000126526 001__ 126526
000126526 005__ 20241125101140.0
000126526 0247_ $$2doi$$a10.3390/ijms24119299
000126526 0248_ $$2sideral$$a133987
000126526 037__ $$aART-2023-133987
000126526 041__ $$aeng
000126526 100__ $$aPérez-Oliver, María Amparo
000126526 245__ $$aHeat-priming during somatic embryogenesis increased resilience to drought stress in the generated maritime pine (Pinus pinaster) plants
000126526 260__ $$c2023
000126526 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126526 5203_ $$aDrought stress is becoming the most important factor of global warming in forests, hampering the production of reproductive material with improved resilience. Previously, we reported that heat-priming maritime pine (Pinus pinaster) megagametophytes during SE produced epigenetic changes that generated plants better adapted to subsequent heat stress. In this work, we tested, in an experiment performed under greenhouse conditions, whether heat-priming will produce cross-tolerance to mild drought stress (30 days) in 3-year-old priming-derived plants. We found that they maintain constitutive physiological differences as compared to controls, such as higher proline, abscisic acid, starch, and reduced glutathione and total protein contents, as well as higher ΦPSII yield. Primed plants also displayed a constitutive upregulation of the WRKY transcription factor and the Responsive to Dehydration 22 (RD22) genes, as well as of those coding for antioxidant enzymes (APX, SOD, and GST) and for proteins that avoid cell damage (HSP70 and DHNs). Furthermore, osmoprotectants as total soluble sugars and proteins were early accumulated in primed plants during the stress. Prolongated water withdrawal increased ABA accumulation and negatively affected photosynthesis in all plants but primed-derived plants recovered faster than controls. We concluded that high temperature pulses during somatic embryogenesis resulted in transcriptomic and physiological changes in maritime pine plants that can increase their resilience to drought stress, since heat-primed plants exhibit permanent activation of mechanisms for cell protection and overexpression of stress pathways that pre-adapt them to respond more efficiently to soil water deficit.
000126526 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/AGL2016-76143-C4-04-R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-112627RB-C3
000126526 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126526 590__ $$a4.9$$b2023
000126526 592__ $$a1.179$$b2023
000126526 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b66 / 313 = 0.211$$c2023$$dQ1$$eT1
000126526 593__ $$aMedicine (miscellaneous)$$c2023$$dQ1
000126526 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b68 / 231 = 0.294$$c2023$$dQ2$$eT1
000126526 593__ $$aPhysical and Theoretical Chemistry$$c2023$$dQ1
000126526 593__ $$aComputer Science Applications$$c2023$$dQ1
000126526 593__ $$aInorganic Chemistry$$c2023$$dQ1
000126526 593__ $$aSpectroscopy$$c2023$$dQ1
000126526 593__ $$aOrganic Chemistry$$c2023$$dQ1
000126526 593__ $$aMolecular Biology$$c2023$$dQ2
000126526 593__ $$aCatalysis$$c2023$$dQ2
000126526 594__ $$a8.1$$b2023
000126526 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126526 700__ $$aGonzález-Mas, María del Carmen
000126526 700__ $$aRenau-Morata, Begoña
000126526 700__ $$aArrillaga, Isabel
000126526 700__ $$0(orcid)0000-0003-0582-5418$$aSales, Ester$$uUniversidad de Zaragoza
000126526 7102_ $$15011$$2705$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Producción Vegetal
000126526 773__ $$g24, 11 (2023), 9299 [21 pp.]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000126526 8564_ $$s4433957$$uhttps://zaguan.unizar.es/record/126526/files/texto_completo.pdf$$yVersión publicada
000126526 8564_ $$s2761614$$uhttps://zaguan.unizar.es/record/126526/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126526 909CO $$ooai:zaguan.unizar.es:126526$$particulos$$pdriver
000126526 951__ $$a2024-11-22-12:02:13
000126526 980__ $$aARTICLE