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Abstract. Malicious applications pose as one of the most relevant issues
in today’s technology scenario, being considered the root of many Inter-
net security threats. In part, this owes the ability of malware developers
to promptly respond to the emergence of new security solutions by devel-
oping artifacts to detect and avoid them. In this work, we present three
countermeasures to mitigate recent mechanisms used by malware to de-
tect analysis environments. Among these techniques, this work focuses on
those that enable a malware to detect dynamic binary instrumentation
frameworks, thus increasing their attack surface. To ensure the effective-
ness of the proposed countermeasures, proofs of concept were developed
and tested in a controlled environment with a set of anti-instrumentation
techniques. Finally, we evaluated the performance impact of using such
countermeasures.
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1 Introduction

The number of software specially crafted with malicious intentions (commonly
referred as malware) has increased in quantity and complexity during the last
years [2]. This fact supposes an issue for the anti-virus companies that need to
dispose of an up-to-date database of known malware to protect their customers.
Thus, malware analysts face every day to an increasing number of malware
samples. For instance, Kaspersky (a well-known anti-virus company) stated that
they analyzed more than 360.000 malware samples per day in 2017 [11].

The process of analyzing a piece of software and determining if it is mali-
cious can be done manually or automatically. A manual analysis requires to first
analyze the program assembly code in a static way (without executing it) and
then to execute it to analyze the program behavior when interacting with the
Operating System (internal behavior) and with the network (external behavior).
However, this manual approach is a very intensive and time-consuming process
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(in fact, it is usually referred as an art instead of a science). To cope with the
increasing trend of malware samples, automation of malware analysis tasks in
isolated analysis environments as sandboxes or hypervisors has emerged in re-
cent years |9]. This automatic approach allows the anti-virus companies to keep
updated their databases in a timely manner.

Unfortunately, malware writers have also started to incorporate small pieces
of code into their software to detect analysis environments. This is mainly mo-
tivated because the longer the malware is undetected, the more revenue the
cybercriminals achieve. The kind of malware that behave differently depending
on where they are executed is referred as evasive malware, analysis-aware mal-
ware, or split personality malware [3,/13.19,21/23]. The incorporation of those
evasion techniques allows a malware to check where it is being launched and thus
behave benignly when an analysis environment is detected. As a consequence,
the malware that is wrongly identified as benign software can easily disseminate
and penetrate a target system [5].

Special care has to be taken when analyzing an evasive malware to prevent
detection of analysis environment. Some authors proposed to execute them first
on a bare-metal system and then compare their behavior when executed on
other emulation and virtualization-based analysis systems [12]. Other authors
proposed tools such as PinVMShield [21] or Arancino [19] detect or circumvent
the evasion techniques used by malware to hinder their analysis. Both tools are
based on dynamic binary instrumentation, which allow the malware analyst to
insert arbitrary code during malware execution. Although this kind of analysis is
feasible, it can also be detected through different techniques, as widely reported
in the literature (we reviewed all these works in Section .

In this paper, we evaluate three techniques to demonstrate how a frame-
work for dynamic binary analysis (in particular, Intel Pin) can be detected.
Those techniques were previously proposed in the literature, but only from a
theoretical perspective. Here, we have implemented them to test their detection
efficiency. Those evasion techniques increase the attack surface of a dynamic bi-
nary instrumentation framework, since they can be used by malware to detect
that analysis environment. Moreover, we also provide the corresponding coun-
termeasures to mitigate those evasion techniques. Those countermeasures have
been integrated in PinVMShield [21], a plugin-based tool specially designed to
circumvent evasive techniques performed by malware. Furthermore, they have
also been integrated in the benchmark-like tool eXait 7], which serves to verify
if a DBI framework is recognizable. Finally, to prove the effectiveness of our
countermeasures, we evaluate their efficacy and performance using SPEC CPU
2006 [6]. The results showed that although the evasive behavior can be circum-
vented, the use of current frameworks of dynamic binary analysis has a great
overhead, as already claimed by other authors [20].

This paper is organized as follows. Section 2] reviews the literature. Section [3]
is devoted to previous concepts needed to follow the rest of this work, as the DBI
framework developed by Intel or the architecture of the PinVMShield tool. Sec-
tion [ introduces the new techniques for detecting those analysis environments,
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as well as the proper countermeasures. Finally, Section [5] concludes the work and
states future work.

2 Related Work

This section presents in chronological order the works related to techniques for
detecting a DBI framework, detailing also the countermeasures proposed in each
work. We first review the related works in the industry and then in the academy.

Most of the existing studies come from industry-related security conferences.
Falcén & Riva introduced in [7] the first techniques to detect the presence of the
Intel Pin DBI framework in a Windows OS. In particular, thirteen techniques
with the corresponding proofs of concepts (PoCs) were presented. Those PoCs
were distributed as a sort of a benchmark-like tool called eXait. This tool is
useful to verify if a DBI framework is recognizable.

Two years later, Li & Li [14] showed that the DynamoRIO DBI framework
can be detected in both Windows and Linux environments through ten new
evasion techniques. Furthermore, they remarked the transparency problem of
DBI frameworks in some cases. Similarly, Hron & Jerméf proposed in [10] six
new evasive techniques against the Pin and DynamoRIO, providing also PoCs
of those techniques. Sun et al. also presented in [22] other six new evasive tech-
niques aimed at the DBI Pin and DynamoRIO frameworks. In addition, they
introduced the idea of escaping of the sandbox-like environment provided by a
DBI framework, thus compromising the analysis environment.

Regarding the academic literature, Rodriguez et al. [21] reviewed and pro-
vided a taxonomy of the existing anti-DBI and countermeasures techniques
up to that time. Moreover, they released an extensible Pin-based tool called
PinVMShield that enabled to analyze applications with those evasive techniques
by means of circumventing them. Later, Polino et al. [19] introduced a review
and classification of some anti-DBI techniques manly focused on the Pin DBI
framework. Furthermore, they developed a set of approaches to mitigate evasion
techniques and used the eXait tool 7] to validate their effectiveness. They also
introduced a Pin-based tool named Arancino, which incorporates the proposed
countermeasures and allows to retrieve the original binary form of malware pro-
grams protected by software packers.

Recently, Zhechev published a Master’s thesis [24] raising the question
whether DBI frameworks are appropriate tools for analyzing malware and other
potentially evasive artifacts. Moreover, he introduced thirteen new techniques to
detect the presence of Intel Pin DBI framework in a Linux OS, and also demon-
strated that escaping of such a DBI framework is feasible due to the shared
memory model used by DBI frameworks. In this regard, Zhechev stated that
the isolation and the stealthiness of the analysis code under DBI frameworks
are not guaranteed and thus, DBI frameworks are unsuitable for building any
security-related application.

As shown, DBI frameworks are gaining popularity among security researchers
as a way to insert arbitrary code during program execution. Following this trend,
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in this paper we provide PoCs of three evasion techniques already documented
in the literature (but without PoCs) and we give the proper countermeasures.

3 Previous Concepts

3.1 Intel Pin DBI Framework

The Pin DBI framework (or Pin for short) enables to build easy-to-use, portable,
transparent, and efficient dynamic instrumentation tools. Pin was designed by
Intel in 2005 and gives support for the three major desktop Operating Systems
(i.e., Windows, Linux, MacOS X).

Pin is composed of the three typical DBI components (depicted in Figure|1)):
(1) the application to be instrumented; (2) a dynamic binary analysis tool de-
veloped with Pin, normally termed as Pintool; and (3) the DBI engine. The DBI
engine consists of a Virtual Machine (VM), a code cache, and an instrumenta-
tion application programming interface (API) invoked by the Pintool. The VM
takes as input the native executable code of the application to be instrumented
and uses a just-in-time (JIT) compiler to insert the instrumentation code, prior
to execution. Then, the resulting instrumented code is saved in the code cache
and the execution is transferred to it. After execution, the JIT compiler fetches
the next sequence of instructions to be executed and generates more code. The
emulator unit is in charge of instructions that cannot be directly executed, such
as system calls that require special handling from the VM [16]. As shown in
Figure [1, the instrumented application, the Pintool, and the DBI engine are
executed in the same memory address space.

Pin same address space
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Fig. 1. Pin’s software architecture (adapted from [16]).
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Pin has been widely used in the scientific community. As a result, a lot of in-
teresting Pintools have been released. In this regard, it is worth mentioning Pin-
tools that enable debugging for instrumented applications, such as PinADX [15]
or the tool introduced in [18].

3.2 PinVMShield

PinVMShield [21] is a tool to detect and circumvent evasion techniques used
by analysis-aware malware. The tool follows a plug-in architecture, enabling an
easy extension for covering other evasion techniques than the currently supported
ones. It was released under GNU GPL version 3 license and its source code is
publicly available at https://bitbucket.org/rjrodriguez/pinvmshield/.

PinVMShield is mainly focused on Windows OS, and uses two granularity
instrumentation levels, at the routine level and at the instruction level. This
allows the tool to detect evasive behavior based on Windows APIs, such as
checking the presence of a software debugger though IsDebuggerPresent or
CheckRemoteDebugger, or based on specific assembly code instructions (e.g.,
sidt, sgdt, or sldt [8]).

PinVMShield currently addresses the evasive behavior performed by soft-
ware binaries to detect virtual environments (in particular, VirtualPC, VM Ware,
and Virtualbox), debuggers (WinDBG, OllyDBG, and ImmunityDebugger), and
sandboxes (WinJail, Cuckoo Sandbox, Norman, Sandboxie, CWSandbox, Joe-
Sandbox, and Anubis).

4 Evasive Techniques and Countermeasures

In this section, we address some of the evasion techniques that a malware can
incorporate into its code to detect when it is being executed inside a DBI frame-
work. Furthermore, to the best of our knowledge we are the first to provide
countermeasures for those evasion techniques, which are introduced next.

4.1 Evasive Techniques

An exhaustive list of techniques to detect DBI frameworks is discussed in [22}/24].
There, small pieces of code are given as PoCs, as well as proper countermeasures,
specially designed for the Intel Pin DBI framework and Linux OS running on
top of Intel x86-64 architectures.

Among those evasive techniques for which no countermeasures are provided,
there are few of them particularly relevant, since they may be used as an attack
vector by malware against the analysis environment. In particular, those tech-
niques are the neglecting of the No-eXecute bit, TLS detection, and code cache
signatures detection. In the rest of this section, we describe each of those evasion
techniques in detail. Furthermore, we also provide PoCs and countermeasures.
Unlike [24], we focus on the Windows OS, as it is most prevalent system attacked
by evasive malware [21].
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To demonstrate the effectiveness of these evasion techniques against Pin, our
PoCs have been integrated as plugins for eXait |7]. Those plugins are publicly
released under GNU GPLv3 and freely available onlineﬂ Moreover, our proposed
countermeasures have been integrated in PinVMShield [21].

Neglecting No-eXecute Bit. The No-eXecute (NX) bit is a defense mecha-
nism added at hardware level to prevent the execution of data memory pages
by the processor. Roughly speaking, the main idea is that no memory zone is
simultaneously writable and executable. This feature is incorporated by almost
all the processor’s manufacturers, although referred to under different nomen-
clature (e.g., ezecute disable bit in Intel, enhanced virus protection in AMD, or
execute never bit in ARM). Recall that a DBI framework uses a JIT compiler
that “recompiles” the application code in conjunction with the instrumented
code (see Section [3.I]). That is, it needs to write-then-ezecute certain memory
zones. Therefore, as suggested by Zhechev [24], any program instrumented by a
DBI framework in JIT mode has this protection disabled.

Therefore, an application can detect a DBI framework by allocating a new
heap space, placing valid code on it, and then executing it. When the application
is not being instrumented, then the execution crashes since the heap memory
page has no permission to execute. However, the execution under a DBI frame-
work will continue normally.

TLS Detection. Thread Local Storage (TLS) is a feature that allows a devel-
oper to provide unique data for each thread, in vector format, accessed by the
process using a global index. Roughly speaking, TLS variables can be seen as
global variables only visible to a particular thread and not the whole program.
In the case of Windows, those per-thread global variables are maintained in the
TLS directory, which is a part of the Portable Executable (PE) header of an
executable image. The PE header is the header of any Windows executable file.
The minimum number of positions in the directory is guaranteed to be at least
64 for any system, while the maximum number is 1088 [17]. According to [22],
DBI frameworks as Pin allocate and use positions of that data structure for
internal purposes.

Since allocated indexes are shared by any thread in the process, an applica-
tion can inspect the number of positions allocated in the TLS directory, revealing
the presence of a DBI framework.

Code Cache Signatures Detection. As reported in [19], there are several
artifacts that a DBI tool unavoidably leaves in memory. In this regard, the
authors in [22] shown that those memory artifacts can be easily detected by any
application under analysis. In the case of Pin, one of those memory artifacts is

3 See https://github.com/ailton07/eXait_Plugin_PinDetectionByDEPNeglect),
https://github.com/ailton07/eXait_Plugin_CodeCacheDetectionByFEEDBEAF,
https://github.com/ailton07/eXait_Plugin_PinDetectionByTLS
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the hexadecimal pattern OxFEEDBEAF. This byte sequence is repeated through
the memory zones used as code cache by Pin, as an identification fingerprint.

Therefore, an application can detect those memory patterns by means of
memory scans. The presence of those byte patterns in the memory allocated
by a process can be used as a criterion to indicate the presence of Pin in this
particular case.

4.2 Countermeasures

For the development of the proposed countermeasures, we used the tool
PinVMShield since its plugin-based architecture makes easier for a developer to
incorporate new mitigation techniques against an evasion technique. To foster
research in this area, the developed countermeasures are also publicly released
an available onlindﬂ In the following, we briefly describe each countermeasure.

Neglecting No-Execute Bit. As countermeasure, we can rely on the set of
Windows APIs that allow a developer to check for specific memory addresses and
permissions. The developed countermeasure detects when an attempt to execute
a piece of code from an invalid region (non-executable memory) occurs, and al-
lows the binary analyst to take action afterwards. A more transparent implemen-
tation would raise an exception with status STATUS ACCESS_VIOLATION,
imitating the behavior outside the DBI framework.

TLS Detection. Since the TLS access is made exclusively using APIs provided
by Windows OS, the proposed countermeasure relies on monitoring those APIs
and logically isolating the positions used by Pin. Thus, an attempt to read or
modify a position already allocated by the DBI tool is redirected to a position
unrelated to it. The PinVMShield tool already provides facilities for intercepting
and modifying Windows APIs, through the Replace WinAPI method.

Code Cache Signatures Detection. As suggested in [19], a process can scan
its entire memory space performing an inspection of every allocated memory
page. In Windows OS, this can be done through APIs as VirtualQuery or Nt-
Query VirtualMemory. To mitigate this evasion technique, it is necessary to es-
tablish a memory access policy, telling which memory addresses are protected
memory addresses. This can be done by creating a blacklist of memory ad-
dresses related to the DBI framework which cannot be accessible by the in-
strumented application. In this regard, Pin provides a set of APIs, such as
CODECACHE__AddTracelnsertedFunction, which allows an analyst to monitor
the creation of code caches and thus get their addresses, enabling the creation
of that blacklist upon execution.

Once the blacklist is initialized, those Windows APIs that allow memory
page inspection can be monitored to bypass the queries of any protected memory

4 See https://github.com/ailton07/PinVMShield
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regions. Our developed countermeasure intercepts those calls when an attempt
to obtain information from a protected memory region is done and returns a
zero value, indicating that the function failed.

4.3 Efficacy of the Countermeasures and Performance Impact

These countermeasures were incorporated in PinVMShield to evaluate their ef-
fectiveness. We developed then small pieces of code implementing evasive tech-
niques and execute them with PinVMShield and our countermeasures enabled.
As a result, TLS Detection and Code Cache Signature Detection were mitigated
successfully. Similarly, Neglecting No-Ezecute Bit was detected during the exe-
cution attempt, allowing the analyst to take appropriate action at run time.

To measure the impact caused by the use of the PinVMShield tool in the ap-
plication performance, we used the benchmark tool SPEC CPU2006 [6] widely
used to evaluate performance measurements on DBI tools [1,|4,/16]. While ex-
ecuting SPEC with PinVMShield, features not related to the countermeasures
presented here were disabled to avoid performance degradation by other means.

As experimentation environment, we used a virtualized environment on top
of a KVM processor 8 cores 3.41 GHz, with 16GB of RAM memory. The vir-
tual machine was running a Windows 7 SP1 x64 with Intel Pin 2.14-71313 and
Microsoft 32bit C/C++ compiler v16 for SPEC2006 compilation.

Table [[] summarizes the results obtained for each one of benchmark tools of
SPEC. The first column lists the names of the benchmarks. The second column
tells the execution time (in seconds) of Pin, while the third shows the execution
time (in seconds) of Pin with the PinVMShield tool. Finally, the fourth column
presents the overhead when PinVMShield is used. On average, the overhead was
59.73% with a standard deviation of 98.68%.

Instrumentation PinVMShield PinVMShield

Benchmark Time (s) Time (s) Overhead (%)
400.perlbench 484 534 10.3305
401.bzip2 560 562 0.3571
403.gcc 443 1150 159.5936
429.mcf 192 209 8.8541
445.gobmk 521 537 3.0710
456.hmmer 680 718 5.5882
458.sjeng 606 607 0.1650
464.h264ref 1069 4071 280.8231
471.omnetpp 294 819 178.5714
473.astar 339 326 -3.8348
483.xalancbmk 287 326 13.5888

Table 1. Overhead introduced by PinVMShield with our countermeasures.



Reducing the Attack Surface of DBI Frameworks 9

5 Conclusions and Future Directions

Malicious software able to detect an analysis environment is a potential threat,
since they can can behave differently to evade the classification as malware when
they detect an analysis environment.

In this paper, we have studied three evasion techniques of DBI frameworks.
Those techniques are used as attack vectors by malware to detect an analysis
environment. We have provided small pieces of code as proof of concepts of those
techniques, as well as their countermeasures to reduce the attack surface of DBI
frameworks. Those countermeasures were developed on top of the PinVMShield
tool. Both proof of concepts and countermeasures have been evaluated in a
virtualized environment to prove their effectiveness. Our experiments showed a
performance overhead close to 60% by the use of developed countermeasures.

Unlike the work in [24], we have shown that DBI frameworks are suitable
for security purposes: when equipped with the appropriate tools, the require-
ments needed in a security analysis context (i.e., stealthiness and isolation) are
achieved. However, the performance overhead introduced by the use of DBI
frameworks is still an issue. Nonetheless, we argue that it is necessary to keep
observing the growth of evasion techniques focused on DBI tools. Despite ef-
forts done to develop DBI evasion techniques countermeasures, there are still
evasion techniques that threaten the stealthiness of DBI frameworks and pose a
challenge to system security professionals. For instance, the intrinsic problem of
overhead detection that basically affects to any dynamic analysis tool.
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