
On Autonomic Platform-as-a-Service:
Characterisation and Conceptual Model

Rafael Tolosana-Calasanz1, José Ángel Bañares1, and José-Manuel Colom1

COSMOS Group - Aragón Institute of Engineering Research (I3A)
Universidad de Zaragoza, Spain

{rafaelt,banares,jm}@unizar.es

Abstract. In this position paper, we envision a Platform-as-a-Service
conceptual and architectural solution for large-scale and data intensive
applications. Our architectural approach is based on autonomic princi-
ples, therefore, its ultimate goal is to reduce human intervention, the
cost, and the perceived complexity by enabling the autonomic platform
to manage such applications itself in accordance with high-level policies.
Such policies allow the platform to (i) interpret the application specifica-
tions; (ii) to map the specifications onto the target computing infrastruc-
ture, so that the applications are executed and their Quality of Service
(QoS), as specified in their SLA, enforced; and, most importantly, (iii)
to adapt automatically such previously established mappings when un-
expected behaviours violate the expected. Such adaptations may involve
modifications in the arrangement of the computational infrastructure, i.e.
by re-designing a different communication network topology that dic-
tates how computational resources interact, or even the live-migration
to a different computational infrastructure. The ultimate goal of these
challenges is to (de)provision computational machines, storage and net-
working links and their required topologies in order to supply for the
application the virtualised infrastructure that better meets the SLAs.
Generic architectural blueprints and principles have been provided for
designing and implementing an autonomic computing system. We re-
visit them in order to provide a customised and specific view for PaaS
platforms and integrate emerging paradigms such as DevOps for auto-
mate deployments, Monitoring as a Service for accurate and large-scale
monitoring, or well-known formalisms such as Petri Nets for building
performance models.

1 Introduction

In the early 60’s, at the dawn of the computer era, the conception of computing
being organised as a public utility was already envisioned –just as the telephone
system or the electrical power networks. John McCarthy, speaking at the MIT
Centennial in 1961 1, imagined that such computing infrastructure would also
be integrated with a different and disruptive business model, thereby “(...) each

1 http://www.technologyreview.com/news/425623/the-cloud-imperative/



subscriber needs to pay only for the capacity he actually uses, but he has access
to all programming languages characteristic of a very large system (...) Certain
subscribers might offer service to other subscribers (...)”. Hence, McCarthy an-
ticipated that the computing utility would become “the basis of a new important
industry”. Half a century later, after significant advances in computing as well
as with the required maturity and developments in technology, such a view is
becoming a reality with Cloud computing [3, 9].

Nowadays, there is a number of public Cloud providers, such as Amazon 2

or Softlayer 3, that allow users to rent virtualised resources on demand, namely
computers, storage and network links, and to pay per their usage in accordance
with a number of Service Level Agreements (SLAs) and enforcement guarantees.
Moreover, Cloud computing can also offer additional abstraction levels, by pro-
viding not only a virtualised infrastructure (Infrastructure-as-a-Service, IaaS),
but also applications (Software-as-a-Service, SaaS) or even actual software devel-
opment and deployment platforms (Platform-as-a-Service, PaaS). PaaS abstracts
the underlying computing infrastructure and provides the user with a language
interface so that both the program logic and the SLAs can be expressed. Es-
sentially, such specifications need to be infrastructure-agnostic, that is, without
referring to specific details of a particular infrastructure, so that they can sub-
sequently be interpreted, mapped and deployed to a computing infrastructure.
Nevertheless, open challenges are emerging with the advent of big data applica-
tions, as these applications often have to deal with significants amounts of data
that need to be processed continuously in (near) real-time, and their data gener-
ation rates are often bursty and subject to unpredictability. Such requirements
lead to the need for large number of computational distributed resources and the
complexity of the management inherently increases, provoked by the appearance
of failures, unexpected performance degradation and, in general, unknown be-
haviours. In such a context, there is some approaches [2, 7] that have studied
and considered the introduction a number of policies and mechanisms into PaaS
in order to offer some Quality of Service (QoS) guarantees.

In this position paper, we envision a PaaS conceptual and architectural solu-
tion for large-scale and data intensive applications. Our architectural approach
is based on autonomic principles, therefore, its ultimate goal is to reduce human
intervention, the cost, and the perceived complexity by enabling the autonomic
platform to manage such applications itself in accordance with high-level poli-
cies. Such policies allow the platform to (i) interpret the application specifica-
tions; (ii) to map the specifications onto the target computing infrastructure, so
that the applications are executed and their Quality of Service (QoS), as spec-
ified in their SLA, enforced; and (iii) to adapt automatically such previously
established mappings when unexpected behaviours violate the expected. Such
adaptations may involve modifications in the arrangement of the computational
infrastructure, i.e. by re-designing a different communication network topology
that dictates how computational resources interact, or even the live-migration to

2 http://aws.amazon.com/
3 http://www.softlayer.com/



a different computational infrastructure. The ultimate goal of these challenges
is to (de)provision computational machines, storage and networking links and
their required topologies in order to supply for the application the virtualised
infrastructure that better meets the SLAs. Generic architectural blueprints and
principles have been provided for designing and implementing an autonomic com-
puting system [12, 4, 8, 5, 6]. We revisit them in order to provide a customised
and specific view for PaaS platforms and integrate emerging paradigms such as
DevOps for automate deployments, Monitoring as a Service for accurate and
large-scale monitoring, or well-known formalisms such as Petri Nets for building
performance models. The rest of this paper is organised as follows. Section 2 de-
scribes the conceptual architectural model for Autonomic Platform-as-a-Service.
Section 3 provides a brief related work discussion on PaaS. Conclusions are pro-
vided in Section 4.

2 Characterisation & Conceptual Model of an Autonomic
PaaS

There is a number of well-established and generic architectural blueprints and
principles for the design of autonomic systems [12, 4, 8, 5, 6]. When designing an
autonomic system, a number of challenges emerge: (i) Autonomic System Speci-
fication –it relates to the appropriate specification and formulation of the auto-
nomic elements, so that the description of what the system needs to do is cap-
tured and understood. The specification involves functional and non-functional
requirements as well as autonomic behaviours, expressed in terms of high level
policies, content and context driven definition, execution and management. (ii)
Autonomic System Design –which includes the definition of appropriate abstrac-
tions, methods and tools for specifying, understanding, controlling, and imple-
menting autonomic behaviours; the provision of models for negotiation among
architectural autonomic elements and for detecting, predicting, and correcting
potential problems. (iii) Integration and Consistency of Autonomic Behaviours
–it is related to the autonomic elements constituent of the system, and on how
they behave in isolation and in co-operation. It is essential to support the spec-
ification of individual and global autonomic behaviours, so that they can be
implemented and controlled in a robust and predictable manner. (iv) Middle-
ware challenges – the system needs to exploit middleware services for realising
autonomic behaviours, including discovery, messaging, security, privacy, trust,
etc. Therefore, it will be fundamental to properly identify which functional and
non-functional services the middleware layer needs to provide.

In this section, we are characterising and customising such elements for an
Autonomic PaaS platform that executes large-scale data-intensive applications.
Figure 1 depicts an architectural blueprint for our proposal.

2.1 Application Specification for the Autonomic PaaS

Users need a specification language for expressing their functional and non-
functional requirements. Hence, as an input, the PaaS platform receives users’



IaaS 1 IaaS 2 IaaS k

DevOps

Applica'on	
  
layer	
  

Middleware
layer

MaaS

Infrastructure
layer

Conn.
Adapters

Spec 1 Spec 2 Spec n

Resource 
Manager Scheduler

Mapping
Solutions
Catalogue

Planner

Performance 
Analysis Tools

Autonomic PaaS

DaaS

Spec
Interpreter

Fig. 1. Conceptual Architecture for an Autonomic Platform as a Service



specifications and maps them accordingly to the computing infrastructures. The
characteristics of such specifications are, on one hand, application dependent.
In the case of data-intensive applications, they may involve, from a functional
point of view, compositions of computational processes and data transmission
processes. The semantics in how these compositions are accomplished will de-
termine the particular model of computation. Therefore, there is a need for
supporting different of models of computation ranging from simple parallelism
to data streaming [13]. From a non-functional point of view, users can be in-
terested in considering a number of attributes such as throughput / process-
ing time, economic cost (given by the pay-per-usage model of the Cloud), or
resilience. Additionally, the desired autonomic behaviour while executing the
application can be (partially inferred from the non-functional requirements),
or alternatively, high-level policies, which determine the behaviour of the PaaS
when executing the application, can also be supported On the other hand, the
design of the specification also depends on inherent characteristics of PaaS plat-
forms and their ultimate goal, that is essentially, such specifications need to be
infrastructure-agnostic, that is, without referring to specific details of a partic-
ular infrastructure, so that they can subsequently be interpreted, mapped and
deployed to a computing infrastructure. There is a number of open standards
proposed for autonomic computing that can be prescribed for the specification
such as OASIS Web Services Distributed Management (WSDM) 4, for the in-
terfaces and their semantics, or Common Information Model – Simplified Policy
Language 5 (CIM-SPL) for the specification of policies. In addition to specifica-
tion languages, and also of key importance, is the specification interpreter of the
autonomic PaaS platform, which appears on the right of Figure 1.

2.2 Autonomic PaaS Design

From the functional and non-functional requirements captured from the user,
we envision that a performance engineer needs to conduct an analysis and to
generate possible mapping solutions between the application and a computing
infrastructure. At such a step, different configurations, i.e. computational ma-
chines linked by means of different network topologies, distinct number of com-
putational resources, etc. may be considered. For all of them, the engineer must
analyse and identify the boundaries of QoS parameters and how they affect each
other. We propose that such a process is accomplished in a two main steps. First,
by realising the analysis with generic and abstract resources, studying concur-
rency from the application and the consumption of resources. Second, by refining
and customising the models with the constraints of specific infrastructures. As
a result, a catalogue of potential application / infrastructure mapping solutions
is identified, each with different QoS attribute values and guarantees. Although
there is a number of formalisms and generic approaches in the literature, on per-
formance engineering, we developed further that particular idea. We proposed a

4 https://www.oasis-open.org/committees/wsdm/
5 http://www.dmtf.org/documents/policy/cim-simplified-policy-language-cim-spl-

100



Petri net-based, model-driven and stepwise refinement methodology for stream-
ing applications over Clouds [14]. In such a case, the complexity of streaming
applications arises from the confluence of concurrency, transmission of data and
the use of distributed resources. The central role in this methodology is assigned
to a set of Petri Net models describing the behaviour of the system including
timing and cost information. The goal is to use these models in an intensive way
before the deployment of the application in order to understand its behaviour
and to obtain properties of the different solutions adopted. In some cases, the
observations may induce or recommend changes into the application with the
purpose of modifying parts of the design and assure agreed specifications. The
consideration of Petri Nets is based on the natural descriptive power for the
concurrency, but also for the availability of analytic tools coming from the do-
main of Mathematical Programming and Graph Theory. These tools are based
on a structural analysis that support the reasoning on properties without the
construction of the state space –which for such a class of systems is prohibitive.
a methodology for the construction of this kind of applications is proposed based
on the intensive use of formal models. Petri Nets are the formalism considered
here for capturing the active entities of the system (processes), the flow of data
between the processes and the shared resources for which they are competing.
For the construction of a model aimed at studying different aspects of the system
and for decision-taking design, an abstraction process of the system at different
levels of detail is needed. This leads to several system models representing facets
from the functional level to the operational level. Petri Net models are used to
obtain qualitative information of the streaming application, but their enrichment
with time and cost information provides with analysis on performance and eco-
nomic behaviours under different scenarios. In consequence, a set of performance
analysis tools need to be incorporated in the autonomic PaaS architecture.

Moreover, such a catalogue of performance models constitutes an essential
element of the system Knowledge, and can be subsequently exploited by the auto-
nomic elements of the architecture for their self-management actions. Whenever
a violation of the QoS occurs, the platform must decide an action (or combina-
tion of actions) that corrects such a deviation. The catalogue is essential for this
process, as well as obtaining real-time information from the infrastructure or
even from other infrastructures that can be potentially used alternatively. Then,
once an action is selected, it has to be planned and accomplished (executed).
It may involve a complete re-configuration of the infrastructure –i.e. a complete
different number of machines with different network topologies and storage; or
it may require the shift to an alternative computing infrastructure. This raises
a number of challenges such as the autonomic deployment of the application
(Deployment as a Service, DaaS in Figure 1) in a new different infrastructure
without interruptions in the execution and enforcing the expected QoS.

2.3 Middleware Layer Requirements

Perhaps the monitoring service from the computing infrastructures is the most
important one from the middleware layer, but a deployment automation mid-



dleware service is also mandatory, so that the required computing infrastructure
can be virtualised on-demand. Additionally, connection wrappers and adapters
for interacting with different IaaS providers are required. On this regard, the
possibility of an Inter-Cloud organisation of the infrastructure may also be con-
sidered [1].

Monitoring as a Service Big data analytics and applications often involve
a large number of distributed computational resources for their execution and,
therefore, monitoring states of resources (i.e. performance, running time, cost,
etc.) often requires collecting values of various attributes from a vast amount
of nodes. Although there can be recognised a core set of attributes common to
most applications, in general terms, the specific requirements of each applica-
tion determines the monitoring needs, which can even vary in time, i.e. as a
result of changing conditions in the application requirements or in the infras-
tructure. Monitoring as a Service [10, 11] should support not only the conven-
tional state monitoring capabilities, such as instantaneous violation detection,
periodical state monitoring, and single tenant monitoring, but also performance-
enhanced functionalities that can optimise on monitoring cost, scalability, and
the effectiveness of monitoring service consolidation and isolation.

Deployment as a Service Deployment of a mapping solution in the Cloud can
be a tedious task for a human being and it is also expected to be fast feedback
to new occurring eventualities. Thus, it is a critical competitive advantage to be
able to respond quickly. For these reasons, tooling is required to implement end-
to-end automation of deployment processes and DevOps [15–17] as an emerging
paradigm, which integrates software developers with operational personnel, can
be a solution to consider. Automation is the key to efficient collaboration and
tight integration between development and operations. The DevOps commu-
nity is constantly pushing new approaches, tools, and open-source artifacts to
implement such automated processes.

2.4 Integration and Consistency of Autonomic Behaviours

In addition to defining the global behaviour of the PaaS platform when execut-
ing an application, it is important to identify the autonomic elements forming
part of the PaaS architecture as well as third-party autonomic elements, such as
autonomic middleware components. Individual policies should dictate their be-
haviour, but their co-operation and their interactions should also be regulated.
Hence, it is essential to support the specification of individual and global au-
tonomic behaviours, so that they can be consistently integrated and the PaaS
platform can be controlled in a predictable manner. A number of architectural
components in the PaaS platform are likely to be autonomic, such as the planner,
the scheduler or the resource manager. On the other hand, some of these internal
autonomic components need to interact with third-party autonomic components
as well. For instance, due to the complexity of monitoring, the MaaS middleware
component may also be designed with autonomic principles.



3 Related Work

PaaS aims at application developing and subsequent deployment. Hence, it typ-
ically provides a complete set of tools and programming models and interfaces
for processing the logic and automatically deploying and executing them into de
underlying infrastructures. According to [2], PaaS providers include Google Ap-
pEngine, Microsoft Azure, Bungee Labs, Coghead, Etelos, Google, LongJump,
Rollbase, or Salesforce.com, etc. Nevertheless, there is limited support for QoS
guarantees in these solutions. The requirements for supporting QoS guarantees
in PaaS architectures were analysed in [2]. In this paper, we have revisited these
concepts, integrating new emerging paradigms and technologies such as DevOps
or MaaS, an paradigms like autonomic computing with well-known formalisms
such as Petri nets.

In a previous work [14], a first approach to this architectural model was
proposed, but without the autonomic requirement as a final result. There, the
goal was to manage the complexity in the construction of applications in the
Cloud, but without considering dynamic aspects. Thus, the so called functional
level there corresponds in here to the specification level, and the final result in [14]
was a model representing the behaviour of the application without considering a
specific infrastructure or third-party applications needed. The operational level,
on the other hand, considers a generic infrastructure over which the behaviour of
the application is studied. The operational level is described by another model
that in combination with the functional level model gives us an overall model for
qualitative and quantitative analysis of QoS attributes. Therefore, the approach
in [14] represents the required previous step for accomplishing the autonomic
PaaS architectural model presented in here.

4 Conclusions

With the advent of large-scale big data applications, which for their execution
require complex management of significant number of distributed computational
resources. In this position paper, we envision a PaaS conceptual and architectural
model. Our architectural approach is based on autonomic principles, aiming at
reducing human intervention, the cost, and the perceived complexity by enabling
the autonomic platform to self-manage such applications. From the functional
and non-functional requirements captured from the user, we envision that a per-
formance engineer needs to conduct a Quality of Service (QoS) analysis (i.e.
involving a combination of QoS attributes that includes performance, economic
cost or resilience) to explore and assess all the possible mapping solutions of the
application to abstract and generic resources. The ultimate goal is to identify
the boundaries of QoS parameters and how they affect each other. Subsequent
incorporation of the constraints from actual computational infrastructures will
refine such models and update the derived QoS boundaries to estimate realistic
behaviour of the infrastructure. As a result, a catalogue of potential applica-
tion to infrastructure mapping solutions is constructed, each with different QoS



attribute values and guarantees. The autonomic PaaS platform with this knowl-
edge information in combination with accurate monitored real time information
of the computational infrastructures can perform autonomic deployments and
adaptations of previous ones, so that applications can executed in a flexible and
adaptive manner. Our model integrates emerging paradigms such as DevOps for
automate deployments, Monitoring as a Service for accurate and large-scale mon-
itoring, or well-known formalisms such as Petri Nets for building performance
models.

5 Acknowledgements

This work was supported by the Spanish Ministry of Economy under the program
“Programa de I+D+i Estatal de Investigación, Desarrollo e innovación Orientada
a los Retos de la Sociedad”, project id TIN2013-40809-R

References

1. Assis, M., Bittencourt, L.F., Tolosana-Calasanz, R.: Cloud federation: Charac-
terisation and conceptual model. In: 3rd International Workshop on Clouds and
(eScience) Applications Management (CloudAM 2014) (2014)

2. Boniface, M., Nasser, B., Papay, J., Phillips, S., Servin, A., Yang, X., Zlatev, Z.,
Gogouvitis, S., Katsaros, G., Konstanteli, K., Kousiouris, G., Menychtas, A., Kyr-
iazis, D.: Platform-as-a-service architecture for real-time quality of service man-
agement in clouds. In: Internet and Web Applications and Services (ICIW), 2010
Fifth International Conference on. pp. 155–160 (May 2010)

3. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

4. Corporation, I.: An architectural blueprint for autonomic computing. Tech. rep.,
IBM (Jun 2005)

5. Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural approach
to autonomic computing. In: Proceedings of the First International Conference on
Autonomic Computing. pp. 2–9. ICAC ’04, IEEE Computer Society, Washington,
DC, USA (2004)

6. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing –degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (Aug 2008)

7. Keller, E., Rexford, J.: The ”platform as a service” model for networking. In:
Proceedings of the 2010 Internet Network Management Conference on Research on
Enterprise Networking. pp. 4–4. INM/WREN’10, USENIX Association, Berkeley,
CA, USA (2010)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

9. Marinescu, D.C.: Cloud Computing: Theory and Practice. Morgan Kaufmann
(2013)

10. Meng, S., Kashyap, S.R., Venkatramani, C., Liu, L.: Resource-aware application
state monitoring. IEEE Transactions on Parallel and Distributed Systems 23(12),
2315–2329 (2012)



11. Meng, S., Liu, L.: Enhanced monitoring-as-a-service for effective cloud manage-
ment. Computers, IEEE Transactions on 62(9), 1705–1720 (Sept 2013)

12. Parashar, M., Hariri, S.: Autonomic computing: An overview. In: Banâtre,
J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming
Paradigms, Lecture Notes in Computer Science, vol. 3566, pp. 257–269. Springer
Berlin Heidelberg (2005)

13. Pautasso, C., Alonso, G.: Parallel computing patterns for Grid workflows. In: Pro-
ceedings of the HPDC2006 Workshop on Workflows in Support of Large-Scale
Science (WORKS06) June 19-23, Paris, France (2006)

14. Tolosana-Calasanz, R., Bañares, J.Á., Colom, J.M.: Towards petri net-based eco-
nomical analysis for streaming applications executed over cloud infrastructures. In:
Economics of Grids, Clouds, Systems, and Services - 11th International Conference,
GECON 2014, Cardiff, UK, September 16-18, 2014. pp. 189–205 (2014)

15. Wettinger, J., Gorlach, K., Leymann, F.: Deployment aggregates - a generic de-
ployment automation approach for applications operated in the cloud. In: Enter-
prise Distributed Object Computing Conference Workshops and Demonstrations
(EDOCW), 2014 IEEE 18th International. pp. 173–180 (Sept 2014)

16. Wettinger, J., Breitenbücher, U., Leymann, F.: Devopslang – bridging the gap
between development and operations. In: Villari, M., Zimmermann, W., Lau, K.K.
(eds.) Service-Oriented and Cloud Computing, Lecture Notes in Computer Science,
vol. 8745, pp. 108–122. Springer Berlin Heidelberg (2014)

17. Wettinger, J., Breitenbücher, U., Leymann, F.: Standards-based devops automa-
tion and integration using tosca. In: Proceedings of the 7th International Confer-
ence on Utility and Cloud Computing (UCC 2014). pp. 59–68. IEEE Computer
Society (2014)


