000126539 001__ 126539
000126539 005__ 20240731103349.0
000126539 0247_ $$2doi$$a10.3390/gels9060505
000126539 0248_ $$2sideral$$a133976
000126539 037__ $$aART-2023-133976
000126539 041__ $$aeng
000126539 100__ $$aPele, Karinna Georgiana
000126539 245__ $$aHydrocolloids of egg white and gelatin as a platform for hydrogel-based tissue engineering
000126539 260__ $$c2023
000126539 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126539 5203_ $$aInnovative materials are needed to produce scaffolds for various tissue engineering and regenerative medicine (TERM) applications, including tissue models. Materials derived from natural sources that offer low production costs, easy availability, and high bioactivity are highly preferred. Chicken egg white (EW) is an overlooked protein-based material. Whilst its combination with the biopolymer gelatin has been investigated in the food technology industry, mixed hydrocolloids of EW and gelatin have not been reported in TERM. This paper investigates these hydrocolloids as a suitable platform for hydrogel-based tissue engineering, including 2D coating films, miniaturized 3D hydrogels in microfluidic devices, and 3D hydrogel scaffolds. Rheological assessment of the hydrocolloid solutions suggested that temperature and EW concentration can be used to fine-tune the viscosity of the ensuing gels. Fabricated thin 2D hydrocolloid films presented globular nano-topography and in vitro cell work showed that the mixed hydrocolloids had increased cell growth compared with EW films. Results showed that hydrocolloids of EW and gelatin can be used for creating a 3D hydrogel environment for cell studies inside microfluidic devices. Finally, 3D hydrogel scaffolds were fabricated by sequential temperature-dependent gelation followed by chemical cross-linking of the polymeric network of the hydrogel for added mechanical strength and stability. These 3D hydrogel scaffolds displayed pores, lamellae, globular nano-topography, tunable mechanical properties, high affinity for water, and cell proliferation and penetration properties. In conclusion, the large range of properties and characteristics of these materials provide a strong potential for a large variety of TERM applications, including cancer models, organoid growth, compatibility with bioprinting, or implantable devices.
000126539 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E09-23R$$9info:eu-repo/grantAgreement/ES/DGA/LMP176-21$$9info:eu-repo/grantAgreement/EC/H2020/101018587/EU/Individual and Collective Migration of the Immune Cellular System/ICoMICS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101018587-ICoMICS$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113819RB-I00/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-033490-I$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2021-122409OB-C21
000126539 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126539 590__ $$a5.0$$b2023
000126539 592__ $$a0.674$$b2023
000126539 591__ $$aPOLYMER SCIENCE$$b14 / 94 = 0.149$$c2023$$dQ1$$eT1
000126539 593__ $$aPolymers and Plastics$$c2023$$dQ1
000126539 593__ $$aOrganic Chemistry$$c2023$$dQ2
000126539 593__ $$aBioengineering$$c2023$$dQ2
000126539 593__ $$aBiomaterials$$c2023$$dQ2
000126539 594__ $$a4.7$$b2023
000126539 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126539 700__ $$0(orcid)0000-0003-2212-447X$$aAmaveda, Hippolyte$$uUniversidad de Zaragoza
000126539 700__ $$0(orcid)0000-0003-4747-7327$$aMora, Mario$$uUniversidad de Zaragoza
000126539 700__ $$0(orcid)0000-0003-3459-8605$$aMarcuello, Carlos
000126539 700__ $$0(orcid)0000-0001-7460-5916$$aLostao, Anabel
000126539 700__ $$0(orcid)0000-0003-1958-4432$$aAlamán-Díez, Pilar$$uUniversidad de Zaragoza
000126539 700__ $$aPérez-Huertas, Salvador
000126539 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, María Ángeles$$uUniversidad de Zaragoza
000126539 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, José Manuel$$uUniversidad de Zaragoza
000126539 700__ $$0(orcid)0000-0001-7062-9099$$aGarcía-Gareta, Elena$$uUniversidad de Zaragoza
000126539 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000126539 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000126539 773__ $$g9, 6 (2023), 505 [22 pp.]$$pGels$$tGels$$x2310-2861
000126539 8564_ $$s8954723$$uhttps://zaguan.unizar.es/record/126539/files/texto_completo.pdf$$yVersión publicada
000126539 8564_ $$s2637248$$uhttps://zaguan.unizar.es/record/126539/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126539 909CO $$ooai:zaguan.unizar.es:126539$$particulos$$pdriver
000126539 951__ $$a2024-07-31-09:53:51
000126539 980__ $$aARTICLE