏐⏐⏐) λ̃2

c̃

⎤⎦w

i±1/2

,

f̄ w
i±1/2 = c̃w

i±1/2

[(
λ̃1 ∓

⏐⏐⏐λ̃1

⏐⏐⏐)−

(
λ̃2 ∓

⏐⏐⏐λ̃2

⏐⏐⏐)]w

i±1/2
,

and the boundary terms aℓ, bℓ, . . . , fℓ, ℓ = 1, Ix depend on the type of the boundary conditions, as described
in [37]. The following versions of ROM also calculate the boundary condition terms in the same way.
8
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4.3. Lax–Friedrichs-based ROM

The Lax–Friedrichs-based ROM (RLF) is developed by applying the Galerkin decomposition to h, u and q and
without using time averages for any of the variables. Its vector formulation is

ĥn+1
= ĥn

−
1
2
∆t
∆x

Aq̂n
+

1
2
νBĥn

+
1
2
νC,

q̂n+1
= q̂n

−
1
2
∆t
∆x

(
q̂n
)T Dûn

−
1
4

g
∆t
∆x

(
ĥn
)T

E ĥn
+

1
2
νF q̂n

−
1
4
∆t
∆x

gGĥn,

(11)

where the entries of the training matrices A =
(

Akp
)
, B =

(
Bkp

)
, C =

(
C p
)
, D =

(
Dqkp

)
, E =

(
Eqkp

)
, F =

(
Fkp
)

and G =
(
Gkp

)
are

Akp = a1φ1,p +

Ix −1∑
i=2

(
ηi+1,k − ηi−1,k

)
φi,p + aIx φIx ,p,

Bkp = b1φ1,p +

Ix −1∑
i=2

(
φi+1,k − 2φi,k + φi−1,k

)
φi,p + bIx φIx ,p,

C p = c1φ1,p +

Ix −1∑
i=2

(zi+1 − 2zi + zi−1) φi,p + cIx φIx ,p,

Dqkp = d1η1,p +

Ix −1∑
i=2

(
ηi+1,kξq,i+1 − ηi−1,kξq,i−1

)
ηi,p + dIx ηIx ,p,

Eqkp = e1η1,p +

Ix −1∑
i=2

(
φi+1,kφq,i+1 − φi−1,kφq,i−1

)
ηi,p + eq,Ix ηIx ,p,

Fkp = f1η1,p +

Ix −1∑
i=2

(
ηi+1,k − 2ηi,k + ηi−1,k

)
ηi,p + f Ix ηIx ,p,

Gkp = g1η1,p +

Ix −1∑
i=2

(
(φi+1,k + φi,k)δzi+1/2 + (φi,k + φi−1,k)δzi−1/2

)
ηi,p + gIx ηIx ,p.

(12)

.4. Lax–Friedrichs-based ROM with time averages

The time-averaged Lax–Friedrichs-based ROM with time windows (TRLF) is developed by applying the Galerkin
ecomposition only to h and q and using time averaging for u (and h in the friction source term). Its vector
ormulation is

ĥn+1
= ĥn

−
1
2
∆t
∆x

Aq̂n
+

1
2
νBĥn

+
1
2
νC,

q̂n+1
= q̂n

−
1
2
∆t
∆x

Dĥn
−

1
4

g
∆t
∆x

(
ĥn
)T

E ĥn
+

1
2
νF q̂n

−
1
4
∆t
∆x

gGĥn
− ∆tgH,

(13)

here the training matrices A, B, C, E, F and G are the same as in (12) and the entries of the new matrices
D =

(
Dkp

)
and H =

(
Hp
)

are

Dkp = dk,1η1,p +

Ix −1∑
i=2

(
φi+1,k(uw

i+1)2
− φi−1,k(uw

i−1)2) ηi,p + dIx ηIx ,p,

Hp =

Ix∑ n2
buw

i

⏐⏐uw
i

⏐⏐(
w
)1/3 ηi,p.

(14)
i=1 hi

9
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Fig. 1. Numerical schemes used.

Fig. 1 shows a chart where the numerical methods used in this work are presented, including both the FOMs
and ROMs. It shows methods that are developed without any correction, such as the Lax–Friedrichs-based ROM
(RLF) from the Lax–Friedrichs-based FOM (LF), but also the methods that include the time averaging approach,
such as the time-averaged Lax–Friedrichs-based ROM (TRLF) and the time-averaged Roe-based ROM (TRRoe).
The time-averaged well-balanced Lax–Friedrichs-based ROM (TRWLF) and its associated FOM, the well-balanced
Lax–Friedrichs-based FOM (WLF), will be introduced in the next section.

5. Numerical results

Case 0. Validation of time averaging approach in a flat and frictionless case

The essential feature of an instantaneous dam-break is a large discontinuity that occurs when the water
accumulated at a higher height is released and flows over the lower channel. When flow occurs in a channel, it
can be assimilated to a one-dimensional character. In this work, the dam-break problem is modelled using the 1D
SWE.

A dam-break over a flat and frictionless bed is solved in the domain (x, t) ∈ [0, 12]×[0, 0.99] with the following
nitial conditions (ICs)

h(x, 0) =

{
2, if 0 ≤ x ≤ 6,

1, if 6 < x ≤ 12,
q(x, 0) = 0, 0 ≤ x ≤ 12,

nd free boundary conditions (BCs) are imposed.
Fig. 2 shows the computed approximations to h (left) and q (right) at the final time T = 0.99 using the LF,

LF, TRLF and TRRoe methods with Ix = 203, Nw = 24 and MPOD = 5. These numerical results validate the use
f the time averaging approach, since the TRLF and TRRoe achieve results as good as the other two schemes.

.1. Case 1. Validation of time averaging approach in presence of source terms

This case is set up to validate the ROMs developed with the time averaging approach applied to the 1D SWE
ith source terms and to study their solutions in terms of the differences between the FOM and the ROM and their

fficiency. For this purpose, the problem is again a dam-break in the domain [0, 12] × [0, 1.02] with a mild slope,
ithout friction and with ICs

h(x, 0) =

{
2 − z(x), if 0 ≤ x ≤ 6,

1 − z(x), if 6 < x ≤ 12,
q(x, 0) = 0, 0 ≤ x ≤ 12,

ith z(x) = 0.2(1 − x/12) and free BCs. The spatial domain is divided into Ix = 100, 201, 403 and 809 volume
cells. The time step is computed for each case to satisfy the CFL condition (5) with C F L = 0.9.

In addition to the validation of the time averaging approach, the sensitivity of the ROM solutions to parameters
pecific to the method is studied in this case. On the one hand, the number of time windows Nw used is shown in
able 1, where N is arranged according to the number of snapshots per window N and per mesh refinement I .
w s x

10
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Fig. 2. Case 0: Approximations to h (left) and q (right) with LF, RLF, TRLF and TRRoe methods and taking Ix = 203, Nw = 24 and
MPOD = 5.

Table 1
Number of time windows, Nw , for different values of Nt and Ns .

Ix Nt Ns

48 12 4 2

100 48 1 4 12 24
201 96 2 8 24 48
403 192 4 16 48 96
809 384 8 32 96 192

Table 2
Case 1: ∥dh∥1 for different values of MPOD and Nw with Ix = 201.

MPOD Nw

2 8 24 48

RLF
1 9.76 · 10−1 2.65 · 10−1 7.35 · 10−2 1.36 · 10−2

5 1.15 · 10−1 7.86 · 10−3 1.30 · 10−2 2.04 · 10−2

10 3.60 · 10−2 3.10 · 10−3 1.30 · 10−2 1.85 · 10−2

TRLF
1 9.78 · 10−1 2.67 · 10−1 7.27 · 10−2 1.35 · 10−2

5 1.75 · 10−1 3.42 · 10−2 1.57 · 10−2 2.63 · 10−2

10 2.06 · 10−1 3.89 · 10−2 1.56 · 10−2 2.32 · 10−2

TRRoe
1 9.93 · 10−1 2.80 · 10−1 9.14 · 10−2 2.74 · 10−2

5 1.21 · 10−1 2.26 · 10−2 3.27 · 10−2 5.09 · 10−2

10 7.39 · 10−2 2.53 · 10−3 3.26 · 10−2 5.03 · 10−2

Note that Nw = Nt/Ns . On the other hand, this problem has been solved with different number of POD modes,
namely MPOD = 1, 5 and 10.

Tables 2 and 3 show the differences of the computed h and q with each version of the ROM and Ix = 201 for
different values of MPOD and Nw. In general, we observe that similar computed approximations are obtained with
the FOMs and ROMs in all the cases.

On the one hand, all three versions of the ROM show similar decreasing tendencies as MPOD grows in the
differences of h and q , i.e., the water depth and discharge solutions are more accurate for MPOD = 5 and 10 than
for MPOD = 1. The differences calculated with MPOD = 5 and MPOD = 10 become more similar as the number of
time windows increases.

On the other hand, the differences are not monotonically decreasing with the number of time windows, which

is due to the required change of basis that occurs when switching from one time window to the next. In each of

11
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Table 3
Case 1: ∥dq∥1 for different values of MPOD and Nw with Ix = 201.

MPOD Nw

2 8 24 48

RLF
1 3.16 3.66 3.31 2.76
5 5.85 · 10−1 6.56 · 10−2 9.32 · 10−2 1.21 · 10−1

10 1.64 · 10−1 2.00 · 10−2 9.14 · 10−2 1.15 · 10−1

TRLF
1 3.16 3.61 3.36 2.84
5 9.18 · 10−1 1.76 · 10−1 1.27 · 10−1 1.26 · 10−1

10 9.01 · 10−1 2.07 · 10−1 1.25 · 10−1 1.23 · 10−1

TRRoe
1 3.66 4.13 4.20 3.91
5 9.92 · 10−1 5.51 · 10−1 1.84 · 10−1 3.10 · 10−1

1 5.55 · 10−1 3.06 · 10−1 1.27 · 10−1 3.04 · 10−1

Table 4
Case 1: CPU times (s) of the FOMs with Ix = 201.

LF Roe

1.93 · 10−2 1.52 · 10−2

Fig. 3. Case 1: ∥dh∥1, ∥dq∥1 and CPU times (s) for RLF (solid), TRLF (dashed) and TRRoe (dotted) with Nw = 2, 8, 24, 48 and Ix = 201
for MPOD = 1, 5 and 10.

these changes, the approximation based on the number of POD modes can imply a small loss of accuracy, so, the
bigger the number of time windows, the larger this loss of accuracy can be. To sum up, it can be concluded that
the time averaging approach in combination with an appropriate refinement of time windows can be used in the
construction of the Roe-based ROM without loss in the accuracy of the solutions.

Figs. 3(a) and 3(b) are included to highlight that, for high values of the number of time windows (Nw = 24 and
48), the differences of the solutions is of the same order of magnitude with 5 and 10 POD modes. This stagnation of
the differences as the number of POD modes increases is due to the change of basis required at each time window.
This is relevant when looking for the optimal set of values of MPOD and Nw in terms of efficiency.

Tables 4 and 5 show the CPU times required by each version of the FOM and the ROM to obtain the solution at
he final time T = 1.02. As expected, the ROMs are faster than the FOMs and, in general, the TRLF and the TRRoe
ave better CPU times than the RLF. This is because the Galerkin decomposition is applied only to the water depth
nd discharge, but not to the water velocity. As expected, solving with 10 POD modes is more expensive in terms
f CPU time than with 5 POD modes, as shown in Fig. 3(c). The CPU times required by the RLF are the most
xpensive, regardless of the number of time windows used, as can be seen from the clustering of the solid lines in
ig. 3(c).
12
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Table 5
Case 1: CPU times (s) of the ROMs for different values of MPOD and Nw with Ix = 201.

MPOD Nw

2 8 24 48

RLF
1 8.46 · 10−4 8.99 · 10−4 5.09 · 10−4 2.50 · 10−4

5 1.70 · 10−3 1.82 · 10−3 2.17 · 10−3 2.74 · 10−3

10 4.18 · 10−3 4.52 · 10−3 5.20 · 10−3 4.60 · 10−3

TRLF
1 4.60 · 10−5 9.80 · 10−5 2.53 · 10−4 2.30 · 10−4

5 3.26 · 10−4 2.52 · 10−4 5.30 · 10−4 9.44 · 10−4

10 7.72 · 10−4 9.76 · 10−4 1.67 · 10−3 2.34 · 10−3

TRRoe
1 5.40 · 10−5 1.06 · 10−4 1.13 · 10−4 2.08 · 10−4

5 1.74 · 10−4 3.33 · 10−4 4.74 · 10−4 8.72 · 10−4

10 4.23 · 10−4 3.96 · 10−4 9.39 · 10−4 1.76 · 10−3

Fig. 4. Case 1: Solutions h (left) and q (right) with Ix = 201, Nw = 24 and MPOD = 5.

To obtain the optimal set of values of the number of POD modes and the number of time windows, it is necessary
to take into account the combined action of both parameters and to compare the solutions computed in terms of
their differences between the FOM and the ROM and CPU times. The differences for h using the TRRoe ROM
with 8 time windows are slightly smaller than with 24 time windows; however, the differences for q with 24 time
windows are much smaller than with 8 time windows, as can be seen in Figs. 3(a) and 3(b). Both values of the
number of time windows require very similar CPU times, as shown in Fig. 3(c). In terms of the number of POD
modes, there is hardly any difference between 5 and 10 POD modes for both h and q and, as shown in Fig. 3(c),
the CPU time required by 10 POD modes is higher than that of 5. Taking all this into account, the optimal set of
values of the parameters of study when using the TRRoe is 24 time windows (or 4 snapshots per time window)
and 5 POD modes.

Fig. 4 shows the solutions for h and q at T = 1.02 computed with all versions of the ROM’s with Ix = 201,
and the optimal set of values, i.e., Nw = 24 and MPOD = 5. The ICs are also included. The TRRoe shows a sharper

rofile of the water depth, since the discontinuity of the shock wave is better captured than with the RLF and TRLF.
espite the spurious pike in the shock wave, the TRRoe ROM also captures properly the water discharge.
Finally, the same analysis of differences between the solutions of the FOM and the ROM and CPU times is

erformed with Nw = 24 and MPOD = 5 by refining the mesh according to the values given in Table 1. As shown
n Figs. 5(a) and 5(b), the differences between the errors of the TRRoe and the other two reduced versions are not
ery large, being less than an order of magnitude, especially for q . Additionally, according to Fig. 5(c), the CPU
imes are clustered into three groups in decreasing order: (i) the FOMs (LF and Roe); (ii) the ROMs without time

verages (RLF); and (iii) the ROMs with time averages (TRLF and TRRoe).

13
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Fig. 5. Case 1: ∥dh∥1, ∥dq∥1 and CPU times (s) for different mesh refinements.

Table 6
Case 1: Speed-ups of each version of the ROM.

Ix 100 201 403 809

RLF 10.53 8.96 6.24 7.04
TRLF 34.36 35.37 26.96 31.51
TRRoe 18.52 32.03 23.77 28.14

Table 6 shows the speed-ups of all versions of the ROM with respect to their corresponding FOMs. The TRLF
nd the TRRoe achieve higher speed-ups than the RLF due to the time averaging approach. This improvement
eaches one order of magnitude for finer meshes.

.2. Case 2. Equilibrium Riemann problem

The interest of Case 2 focuses on testing whether the considered FOMs and ROMs are actually well-balanced
r not and on showing that the Lax–Friedrichs method is not able to reproduce results in equilibrium when there
re source terms.

The numerical solution of the Riemann problem involved in this type of problems generates a contact wave due
o the geometric source term. As explained in [20], augmented Riemann solvers were introduced in an attempt
o represent the effect of the source term in the solution of the Riemann problem and automatically fulfil the
ankine–Hugoniot conditions [13].

The Roe method used in this work is defined as an augmented Riemann solver. On the contrary, the standard Lax–
riedrichs method proposed in [63] is not well-balanced. Therefore, a correction term must be added to reproduce
roperly equilibrium problems. The steady state solution satisfies ∂q/∂t = 0, so from the momentum equation (1),

one has
∂h
∂x

= −
∂z
∂x

−
1
c2

∂(hu2)
∂x

,

here we used that q = hu and c2
= gh. This equality motivates the well-balanced Lax–Friedrichs-based FOM

WLF), which is obtained by introducing into (4) the following numerical fluxes

Fn,∗,∓
i+1/2 =

1
2

[
F
(
Un

i

)
+ F

(
Un

i+1

)
∓ Sn

0,i+1/2

]
−

1
2
ν
∆x
∆t

(
Un

i+1 − Un
i − Ln

i+1/2

)
, (15)

ith the following correction term

Ln
i+1/2 =

⎛⎜⎝−δ (z)n
i+1/2 −

δ
(
hu2

)n
i+1/2(

cn
i+1

)2

⎞⎟⎠ .
0
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Table 7
Subcases considered in Case 2.

Subcase FOM ROM

2.1 LF RLF
2.2 LF TRWLF
2.3 LF TRRoe

2.4 WLF RLF
2.5 WLF TRWLF
2.6 WLF TRRoe

2.7 Roe RLF
2.8 Roe TRWLF
2.9 Roe TRRoe

Table 8
ICs of Cases 2 and 3. The units are in m, m2/s and s.

Case hL h R qL qR zL zR T

2 1 0.6245627691 1 1 0 0.3 0.01
3 1 0.1614067989 0 0 0 0.05 0.02

The vector formulation of the corrected Lax–Friedrichs-based ROM (TRWLF) is very similar to the one of the
TRLF (13), but with the new term (ν/g)J ĥn in the mass equation due to the well-balancing correction

ĥn+1
= ĥn

−
1
2
∆t
∆x

Aq̂n
+

1
2
νBĥn

+
1
2
νC +

ν

g
J ĥn,

q̂n+1
= q̂n

−
1
2
∆t
∆x

E ĥn
−

1
4

g
∆t
∆x

(
ĥn
)T

F ĥn
+

1
2
νGq̂n

−
1
4
∆t
∆x

gH ĥn
− ∆tg I,

(16)

where the training matrices A, B, . . . , I are the same as in (13) and (14) and the entries of the matrix J =
(
Jkp
)

are

Jkp = j1φ1,p +

Ix −1∑
i=2

(
φi+1,k

(
ūw

i+1

)2
− φi,k

(
ūw

i

)2

h̄w
i+1 + h̄w

i

−
φi,k

(
ūw

i

)2
− φi−1,k

(
ūw

i−1

)2

h̄w
i + h̄w

i−1

)
φi,p + jIx φIx ,p.

ext, the performance of the ROMs is analysed when faced with these problems and whether the training solution
ust be also well-balanced or not. To this end, the same problem is solved by means of the 9 subcases shown in
able 7. According to [59], Subcases 2.1, 2.5 and 2.9 are consistent and the remaining subcases are inconsistent.

The equilibrium Riemann problem RP2 proposed in [20] is here replicated. The solution is discontinuous and
t satisfies the Rankine–Hugoniot condition [13], whose ICs are shown in Table 8 and free BCs are imposed (see
igs. 6 and 7).

In essence, the ROMs reproduce properly the solutions of the FOM in Subcases 2.1, 2.5, 2.6, 2.8 and 2.9, but
he solution of Subcase 2.1 is not well-balanced and therefore does not make physical sense and does not have
o be taken into account. Similarly, Subcases 2.2 and 2.3 are trained by the LF and are not well-balanced. In the
emaining Subcases 2.4 and 2.7 in which the RLF is trained by the WLF and the Roe, respectively, do not compute
atisfactory results. In the end, it can be concluded that ROMs must have been developed and trained from balanced
OMs, but they need not be consistent.

.3. Case 3. Transient Riemann problem

Case 3 takes a further step in the study of relationship between the well-balancing property and ROMs. To this
nd, the transient Riemann problem proposed in [20] as RP1 is considered. The ICs are shown in Table 8 and free
Cs are considered.

Again, combinations of different FOMs and ROMs are studied, but, since the LF method is not well-balanced
s seen in Case 2, it is suppressed in the analysis of Case 3 and only the combinations listed in the Table 9 are

onsidered. Again, there are consistent Subcases, 3.1 and 3.4, and inconsistent Subcases, 3.2 and 3.3.

15



P. Solán-Fustero, J.L. Gracia, A. Navas-Montilla et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 116038

(
s
0

d
3

Fig. 6. Case 2: Solutions h for all subcases considered in Table 7.

Table 9
Subcases considered in Case 3.

Subcase FOM ROM

3.1 WLF TRWLF
3.2 WLF TRRoe

3.3 Roe TRWLF
3.4 Roe TRRoe

Moreover, the values of the parameters studied in the previous case are kept constant, namely Ix = 320, Nw = 29
NT = 58) and MPOD = 5. The CFL number is varied to test the performance of the ROMs. Figs. 8 and 9 show the
olutions of h and q respectively computed with the different subcases and for different values of the CFL number:
.1, 0.5 and 0.9. The exact solution is also included in these figures.

The most basic aspect that is worth mentioning in relation to these results is that the FOMs show different
ependencies on the CFL number: while the WLF is highly dissipative for low CFL numbers, as shown in Subcases

.1 and 3.2 in Figs. 8(a) and 9(a), the Roe shows hardly any numerical dissipation for different CFL values.
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Fig. 7. Case 2: Solutions q for all subcases considered in Table 7.

Regarding the water depth, all subcases obtain satisfactory results for high CFL numbers, as shown in Fig. 8,
even the heterogeneous Subcases 3.2 and 3.3 in which the training FOM is different from the developing FOM.
As the CFL number decreases, the results of Subcases 3.2 and 3.3 get worse, leading to solutions with no physical
meaning with C F L = 0.1. These solutions underestimate the value of the water depth to the left of the rarefaction
wave, where no perturbation is expected.

In terms of water discharge, the performance of the ROMs is slightly worse, as can be seen in Fig. 9. This
difference with the water depth results may be due to the time averaging approach. Subcase 3.4 shows proper results
of the water discharge, even though it underestimates the maximum when C F L = 0.9. This behaviour is explained
in the following paragraph. The heterogeneous Subcases 3.2 and 3.3 are not able to ensure a proper calculation of
the water discharge, as they under- or overestimate it for all values of the CFL number (except Subcase 3.2 with

F L = 0.9, which incidentally is correct). Finally, Subcase 3.1 shows good agreement between the ROM and
FOM solutions, but both differ from the exact solution when the CFL is lowered.

The differences of the solutions of all subcases between the FOM and the ROM are included in Table 10. All
ubcases obtain accurate solutions, but, as expected, the differences in the homogeneous Subcases 3.1 and 3.4

re smaller than in the heterogeneous Subcases 3.2 and 3.3. Although Subcase 3.1 obtains better differences than
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Table 10
Case 3: ∥dh∥1 and ∥dq∥1 computed with the ROM measured with respect to the FOM solution.

Subcase C F L

0.1 0.5 0.9

∥dh∥1

3.1 8.22 · 10−5 5.25 · 10−5 2.22 · 10−4

3.2 3.35 · 10−3 1.01 · 10−3 8.76 · 10−4

3.3 1.31 · 10−2 2.77 · 10−3 1.92 · 10−3

3.4 1.89 · 10−4 4.52 · 10−4 3.22 · 10−4

∥dq∥1

3.1 5.51 · 10−5 5.74 · 10−4 3.28 · 10−3

3.2 5.74 · 10−2 9.78 · 10−3 2.14 · 10−3

3.3 5.10 · 10−2 1.54 · 10−2 1.19 · 10−2

3.4 6.73 · 10−4 8.13 · 10−4 4.00 · 10−3

Table 11
Case 3: CPU times (s) of the WLF and the Roe.

FOM C F L

0.1 0.5 0.9

WLF 5.75 · 10−2 1.91 · 10−2 1.33 · 10−2

Roe 7.41 · 10−2 1.94 · 10−2 1.52 · 10−2

Table 12
Case 3: CPU times (s) of all subcases.

Subcase C F L

0.1 0.5 0.9

3.1 5.03 · 10−3 1.54 · 10−3 8.84 · 10−4

3.2 4.74 · 10−3 1.46 · 10−3 8.30 · 10−4

3.3 7.72 · 10−3 1.57 · 10−3 8.78 · 10−4

3.4 7.32 · 10−3 1.52 · 10−3 8.41 · 10−4

Table 13
Case 3: Speed-ups of all subcases.

Subcase C F L

0.1 0.5 0.9

3.1 11.43 12.43 15.02
3.2 12.14 13.12 16.00
3.3 9.61 12.35 17.27
3.4 10.13 12.77 18.03

Subcase 3.4, it must be recalled that these solutions are very different from the exact solution due to the high
numerical dissipation. Subcase 3.4 shows an increasing tendency of ∥dq∥1 when the CFL number increases. This
may be related to the time averaging approach, because the larger the CFL number, the larger the time step and
therefore the wider the time windows, which may imply a slight loss of accuracy in the solution. In spite of this,
Subcase 3.4, with approximately constant differences, is the most suitable method to compute proper solutions to
this problem, as seen in Figs. 8 and 9.

Tables 11 and 12 contain all the CPU times required by the FOMs and all subcases, respectively, to compute
their solutions. The ROMs, in all subcases, are faster than their corresponding FOMs.

In terms of speed-up, all subcases reach at least one order of magnitude with respect to their corresponding
FOMs, as can be seen in Table 13.

All in all, well-balanced FOMs such as the WLF and the Roe can be used to train their corresponding well-
balanced ROMs, the TRWLF and the RRoe, to solve transient problems with high accuracy. However, the WLF
is too dissipative, so that its solutions do not match up to what they should be. The numerical results of Case 3
18
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Table 14
Case 4: Positions of the gauging points.

Point G4 G10 G11 G13 G20

Position (m) 19.5 25.5 26.5 28.5 35.5

Table 15
Case 4: CPU times required by the Roe and the TRRoe for different mesh refinements and the corresponding
CPU times per time step and the corresponding speed-ups.

Ix 100 200 400 600
NT 3212 6512 13 132 19 748

Roe
CPU time (s) 0.14 0.45 1.54 3.37
CPU time/NT (s) 4.21 · 10−5 6.96 · 10−5 1.17 · 10−4 1.71 · 10−4

TRRoe
CPU time (s) 6.05 · 10−3 2.65 · 10−2 8.71 · 10−2 1.92 · 10−1

CPU time/NT (s) 1.88 · 10−6 4.07 · 10−6 6.63 · 10−6 9.72 · 10−6

Speed-up 22.35 17.08 17.63 17.57

show that the TRRoe obtains highly efficient results when trained with the solutions of the Roe independently of
the CFL number. If trained with WLF solutions, non-physical results are obtained for low CFL numbers.

5.4. Case 4. Experimental data test: dam-break over a triangular obstacle

The last case is focused on studying the performance of the TRRoe on a realistic problem for which there are
xperimental data. This case serves to test the relationship of the TRRoe with the numerical corrections detailed
n Section 3.2. All these corrections need to be used in this problem. In order to do so, the TRRoe will be trained
ith results computed by the Roe in which these corrections have been taken into account.
The problem used for this purpose has been proposed in [64] and [12, Section 8.2]. Experimental data was

btained from the Recherches Hydrauliques Lab. Châtelet together with the University of Bruxelles (Belgium)
under the supervision of J.M. Hiver. The test case deals with the evolution of a dam-break wave over a triangular
obstacle. The channel geometry is shown in Fig. 10. Glauker–Manning formula is used to compute friction losses
with nb = 0.0125 s/m1/3. The ICs are defined as a water reservoir

h(x, 0) =

{
0.75 m, if 0 m ≤ x < 15.5 m,

0 m, if 15.5 m ≤ x ≤ 38 m,
q(x, 0) = 0 m2/s, 0 m ≤ x ≤ 38 m,

and solid wall and free outlet BCs are considered upstream and downstream, respectively.
Experimental water depth data were measured at five gauging points along the channel. The positions of the

gauging points G4, G10, G11, G13 and G20 are shown in Fig. 10 and contained in Table 14.
Fig. 11 shows the results of h and q computed by the Roe and the TRRoe (with Ix = 400, C F L = 0.1,

Nw = 3283 and MPOD = 5) along the channel at different times, namely t = 3 s, 5 s, 10 s and 20 s.
Fig. 12 shows the time evolution of h (left) and q (right) at the positions of the five gauging points G4, G10,

G11, G13 and G20.
Table 15 contains the CPU times required by the Roe and the TRRoe to obtain their results for different mesh

efinements. It also shows that the corresponding CPU times per time step and the speed-ups of the TRRoe with
espect to the Roe achieve one order of magnitude.

The numerical results of Case 4 show that the TRRoe does not need to include entropy fix, wet–dry treatment
r other corrections to successfully reproduce realistic problems when it has been trained using solutions computed
ith the Roe as FOM in which these corrections are taken into account.
Finally, an extension of this problem to the 2D case is carried out following [13] to show more clearly the

omputational advantages of ROMs. The ICs of the problem is similar to the 1D version

h(x, y, 0) =

{
0.75 m, if 0 m ≤ x < 15.5 m, 0 m ≤ y ≤ 2 m,

0 m, if 15.5 m ≤ x ≤ 38 m, 0 m ≤ y ≤ 2 m,

2
qx (x, y, 0) = qy(x, y, 0) = 0 m /s, ∀x, y,
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Fig. 8. Case 3: Solution h for Ix = 320, Ns = 2 and MPOD = 5.
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Fig. 9. Case 3: Solution q for Ix = 320, Ns = 2 and MPOD = 5.
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C

Fig. 10. Case 4: Geometry of the channel.

Fig. 11. Case 4: Results of h (left) and q (right) along the channel at different times computed with the Roe and the TRRoe with Ix = 400,
F L = 0.1, Nw = 3283 and MPOD = 5.
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Fig. 12. Case 4: Results of h (compared with the experimental data, left) and q (right) in the different gauging points computed with the
oe and the TRRoe with Ix = 400, Nw = 3283 and MPOD = 5.

here qx and qy are the water discharges in the x- and y-direction, respectively, and solid wall and free outlet BCs
re considered upstream and downstream, respectively.
23



P. Solán-Fustero, J.L. Gracia, A. Navas-Montilla et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 116038

r
u
c
P

6

W
n
f
f

h
w
w
t

Fig. 13. Case 4: 2D SWE results of h along the channel at different times computed with the TRRoe with Ix = 100, Iy = 4, Nw = 819
and MPOD = 5.

Table 16
Case 4: CPU times required by the 2D version of the Roe and the TRRoe for different mesh refinements and
the corresponding CPU times per time step and the corresponding speed-ups.

Ix × Iy 100 × 4 200 × 4 400 × 4 600 × 4
NT 3274 6634 13 369 20 121

Roe
CPU time (s) 1.87 6.61 25.71 59.06
CPU time/NT (s) 5.70 · 10−4 9.97 · 10−4 1.92 · 10−3 2.94 · 10−3

TRRoe
CPU time (s) 3.06 · 10−2 1.20 · 10−1 4.75 · 10−1 1.09
CPU time/NT (s) 9.35 · 10−6 1.82 · 10−5 3.55 · 10−5 5.41 · 10−5

Speed-up 60.98 54.89 54.14 54.30

Fig. 13 shows the results of h computed with the TRRoe taking Ix = 100, Iy = 4, C F L = 0.1, Nw = 819 and
MPOD = 5 along the channel at t = 3 s, 5 s, 10 s and 20 s.

Table 16 contains the CPU times required by the Roe and the TRRoe to obtain their results for different mesh
efinements for the 2D case. It also shows the corresponding CPU times per time step and the corresponding speed-
ps of the TRRoe with respect to the Roe. The speed-ups of one order of magnitude are faster than those of the 1D
ase. As possible future work, it would be useful to study what is the most optimal set of values for the number of
OD modes and the number of time windows in the 2D case to improve the CPU times required.

. Concluding remarks

POD-based ROMs have proven to be very useful tools in solving transport problems, such as the 1D SWE [33].
hen solving realistic problems modelled using the 1D SWE, the FOMs used need to take into account some

umerical corrections, such as the well-balanced property, the entropy fix and the wet–dry treatment. This work is
ocused on studying the performance of a ROMs developed from a Roe-based FOM and what properties it preserves
rom them.

The time averaging approach has been essential to fully develop the Roe-based ROM, but at the same time it
as proven to be useful for saving CPU time. Since it can be used to apply the Galerkin decomposition only to the
ater depth and discharge, the TRRoe do not need to recall the physical variables in each time step to compute the
ater velocity and finally they are faster. Case 1 has shown that this approach allows the development of ROMs
hat compute very efficient solutions by comparison between the RLF and the TRLF and the TRRoe itself.
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Regarding the numerical corrections, the results of Cases 2 and 3 evidence that the ROM needs to be developed
rom a well-balanced FOM, as is the case for the TRRoe. And also it has to be trained with well-balanced solutions
o accurately reproduce well-balance solutions, but does not require to be consistent.

On the contrary, the TRRoe does not need to take into account other corrections such as the entropy fix and the
et–dry treatment (provided it has been trained by corrected FOMS), as it has been proved in Case 4. This case

lso serves as an example of the ability of ROMs, if well designed, to reproduce realistic problems, since their
olutions accurately approach the measurement data. The reason for this is the following.

For a scheme to be well-balanced, it is necessary to consider a correction term to the numerical scheme, as
one with the Lax–Friedrichs method in Case 2. Because of this, the ROM that is developed from a scheme with a
ell-balanced correction is different from one that is developed from a scheme without such a correction. However,

he other numerical corrections considered in this work lead to a change in the values of the variables if certain
onditions that are evaluated at each time instant are met. In this way, the numerical scheme is not modified and
he TRRoe does not have to take these corrections into account.

As possible future work, it would be interesting to apply these augmented Riemann solvers-based ROMs to
roblems with Dirichlet BCs following [65], to perform parametric sensitivity analysis as done in [52,53], and also
xtend them to 2D shallow water problems following works as [39]. In the field of boundary condition problems,
he shifted boundary method applied in recent work such as [66,67] could be very useful. It would also be worth
xtending the study of consistency through the use of higher order schemes and analyse how they respond and
hether they maintain the order of convergence or not.
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