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Abstract: Electronic fetal monitoring (EFM) is widely used in intrapartum care as the standard
method for monitoring fetal well-being. Our objective was to employ machine learning algorithms to
predict acidemia by analyzing specific features extracted from the fetal heart signal within a 30 min
window, with a focus on the last deceleration occurring closest to delivery. To achieve this, we
conducted a case–control study involving 502 infants born at Miguel Servet University Hospital in
Spain, maintaining a 1:1 ratio between cases and controls. Neonatal acidemia was defined as a pH
level below 7.10 in the umbilical arterial blood. We constructed logistic regression, classification trees,
random forest, and neural network models by combining EFM features to predict acidemia. Model
validation included assessments of discrimination, calibration, and clinical utility. Our findings
revealed that the random forest model achieved the highest area under the receiver characteristic
curve (AUC) of 0.971, but logistic regression had the best specificity, 0.879, for a sensitivity of 0.95. In
terms of clinical utility, implementing a cutoff point of 31% in the logistic regression model would
prevent unnecessary cesarean sections in 51% of cases while missing only 5% of acidotic cases. By
combining the extracted variables from EFM recordings, we provide a practical tool to assist in
avoiding unnecessary cesarean sections.

Keywords: electronic fetal monitoring; fetal heart rate; acidemia; machine learning; clinical utility curve

1. Introduction

Electronic fetal monitoring (EFM) is currently the primary method used to monitor the
well-being of a fetus during labor. This method involves the continuous monitoring of two
vital signals: the fetal heart rate (FHR) and maternal uterine contractions (UC) [1]. However,
traditional methods of predicting fetal asphyxia based on the visual interpretation of FHR
recordings or the categorization of FHR parameters have limited accuracy [2].
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The objective of studying FHR signals is to quantify the amount of information they
contain. The accuracy of traditional categorization systems for predicting acidemia based
on FHR parameters, such as guidelines like those of the American College of Obstetricians
and Gynecologists (ACOG) [3,4], is limited [5]. Additionally, there is low interobserver
agreement among experts [6]. Therefore, modeling EFM characteristics using machine
learning algorithms has become more important than visual interpretation of the signal.

Recent efforts to improve the diagnosis of acidemia have focused on proposing novel
predictors derived from fetal cardiotocography (CTG) and integrating them with existing
features. Previous studies have shown that factors such as deceleration physiology and
specific parameters like deceleration area or fetal resilience are important in predicting
fetal asphyxia [7–9]. The total area of deceleration [7,8] holds special relevance as it reflects
the cumulative duration and severity of decelerations observed during fetal monitoring.
Decelerations in the fetal heart rate serve as indicators of potential distress or compromised
oxygen supply to the fetus. The duration of reperfusion [9], which refers to the restoration
of blood flow, can impact cerebral oxygenation. Short intervals between decelerations (less
than 2–3 min) may lead to fetal adaptation towards acidosis (an increase in blood acid
levels) and progressive hypotension (low blood pressure). This implies that inadequate
time for reperfusion between decelerations can have negative effects on fetal well-being.

Animal models, such as sheep fetuses, have provided insights into the fetal heart rate
response to hypoxia [10]. Characteristics of decelerations, including their duration, severity,
and shape, offer valuable information about the fetal adaptive response and the extent of
oxygen deprivation. The deceleration pattern in the fetal heart rate can vary based on the
duration and severity of hypoxia. Furthermore, the shape and slope of the deceleration
pattern, particularly the descending limb, exhibit changes in response to hypoxia. These
animal models have also shed light on the underlying physiological mechanisms associated
with the fetal heart rate response to hypoxia. Sensitization to the vagal response of the
chemoreflex has been implicated in the increased slope of decelerations during prolonged
hypoxia. This suggests that the activation of specific neural pathways and chemoreceptors
plays a role in modulating the fetal heart rate during oxygen deprivation.

Moreover, the final window slope is considered a valuable tool for grading the fetal
adaptive response during childbirth [11]. This indicates that the slope of the deceleration
pattern can provide crucial information about the fetal response to the stressors encountered
during labor and delivery.

Additionally, automated systems have the capability to extract data on the fetal heart
rate (FHR) [12], and signal processing techniques like fractal analysis can be utilized to
identify patterns [13,14]. Machine learning algorithms possess the ability to handle vast
amounts of data derived from the FHR signal and identify patterns that may not be easily
discernible through traditional methods, enabling the analysis of complex relationships [15].
This is particularly crucial in predicting acidemia, as subtle changes in the FHR signal can
indicate the onset of fetal distress [16,17].

The process flow of these models, illustrated in Figure 1, encompasses the essential
steps for prediction: data extraction, feature definition, data modeling, and subsequent
validation. In intrapartum EFM, an ultrasound transducer is commonly used to externally
monitor the fetal heart rate (FHR). The transducer comprises crystals that generate ultra-
sound waves by converting electrical energy through the piezoelectric effect. Placed on the
mother’s abdomen, the transducer produces a waveform that can be analyzed to derive the
FHR [18,19].

Central monitoring systems have been developed to enable healthcare providers
to monitor multiple fetal signals from various locations simultaneously. These systems
typically consist of a computer equipped with specialized software and several external
monitors that are connected to the computer. The computer screen displays the real-
time continuous recording of the fetal heart rate (FHR) and uterine contractions. This
allows healthcare providers to closely observe the fetal signals and detect any changes or
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abnormalities that may necessitate intervention. The signals can also be printed for further
analysis [20].
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Interpreting patterns in the fetal heart rate can be complex, and misinterpretation can
result in unnecessary interventions such as cesarean sections and operative deliveries [16].
Machine learning algorithms provide a wide range of methodologies to analyze FHR data.
Da Silva Neto et al. conducted an extensive review in this context [21]. They distinguished
between studies that offer a complete computer-aided diagnosis system [15,22–24] and
those that utilize the signal to enhance fetal state detection [24–38].

Regarding the algorithms utilized, decision trees [16,30], random forest [17,29], adaptive boost-
ing [16], support vector machines [21,23,26–28,30], artificial neural networks [17,21,26,30,34–37],
K-nearest neighbor [21,26], convolutional neural networks [24,29,31,32,34,38], fuzzy ap-
proach [28,37], Naïve Bayes [28], deep Gaussian processes [33], and deep-ANFIS mod-
els [37] have been considered to enhance acidemia prediction.

Overall, machine learning algorithms offer promising avenues for improving the
accuracy of fetal acidemia prediction, based on the FHR signal or the features extracted
from it.

Another crucial aspect in constructing acidemia prediction models is the time window
during which the FHR signal is analyzed. Traditionally, models have considered time
periods ranging from 30 to 60 min. In this study, we hypothesize that the closer the
recording is taken to delivery, the clearer the characteristics associated with hypoxia will
be. Therefore, we focus on the variables obtained from the signal within the last 30 min
before delivery, as well as during the last deceleration.

Utilizing these extracted variables, we employ various machine learning techniques,
including logistic regression, classification trees, random forest, and deep neural networks.
Going beyond previous research, our study examines the practical benefits of our model in
terms of minimizing misclassified cases of acidosis and avoiding unnecessary cesarean sec-
tions at different threshold points. This aspect, often overlooked in previous studies, holds
significant importance as it serves as the primary objective in this type of investigation.

2. Material and Methods
2.1. Data Recruitment

The study was conducted as a retrospective case–control analysis involving 10,362 de-
liveries. The data for this analysis were collected from pregnancies that occurred between
June 2017 and December 2021 at Miguel Servet University Hospital in Zaragoza, Spain.
The study enrolled pregnancies that met the following criteria: singleton term gestations
ranging from 37 to 42 weeks, absence of known fetal anomalies, cephalic presentation of
the fetus, and the presence of a deceleration pattern in electronic fetal monitoring. The
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deceleration pattern was characterized by the presence of two or more decelerations in the
last 30 min.

Exclusion criteria were applied, including factors such as a sentinel event like cord
prolapse, uterine rupture, or shoulder dystocia, EFM recordings with a duration of fewer
than 30 min, recurring issues that hindered the evaluation of EFM, less than 15 min having
elapsed between the final monitoring and delivery, as well as cases where active labor had
not commenced. The study received approval from the Clinical Research Ethics Committee
of Aragon (CEICA, PI 21/495).

The study aimed to assess neonatal acidemia, characterized by a pH level less than 7.10
determined through arterial cord blood measurements at birth. Out of the initial cohort of
10,362 women, 337 infants (3.3%) were identified as acidotic. Figure 2 presents a flowchart
outlining the study, where 113 acidemic fetuses were excluded from the analysis due to not
meeting the criteria. Among the remaining participants, 224 infants with arterial acidemia
were included as cases, while 278 infants were chosen as controls. The selection of the
control group followed a non-randomized 1:1 consecutive method, where each selected
control was chronologically consecutive to a case.
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The study collected maternal and pregnancy data, including various factors such
as maternal characteristics (e.g., age, nulliparity), type of labor, and neonatal character-
istics (e.g., gestational age, birth weight, fetal gender, Apgar score at 5 min), as well as
pH characteristics.

2.2. Electronic Fetal Monitoring

To ensure fetal well-being, a Corometrix 256CX fetal activity supervisor was used for
monitoring. This involved the use of two sensors: an ultrasonic transducer for capturing the
electrocardiographic (ECG) fetal activity and a Tocotonometer transducer for monitoring
uterine activity. These sensors were securely attached to the mother using binding bands,
allowing obstetricians to continuously analyze the signals from the later stages of pregnancy
until delivery.

The analysis and interpretation of the EFM data from the last 30 min prior to delivery
were performed by an expert obstetrician in the delivery section. The obstetrician, who was
unaware of the neonatal outcome, assessed non-ACOG (NICHD) parameters. These param-
eters included total reperfusion time and deceleration area, which were measured during
the 30 min preceding labor. Figure 3 shows the parameters required for their calculation.
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Figure 3. The analysis of intrapartum electronic fetal monitoring is performed at a rate of 1 cm/min.
The monitoring panel shows the fetal signal (above), which includes parameters such as decelerations
(y), reperfusion time (x), and deceleration depth (z). The mother’s uterine contractions, measured in
mm Hg (below), are not used for the analysis.

The electronic fetal monitoring (EFM) signal was divided into two segments: de-
celeration (y) and interdeceleration (x). The interdeceleration period, referred to as x,
represented the duration between decelerations. The duration of decelerations, denoted
as y, represented the time during which decelerations occurred. The depth of decelera-
tions was indicated as z. With these parameters (x, y, and z), the following measurements
were computed:

• Total reperfusion time: This parameter was calculated by adding up the duration,
measured in minutes, during which the fetus maintained a baseline state without
any deceleration within the last 30 min (∑nx

i=1 xi), where nx is the total number of
interdeceleration periods.

• Deceleration time: This parameter was determined by summing the duration, mea-
sured in minutes, of the period during which the fetus displayed decelerations within
the last 30 min (∑

ny
i=1 yi), where ny is the total number of deceleration periods.

• Total deceleration area: This parameter was computed by summing the areas of all the
decelerations. Each deceleration’s area was determined by multiplying the duration
of the deceleration in seconds by its maximum depth of fall from the baseline, given in
beats per minute, and dividing the result by two (∑

ny
i=1 yizi/2).

Additionally, various parameters related to the first and last decelerations were ana-
lyzed. These parameters encompassed amplitude, duration, drop, slope, area, fetal heart
rate (FHR), excess of deceleration, deceleration instability, and reduced deceleration. The
exploratory analysis revealed that the parameters associated with the last deceleration were
more significant in predicting acidemia compared to those of the initial period. This finding
aligns with the notion that information closer to delivery tends to be more informative.
Consequently, only the parameters related to the last deceleration were considered. Further-
more, the study introduced the concept of parameter evolution by defining the difference
between the last and first periods. A visual representation of the described parameters can
be found in Figure 4.
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Figure 4. Calculation of slope: The slope is determined by calculating the ratio between the amplitude
of the fall of the deceleration in bpm (represented by the downward blue line) and the duration in
seconds of the fall of the descending limb of the deceleration (measured from the basal level to the
nadir or trough) (shown as the horizontal blue line).

2.3. Statistical Analysis
2.3.1. Model Building

A descriptive analysis of the data was performed to compare infants with acidosis
and those without acidosis. Continuous variables were summarized using the median and
interquartile range (IQR), while categorical variables were summarized using the absolute
and relative frequency for each category. To assess the differences between the acidotic
and non-acidotic groups for continuous and categorical data, the Mann–Whitney test or
chi-square test was used, respectively.

To predict acidosis, various machine learning models were constructed, including
logistic regression models, classification trees, random forest, one-hidden layer neural net-
works, and multi-layer perceptron neural networks. The original database was randomly
divided into training (70%) and validation (30%) datasets to develop and evaluate these
models. It was ensured that both groups had an equal proportion of acidotic cases.

The statistical analyses were conducted using the R programming language version
4.2.2 (The R Foundation for Statistical Computing, Vienna, Austria). Several libraries
were utilized, including regplot, rpart, randomForestSRC, nnet, neuralnet, keras, and
NeuralNetTools [39].

2.3.2. Model Validation

For the validation, the models were evaluated through calibration, discrimination, and
clinical utility. The calibration curve was used to visually assess the agreement between
predicted values and actual outcomes, with a diagonal line indicating perfect calibration.
Additionally, two informative parameters, ‘intercept’ (calibration-in-the-large) and ‘slope,’
were examined. The ‘intercept’ quantifies the disparity between the average predictions
and average outcomes, while the ‘slope’ indicates the average influence of predictions on
the outcome [40].

The discrimination was assessed using the receiver operating characteristic (ROC)
curve. The ROC curve is a plot of pairs of sensitivity (true positive rate, y-axis) versus
1-specificity (false positive rate, x-axis) obtained for different cut-off values of acidemia
probability. The area under the ROC curve (AUC) is a parameter that summarizes the
discrimination ability of a predictive model. The AUC measures the probability that the
model assigns a higher probability of being acidotic to an actual acidotic case compared
to a non-acidotic case. It has a range of 0 to 1, where 0.5 indicates a random model, 0.7
is considered acceptable, 0.8 suggests a good model, 0.9 indicates an excellent model,
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and 1 represents perfect discrimination. The 95% confidence intervals for the AUC were
calculated using DeLong estimation [41].

Furthermore, we investigated and compared the specificities for various sensitivities
thresholds (0.8, 0.85, 0.9, 0.95) using a proportion test.

Additionally, we assessed the practical applicability of the developed machine learning
models by evaluating their clinical usefulness. This evaluation involved treating the
prediction models as dichotomous classification models, using a specific cutoff point to
distinguish between positive (1) and negative (0) individuals above or below the threshold.
To evaluate the clinical utility, we employed the clinical utility curve [42]. This curve
utilizes the threshold probability on the x-axis to identify neonates as acidotic, while the
y-axis represents the percentage of two distinct measures. The first measure indicates the
percentage of acidotic infants that were incorrectly classified below the chosen cutoff point,
and the second measure represents the number of infants falling below the cutoff point.
By examining this curve for different cutoff points, we can determine the percentage of
misclassified acidotic fetuses and the fetuses with a very low risk of acidemia who can be
spared unnecessary cesarean sections due to fetal well-being concerns. These parameters
are crucial in clinical practice.

The rms and pROC R libraries and the CUC R code function were used for valida-
tion purposes.

3. Results
3.1. Descriptive Characteristics

Table 1 provides an overview of the maternal and perinatal characteristics. We ob-
served a higher prevalence of nulliparity in the acidotic group (p < 0.001). Fetal growth
restriction was more frequently observed in the acidotic group (15.47%) compared to the
non-acidotic group (10.79%), with statistically significant differences (p = 0.011). Addition-
ally, the incidence of cesarean section was twice as high in the acidotic cases (23.66% vs.
8.99%). The median values of arterial and venous pH were 7.06 and 7.15, respectively, in
the acidotic and non-acidotic groups, showing a significant difference (p < 0.001).

Table 1. Maternal characteristics and perinatal results.

Total Sample n = 502 Non-Acidotic n = 278 Acidotic n = 224 p-Value

Maternal age 34 (30–37) 34 (30–36) 34 (30–37) 0.440
Nulliparity 302 (60.16%) 148 (53.24%) 149 (66.52%) <0.001

Age gestational 280.5 (274–286) 280 (273.75–286) 281 (274.25–286) 0.205
Sex

0.87Male 262 (52.19%) 146 (52.51) 116 (51.78)
Female 240 (47.81%) 132 (47.48) 108 (48.21)

Newborn percentile weight 3251.74 (471.07) 3281.09 (454.45) 3215.31 (489.34) 0.123
p < 10 73 (14.54) 30 (10.79%) 43 (15.47%) 0.011

>90 60 (11.95) 33 (11.87%) 27 (12.05%) 0.999
Birth eutocic 303 (60.36%) 193 (69.42%) 110 (49.11%) <0.001

Instrumental delivery 121 (24.1%) 60 (21.58%) 61 (27.23%) 0.141
Cesarean section 78 (15.54%) 25 (8.99%) 53 (23.66%) <0.001

Apgar 5 m < 7 36 (7.17%) 4 (1.44%) 32 (14.29) <0.001
Umbilical arterial pH 7.12 (7.07–7.20) 7.18 (7.14–7.27) 7.06 (7.01–7.09) <0.001
Umbilical venous pH 7.18 (7.13–7.22) 7.23 (7.18–7.26) 7.15 (7.09–7.19) <0.001

In Table 2, we provide a comparative analysis of the deceleration area and reperfusion
time measurements during the last 30 min of fetal ECG among the acidotic groups. We also
present the parameters measured during the last deceleration of the fetal ECG and their
difference from the first deceleration. Additionally, we include the odds ratio and the AUC
of univariate logistic regression models for all predictor variables to predict acidosis.
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Table 2. Descriptive characteristics and prediction ability of the parameters of the study. bpm: beats
per minute; FHR: fetal heart rate.

Total n = 502 Non Acidotic n = 278 Acidotic n = 224 p-Value Odds Ratio AUC

30 min window

Deceleration range 14.16 (7.71, 22.54) 9.71 (5.37, 15.42) 20.93 (13.75, 28.65) <0.001 1.141 (1.112, 1.171) 0.807
Reperfusion time 19.35 (15.37, 23.20) 21.69 (18.10, 25.12) 17.04 (13.86, 19.10) <0.001 0.822 (0.787, 0.859) 0.750

Final deceleration window

Amplitude 72.99 (54.94, 87.04) 60.06 (49.96, 74.92) 84.87 (74.18, 95.11) <0.001 1.063 (1.050, 1.076) 0.796
Duration 71.25 (59.88, 90.69) 61.8 (55.68, 89.92) 80.9 (64.32, 100.14) <0.001 1.023 (1.015, 1.030) 0.670
Drop 32.63 (23.26, 46.51) 40.9 (30.79, 53.47) 23.96 (19.18, 32.32) <0.001 0.933 (0.918, 0.947) 0.792
Slope 2.08 (1.31, 3.47) 1.57 (1.01, 2.05) 3.51 (2.49, 4.69) <0.001 3.331 (2.681, 4.138) 0.853
Area 2.51 (1.89, 3.71) 2.15 (1.6, 2.72) 3.55 (2.45, 4.69) <0.001 2.470 (2.048, 2.979) 0.781
FHR (bpm) 155 (145, 165) 150 (140, 160) 160 (150, 170) <0.001 1.043 (1.029, 1.057) 0.664
Overshoot 67 (13.35%) 24 (8.63%) 43 (19.19%) 0.001 2.514 (1.473, 4.291) 0.552
Inestability 188 (37.45%) 50 (17.98%) 138 (61.61%) <0.001 7.317 (4.867, 11.000) 0.718
Reduced variability 110 (21.9%) 38 (13.67%) 72 (32.14%) <0.001 2.992 (1.922, 4.656) 0.592

Initial window

Amplitude (bpm) 6.12 (−1.97, 19.63) 4.16 (−4.11, 13.11) 12.32 (1.32, 24.38) <0.001 1.023 (1.013, 1.034) 0.631
Duration (s) 2.15 (−7.31, 14.44) 1.31 (−4.71, 13.45) 3.90 (−8.76, 23.55) 0.136 1.008 (1.001, 1.015) 0.538
Drop (sg) −1.41 (−10.84, 6.24) −1.62 (−12.47, 8.11) −0.78 (−8.72, 5.04) 0.611 1.001(0.991, 1.012) 0.513
Slope (bpm/sg) 0.29 (−0.24, 1.01) 0.24 (−0.22, 0.59) 0.64 (−0.29, 1.70) <0.001 1.325 (1.154, 1.520) 0.599
Area (mm2) 32.41 (−19.11, 99.12) 17.20 (−25.10, 54.57) 70.28 (−1.05, 163.74) <0.001 1.004 (1.003, 1.006) 0.657
FHR (bpm) 0 (0, 10) 0 (0, 5) 5 (0, 15) <0.001 1.006 (1.004, 1.008) 0.651
Saltatory Pattern 88 (17.52%) 32 (11.51%) 56 (23.14%) <0.001 2.643 (1.506. 4.638) 0.572

The variables measured during the 30 min fetal monitoring window demonstrate good
discriminatory ability. The deceleration area achieves an AUC value of 0.807, while the
reperfusion time exhibits a slightly lower value of 0.750. When considering the parameters
of the last deceleration, the slope of the deceleration demonstrates the highest AUC value
of 0.853, surpassing those measured over the entire 30 min period.

3.2. Multivariate Prediction Models

In order to predict acidemia, we employed both conventional and machine learning
approaches for classification problems. The conventional approach involved utilizing the
stepwise logistic regression model. Additionally, we utilized machine learning algorithms
such as classification trees, random forest, and artificial neural networks. Models were built
using training data, and their discrimination, calibration, and clinical utility were estimated
using validation data.

3.2.1. Logistic Regression

The construction of the logistic regression model involved a stepwise selection process,
employing a backward/forward method. This iterative process involved removing vari-
ables based on an improvement in the Akaike index, while also considering the inclusion
of variables that were removed from the model if their inclusion improved the index at
any step. Table 3 displays the variables that were found to be statistically significant in the
multivariate analysis.

To illustrate the weight of the variables in the prediction model, we provide a nomo-
gram in Figure 5. The nomogram shows the weight of variables in the model. For each
individual, a score is assigned to each variable on the upper axis. By summing up these
scores, a total score is obtained, which provides us with the probability of acidosis on the
lower axis. Considering the variability of points assigned on the nomogram, the variables
that show the most difference are the duration, the drop, and the drop difference. In these
variables, we observe more variation among individuals, but both the drop and the drop
difference do not yield very high scores compared to the drop. On the other hand, the
duration difference, slope, and deceleration area exhibit reduced variability, but due to their
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high scores, even slight variations within their range can be highly significant in providing
a high probability of acidosis.

Table 3. Multivariate logistic regression model.

Odds Ratio (95% CI) p-Value

30 min window

Deceleration area 1.121 (1.064, 1.189) <0.001

Final deceleration window

Duration (s) 1.157 (1.117, 1.209) <0.001

Drop (s) 0.809 (0.743, 0.871) <0.001

Slope (bpm/sg) 2.814 (1.541, 5.523) 0.001

Difference between Final and Initial deceleration window

Duration (s) 0.950 (0.925, 0.974) <0.001

(s) 1.133 (1.088, 1.188) <0.001

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 24 
 

inclusion of variables that were removed from the model if their inclusion improved the 
index at any step. Table 3 displays the variables that were found to be statistically signifi-
cant in the multivariate analysis. 

Table 3. Multivariate logistic regression model. 

 Odds Ratio (95% CI) p-Value 
30 min window 

Deceleration area 1.121 (1.064, 1.189) <0.001 
Final deceleration window 

Duration (s) 1.157 (1.117, 1.209) <0.001 
Drop (s) 0.809 (0.743, 0.871) <0.001 

Slope (bpm/sg) 2.814 (1.541, 5.523) 0.001 
Difference between Final and Initial deceleration window 

Duration (s) 0.950 (0.925, 0.974) <0.001 
(s) 1.133 (1.088, 1.188) <0.001 

To illustrate the weight of the variables in the prediction model, we provide a nomo-
gram in Figure 5. The nomogram shows the weight of variables in the model. For each 
individual, a score is assigned to each variable on the upper axis. By summing up these 
scores, a total score is obtained, which provides us with the probability of acidosis on the 
lower axis. Considering the variability of points assigned on the nomogram, the variables 
that show the most difference are the duration, the drop, and the drop difference. In these 
variables, we observe more variation among individuals, but both the drop and the drop 
difference do not yield very high scores compared to the drop. On the other hand, the 
duration difference, slope, and deceleration area exhibit reduced variability, but due to 
their high scores, even slight variations within their range can be highly significant in 
providing a high probability of acidosis. 

 
Figure 5. Nomogram for the multivariate logistic regression model. 

3.2.2. Classification Trees 
Classification trees are recursive partition models that minimize the impurity of the 

classes defined by the partition. They provide a simple classification system that is easy 
to implement, but they often lack high discrimination ability. In this study, we used the 
Gini index as the loss function and set the minimum number of observations required for 
a split to 20 in a node. Additionally, we set the minimum number of observations in any 

Figure 5. Nomogram for the multivariate logistic regression model.

3.2.2. Classification Trees

Classification trees are recursive partition models that minimize the impurity of the
classes defined by the partition. They provide a simple classification system that is easy to
implement, but they often lack high discrimination ability. In this study, we used the Gini
index as the loss function and set the minimum number of observations required for a split
to 20 in a node. Additionally, we set the minimum number of observations in any terminal
node to seven and limited the maximum depth of any node in the final tree to 30. Figure 6
displays the classification tree.

The slope is the variable that best discriminates in the first node, followed by the
duration of the deceleration on the second level, and the duration for the left branch
or the reperfusion time for the right branch in the third level. To assess the impact of
predictor variables on acidemia prediction, we present the variable importance (VIMP)
plot in Figure 7. The VIMP quantifies the difference in prediction error when a predictor is
perturbed by applying a permutation that assigns the variable to a terminal node different
from its original assignment. These calculations are performed for each tree in the model,
resulting in the Breiman–Cutler Variable VIMP [43]. The three variables that exerted the
most influence on acidemia prediction were the slope, the drop, and the duration of the
last deceleration window.
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3.2.3. Random Forest

Random forests consist of an ensemble of classification trees, where each tree is trained
using a unique bootstrap sample and a different combination of variables. This approach
ensures diversity among the trees, resulting in a more robust model. For our analysis, we
utilized a sample size of 222, which corresponds to approximately 60% of the total data,
to build each tree. The splitting rule employed was Gini, and we considered 10 random
split points. Furthermore, we added a total of 300 trees to the ensemble, as this number
was found to be reasonable based on the reduction in prediction error depicted in Figure 8.
The error rate was evaluated for the non-acidotic cases (0), acidotic cases (1), and all data,
using the out-of-bag (OOB) error estimation. The data not used for building each tree were
used to estimate prediction error, and an average prediction error was estimated.
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To optimize the terminal node size of the forest and the number of variables used
to train each tree, we employed a tuning optimization parameter. The results of this
optimization are depicted in Figure 9. The best-performing model was achieved with a
minimum size of three for the terminal node and by training each tree with six variables.

Figure 10 illustrates the variable importance in the random forest, highlighting the
most significant variables. It is noteworthy that in a more robust model like the ran-
dom forest model, the importance of the slope in the last deceleration window becomes
increasingly prominent.

3.2.4. Neuronal Networks

We utilized two distinct neural networks for training purposes. The first network
employed a classical perceptron architecture with a single hidden layer. The neural network
was trained with different architectures, using different random initial weights and training
parameters. We experimented with learning rates of 0.05 and 0.1, and used the hyperbolic
tangent (tanh) and logistic activation functions.

tanh(x) =
ex − e−x

ex + e−x ; logistic(x) =
1

1 + e−x

The best model was attained using an architecture of 18-5-1, indicating 18 input nodes,
5 nodes in the hidden layer, and 1 output node. A total of 101 weights were estimated,
and the logistic activation function was used. The optimization function employed was
cross-entropy, which measures the disparity between predictions and the actual occurrence
of acidemia. The architecture of the network is visually represented in Figure 11, with
positive weights depicted as black lines and negative weights shown as grey lines. The
thickness of each line corresponds to the relative magnitude of the weight it represents.
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Figure 11. Neural network architecture with input (I), hidden (H), and output (O) layers. (B) is the
result obtained after applying the activation function.

Figure 12 illustrates the variable importance plot for the multilayer perceptron, uti-
lizing the methodology proposed by Garson in 1991 [44]. This approach involves decon-
structing the model weights to determine the relative importance of explanatory variables
for a single response within a supervised neural network. The variables that exerted the
greatest influence were the drop, slope, and duration of the last deceleration time window.
It is noteworthy that, contrary to expectations, the drop in the deceleration, rather than the
slope, emerged as the most significant variable in this model.
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Figure 12. Variable importance in the neural network. Abs_V: absence of variability; FHR: fetal
heart rate; Inest: instability; d_DArea: difference in deceleration area; d_Sl: difference in slope;
Darea: deceleration area; d_amp: difference in amplitude; Rep_t: reperfusion time; d_dur: difference
in duration; d_FHR: difference in fetal heart rate; Saltat: saltatory pattern; Dur: duration; Red_V:
reduced variability; Nor_V: normal variability; d_drop: difference in drop; Ampl: amplitude.

Additionally, a multilayer perceptron with two hidden layers was trained. We explored

as an activation function the ReLU f (x) =

{
x i f x > 0
0 i f x ≤ 0

, linear f (x) = x, and sigmoid

f (x) = 1
1+e−x , the learning rate was fixed as 0.01, the number of epochs xplored ranged

from 20 to 400, and the number of units of the hidden layer was set as 32, 64 or 128. The
architecture of the best network was 16-64-32-2, with 3234 weights estimated. The activation
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function for the first and second hidden layers was ReLU, and softmax was used for the
output layer. The loss function employed was categorical crossentropy, with the optimizer
set as rmsprop, and the metric used for optimization was accuracy. The model was trained
for 30 epochs, with a batch size of 128, and a validation split of 0.2 was used to estimate
the convergence, as shown in Figure 13. Due to the complexity of this model, it is not
graphically represented.
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3.3. Validation of Developed Models

To evaluate the validity of the models, we utilized a separate set of validation data com-
prising 30% of the total dataset. This approach allowed us to assess the performance of the
machine learning models on data that were not used during the model development phase.

Regarding the probabilities provided by the models, we presented their distribution
in a comparative boxplot in Figure 14. All models exhibited a high discrimination ability.
The random forest and logistic regression models provided probabilities for acidotic cases
distributed across a wide range, while the neural network models produced probabilities
confined to a narrower range.
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The calibration of the models is in accordance with the analyzed distribution of proba-
bilities. Figure 15 displays calibration curves, where the x-axis corresponds to the predicted
probabilities and the y-axis represents the actual occurrence of acidosis. The logistic regres-
sion and classification tree models demonstrate good calibration. However, the random
forest model tends to overestimate low probabilities and underestimate high probabili-
ties. The perceptron with one hidden layer tends to overestimate high probabilities, while
the two-hidden-layer neural network underestimates low probabilities and overestimates
high probabilities.
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Regarding the discrimination ability, all models exhibit excellent discrimination with
AUC values very close to or above 0.9. The highest AUC is achieved by the random
forest model with an AUC of 0.971 (0.948, 0.993), which shows no statistically significant
difference compared to the logistic regression model (0.968 (0.940, 0.996), p = 0.846), the
neural network with one hidden layer (0.962 (0.35, 0.988), p = 0.352), or the neural network
with two hidden layers (0.925 (0.883, 0.967), p = 0.063). However, the random forest model
demonstrates superiority over the classification tree model (0.896 (0.839, 0.952), p = 0.004).
The ROC curves are displayed in Figure 16.

Although we observed similar behavior in terms of AUC values, it is crucial for the
predictive models to be effective in detecting acidotic cases, especially at high sensitivity
values. Table 4 summarizes the specificities for high sensitivity values. When considering a
sensitivity value of 0.9, the logistic regression model performs the best with a specificity of
0.928. It is followed by the neural network with one hidden layer (0.916, p = 0.712), random
forest (0.892, p = 0.182), classification tree (0.817, p < 0.001), and the neural network with
two hidden layers (0.782, p < 0.001).
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Table 4. Specificities for sensitivities values.

Specificities Logistic
Regression

Classification
Tree

Random
Forest

Neural
Network 1

Neural
Network 2

0.80 0.976 0.894 0.976 0.928 0.892

0.85 0.976 0.837 0.952 0.928 0.831

0.90 0.928 0.817 0.892 0.916 0.783

0.95 0.879 0.797 0.831 0.771 0.710

In order to effectively prioritize the identification of acidotic cases, our study em-
phasizes logistic regression, random forest, and one-hidden-layer perceptron as the most
optimal models. However, a crucial question remains: to what extent can these models
help reduce the number of unnecessary cesarean sections? This important aspect can be ex-
amined by analyzing the clinical utility curves presented in Figure 17. The x-axis represents
the potential threshold acidosis probability points used to classify individuals as acidotic
or non-acidotic. On the y-axis, we present the percentage of acidosis cases misclassified
below the selected cut-off point (indicated by a solid line) and the percentage of cesarean
sections that could be avoided (depicted with a dotted line).

By analyzing the clinical utility curve, we can determine the number of cesarean
sections that could be avoided by detecting a certain percentage of acidemia cases. For
example, when there is a 10% misclassification rate of acidemia cases, the logistic regression
and one-hidden-layer neural network models are able to avoid 56% of unnecessary cesarean
sections. The random forest model closely follows with a rate of 54% (p = 0.566), while the
two-hidden-layer neural network and classification tree models have lower rates of 48%
(p = 0.013) and 46% (p = 0.002), respectively.
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4. Discussion

In this study, we performed a comparative analysis of different machine learning
techniques to predict acidemia using fetal heart rate features obtained from continuous
electronic fetal monitoring during the last 30 min of the intrapartum period. Our predictor
variables included reperfusion time and deceleration time measured over the entire 30 min
period. Furthermore, we examined parameters of the last deceleration and their changes
within the 30 min timeframe. The slope of the last deceleration was found to be the most
predictive parameter, which has previously been studied in animal models.

Regarding FHR parameters related to acidosis, Shelley et al. (1971) [45] demonstrated
an inverse correlation between deceleration area, umbilical pH, and Apgar score at 1 min.
Beguin et al. (1975) [46] found a correlation between deceleration area and fetal pH values.
Tranquili et al. (2013) [47] established a correlation between the area of fetal bradycardia
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and the timing of acidemia, although their results were based on a small sample size of
thirty acidemic infants. Hamilton et al. (2011) [48] introduced the “sixty rule”, which
stated that decelerations with a depth below 60 bpm and lasting more than 60 s were more
discriminatory for metabolic acidemia. Cahill et al. (2018) [8] reported that a persistent
10 min period of category III decelerations was significantly associated with acidemia.
However, most records were classified as category II, and there was no association with
neonatal acidemia, despite achieving a better AUC (0.64) than category III. Furukawa et al.
(2019) [49] compared computerized systems and reported that deceleration area was the
best parameter for predicting neonatal acidemia.

Logistic regression has been commonly used as a machine learning technique to
combine FHR parameters. Marti et al. (2018) [7] found that ACOG parameters such as
minimal variability, the total number of late decelerations, prolonged decelerations, and
total deceleration area showed high discrimination power. Combining deceleration area
with maternal–fetal characteristics, they achieved a good discrimination ability of 0.83.
Cahill et al. (2018) [8] obtained similar results, where a combination of total deceleration
area, ever tachycardic, and ever moderate variability resulted in an AUC of 0.77.

Choliz-Ezquerro et al. (2022) [9] analyzed the total reperfusion time or inter-deceleration
time, which is crucial in assessing fetal oxygenation. They combined this parameter with
the number of decelerations, the number of decelerations greater than 60 s, the number
of decelerations greater than 60 beats per minute, the number of recurrent decelerations
greater than 60 beats per minute, the minimum depth of beats per minute, maternal parity,
and fetal weight that is large for gestational age. Although this model has higher accuracy
with an AUC of 0.826, it includes specific variables that may limit its clinical use. In fact,
they recommended using only the reperfusion time with a cutoff of 23.75 min in 30 min
(sensitivity of 90%, negative predictive value of 89%).

Understanding the normal fetal physiological compensation response is crucial for
accurately interpreting features observed in electronic fetal monitoring (EFM). EFM should
be viewed as a dynamic process rather than a static classification based on morphological
features [50].

The effectiveness of electronic fetal monitoring (EFM) as a predictor of fetal acidemia
has been the subject of criticism, and concerns have been raised regarding its medical
and legal implications [51]. Studies have shown that the total deceleration area and
reperfusion time are superior predictors of fetal acidemia compared to the ACOG category
III classification when considered as independent parameters. However, to achieve the best
prediction, these parameters may need to be combined with other EFM, fetal, or maternal
variables. This raises doubts about the validity of the current category system in existing
EFM guidelines.

Therefore, it is necessary to reevaluate and question the relevance and effectiveness of
the current category system in EFM guidelines. Alternative approaches, such as incorporat-
ing total deceleration area and reperfusion time along with other relevant variables, should
be explored to improve the prediction of fetal acidemia.

Experimental studies conducted on term sheep fetuses have confirmed that extending
the series of cordal occlusions leads to an increase in the slope of decelerations. This effect
is more pronounced and observed more frequently in cases of severe acidosis [11].

The advancement of data extraction and monitoring devices necessitates the devel-
opment of new software for analyzing fetal heart rate (FHR) data. With the digitalization
of the FHR signal, it becomes feasible to process it using convolutional neural networks
(CNNs) or more complex encoder–decoder deep learning architectures for acidemia predic-
tion. In the work by Tang [38], the MKNet model is introduced, which utilizes a CNN and
achieves an impressive AUC value of 0.95. The author suggests its application in real-time
fetal health monitoring using portable devices. Similarly, Zhao [16] also employs a CNN
approach and achieves an AUC above 0.95 through a 10-fold cross-validation procedure
for prediction purposes. Computer-aided diagnosis systems have shown lower predictive
ability; Cömert [15] found a sensitivity of 76.83% and specificity of 78.27%, although An-
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isha [26] demonstrated an AUC of 0.96 for detecting cardiac anomalies. Despite the high
accuracy demonstrated by some models, there is a lack of research on their clinical utility.

An alternative approach involves extracting variables from the fetal heart rate (FHR)
signal and incorporating them into binary classification models for acidemia prediction. In
our analysis, we trained logistic regression, classification trees, random forest, and neural
networks using readily available FHR features as predictor variables from the electronic
fetal monitoring (EFM) recordings. Among these models, the random forest algorithm
demonstrated the highest performance in terms of AUC. The random forest model, known
for its additive nature, provides robust predictions by combining multiple trees constructed
with diverse sets of data and variables. In our study, the optimal model was achieved using
300 trees, with each tree exploring the predictive capacity of variables on different data
samples. To prevent overfitting, we limited the number of cases at a terminal node to a
maximum of three in each tree.

Although the AUC is the most commonly used parameter to validate a predictive
model, in practice, we need to correctly classify a high percentage of acidemia cases.
Therefore, we are interested in the points on the ROC curve that correspond to high
sensitivity. In this case, logistic regression was the best model, only failing to classify 5% of
acidemia cases, achieving a specificity of 87.9%. However, our models demonstrated good
accuracy overall.

In terms of calibration analysis, logistic regression and random forest models showed
well-distributed probabilities of acidemia across a wide range of values. In contrast, neural
networks exhibited probabilities concentrated near 0 and 1, indicating overfitting. This
concentration made it difficult to determine a suitable threshold probability for distinguish-
ing acidotic and non-acidotic cases. Logistic regression and random forest models, being
more robust, allowed for a detailed analysis of the trade-offs between misclassifications
and avoided cesarean sections.

Notably, the logistic regression model demonstrated promising results by potentially
preventing 51% of unnecessary deliveries while experiencing only a minimal 5% loss in
correctly identifying acidotic cases.

In a similar vein, Zhao [16] employed an AdaBoost model that achieved a sensitivity of
92% and specificity of 90%, which closely aligns with our findings, emphasizing the robust-
ness of additive tree models. However, no information is available regarding the potential
reduction in cesarean sections through the misclassification of acidosis cases. Iraji [38], on
the other hand, achieved near-perfect classification results using neural networks, with a
sensitivity of 99% and specificity of 97%. Nevertheless, these exceptionally high values
would benefit from external validation for further confirmation.

In a meta-analysis conducted by Balayla [52], it was concluded that the use of AI
and computer analysis for EFM interpretation during labor does not improve neonatal
outcomes. However, their conclusions were solely based on risk ratio analysis. As illus-
trated in our study, while overall accuracy measures such as AUC may indicate comparable
model performance, a comprehensive validation process is essential to thoroughly assess
their effectiveness.

The strength of our study lies in the development of a classification model utilizing
machine learning algorithms applied to EFM features. Specifically, we combined a 30 min
period with variables extracted from the last deceleration before delivery and their pro-
gression over the subsequent 30 min. These predictor variables have previously exhibited
promising predictive capabilities for acidemia. However, few studies have integrated
them into a comprehensive predictive model utilizing various machine learning algo-
rithms. Moreover, our model demonstrated favorable clinical utility, making it applicable
in real-world clinical practice.

However, our study does have certain limitations. It was conducted retrospectively
and relied on data from a single hospital, thus necessitating external validation on a larger
scale for wider application.
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5. Conclusions

By utilizing FHR recordings, we have successfully developed machine learning models
for predicting acidemia. These models have demonstrated favorable accuracy, with an
AUC ranging from 0.896 for the classification tree, 0.926 and 0.962 for the two- and one-
hidden-layer neural networks, 0.968 for the logistic regression, to 0.971 for the random
forest model in the validation dataset. Given the critical importance of accurately detecting
acidosis, which is related to fetal hypoxia, the best model can be considered the one that
corresponds to a very high rate of acidemia detection. When aiming for a sensitivity of
90%, the specificities ranged from 0.783 for the two-hidden-layer neural network to 0.817
for the classification tree, 0.892 for the random forest, 0.916 for the one-hidden-layer neural
network, to 0.879 for the logistic regression model. For a sensitivity of 95%, the specificity of
the neural network decreased to 0.771, while the logistic regression model maintained the
highest specificity value of 0.879. Therefore, the logistic regression model can be considered
the best and most robust model for predicting acidosis.

We combined previously explored parameters, such as deceleration within the 30 min
window, with new parameters derived from the last deceleration (slope, drop, duration,
variation in duration, and drop), resulting in a highly accurate predictive model and a
user-friendly nomogram for their use. These variables can be routinely extracted from the
FHR signal, providing a practical tool for healthcare professionals. In clinical practice, the
nomogram provided by the logistic regression model can be implemented with a cutoff
point of 31% probability for acidemia. This threshold minimizes the occurrence of missed
acidemia cases (5%) while effectively preventing unnecessary cesarean sections in 51%
of cases.

Overall, our study demonstrates the effectiveness of machine learning models in
predicting acidemia using FHR recordings. The logistic regression model, along with the
developed nomogram, offers a valuable and user-friendly tool for healthcare providers to
make informed decisions and improve fetal health outcomes.

Author Contributions: Conceptualization, L.M.E., S.C. and R.S.-C.; methodology, L.M.E., B.C. and
J.E.-E.; software, J.E.-E., G.S.-E. and A.R.L.; validation, L.M.E., B.C., A.C.L.-M. and S.C.; formal
analysis, L.M.E. and R.S.-C.; investigation, S.C.; resources, L.M.E.; data curation, M.C.-E.; writing—
original draft preparation, L.M.E., B.C. and R.S.-C.; writing—review and editing, L.M.E., B.C., J.E.-E.,
M.C.-E., A.C.L.-M., A.R.L., G.S.-E., S.C. and R.S.-C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Government of Aragon, grant number T69_23D and Ministerio
de Ciencia e Innovación, MCIN/AEI/10.13039/501100011033, grant number PID2020-116873GB-I00.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Clinical Research Ethics Committee of Aragon (CEICA, PI 21/495).

Informed Consent Statement: Patient consent was waived due to the retrospective character of
the study.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nunes, I.; Ayres-de-Campos, D. Computer analysis of foetal monitoring signals. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 30,

68–78. [CrossRef]
2. Clark, S.L.; Hamilton, E.F.; Garite, T.J.; Timmins, A.; Warrick, P.A.; Smith, S. The limits of electronic fetal heart rate monitoring in

the prevention of neonatal metabolic acidemia. Am. J. Obstet. Gynecol. 2017, 216, 163.e1–163.e6. [CrossRef] [PubMed]
3. American College of Obstetricians and Gynecologists. Fetal heart rate monitoring: Guidelines. ACOG Tech. Bull. 1974, 32, 1–10.
4. American College of Obstetricians and Gynecologists. Practice bulletin no. 116: Management of intrapartum fetal heart rate

tracings. Obstet. Gynecol. 2010, 116, 1232–1240. [CrossRef] [PubMed]
5. Zamora, C.; Chóliz, M.; Mejía, I.; Díaz de Terán, E.; Esteban, L.M.; Rivero, A.; Castán, B.; Andeyro, M.; Savirón, R. Diagnostic

capacity and interobserver variability in FIGO, ACOG, NICE and Chandraharan cardiotocographic guidelines to predict neonatal
acidemia. J. Matern. Fetal Neonatal Med. 2021, 80, 6479.

https://doi.org/10.1016/j.bpobgyn.2015.02.009
https://doi.org/10.1016/j.ajog.2016.10.009
https://www.ncbi.nlm.nih.gov/pubmed/27751795
https://doi.org/10.1097/AOG.0b013e3182004fa9
https://www.ncbi.nlm.nih.gov/pubmed/20966730


Appl. Sci. 2023, 13, 7478 21 of 22

6. Rei, M.; Tavares, S.; Pinto, P.; Machado, A.P.; Monteiro, S.; Costa, A.; Costa-Santos, C.; Bernardes, J.; Ayres-De-Campos, D.
Interobserver agreement in CTG interpretation using the 2015 FIGO guidelines for intrapartum fetal monitoring. Eur. J. Obstet.
Gynecol. Reprod. Biol. 2016, 205, 27–31. [CrossRef] [PubMed]

7. Martí, S.; Lapresta, M.; Pascual, J.; Lapresta, C.; Castán, S. Deceleration area and fetal acidemia. J. Matern. Fetal Neonatal Med.
2017, 30, 2578–2584. [CrossRef]

8. Cahill, A.G.; Tuuli, M.G.; Stout, M.J.; López, J.D.; Macones, G.A. A prospective cohort study of fetal heart rate monitoring:
Deceleration area is predictive of fetal acidemia. Am. J. Obstet. Gynecol. 2018, 218, 523.e1–523.e12. [CrossRef]

9. Chóliz, M.; Savirón, R.; Esteban, L.M.; Zamora, C.; Espiau, A.; Castán, B.; Castán Mateo, S. Total intrapartum fetal reperfusión
time (fetal resilience) and neonatal acidemia. J. Matern. Fetal Neonatal Med. 2021, 91, 5977.

10. Bennet, L.; Gunn, A.J. The fetal heart rate response to hypoxia: Insights from animal models. Clin. Perinatol. 2009, 36, 655–672.
[CrossRef]

11. Westgate, J.A.; Wibbens, B.; Bennet, L.; Wassink, G.; Parer, J.T.; Gunn, A.J. The intrapartum deceleration in center stage: A
physiologic approach to the interpretation of fetal heart rate changes in labor. Am. J. Obstet. Gynecol. 2007, 197, e1–e11. [CrossRef]
[PubMed]

12. Sbrollini, A.; Agostinelli, A.; Marcantoni, I.; Morettini, M.; Burattini, L.; Di Nardo, F.; Fioretti, S.; Burattini, L. eCTG: An automatic
procedure to extract digital cardiotocographic signals from digital images. Comput. Methods Programs Biomed. 2018, 156, 133–139.
[CrossRef]

13. Doret, M.; Helgason, H.; Abry, P.; Goncalves, P.; Gharib, C.; Gaucherand, P. Multifractal analysis of fetal heart rate variability in
fetuses with and without severe acidosis during labor. Am. J. Perinatol. 2011, 28, 259–266. [CrossRef] [PubMed]
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