000126552 001__ 126552
000126552 005__ 20240731103352.0
000126552 0247_ $$2doi$$a10.1177/20417314231177838
000126552 0248_ $$2sideral$$a134048
000126552 037__ $$aART-2023-134048
000126552 041__ $$aeng
000126552 100__ $$aLecina-Tejero, Óscar$$uUniversidad de Zaragoza
000126552 245__ $$aThe rise of mechanical metamaterials: Auxetic constructs for skin wound healing
000126552 260__ $$c2023
000126552 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126552 5203_ $$aAuxetic materials are known for their unique ability to expand/contract in multiple directions when stretched/compressed. In other words, they exhibit a negative Poisson’s ratio, which is usually positive for most of materials. This behavior appears in some biological tissues such as human skin, where it promotes wound healing by providing an enhanced mechanical support and facilitating cell migration. Skin tissue engineering has been a growing research topic in recent years, largely thanks to the rapid development of 3D printing techniques and technologies. The combination of computational studies with rapid manufacturing and tailored designs presents a huge potential for the future of personalized medicine. Overall, this review article provides a comprehensive overview of the current state of research on auxetic constructs for skin healing applications, highlighting the potential of auxetics as a promising treatment option for skin wounds. The article also identifies gaps in the current knowledge and suggests areas for future research. In particular, we discuss the designs, materials, manufacturing techniques, and also the computational and experimental studies on this topic.
000126552 536__ $$9info:eu-repo/grantAgreement/ES/DGA/LMP 176-21$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-033490-I$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-113819RB-I00
000126552 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000126552 590__ $$a6.7$$b2023
000126552 592__ $$a1.262$$b2023
000126552 591__ $$aCELL & TISSUE ENGINEERING$$b4 / 31 = 0.129$$c2023$$dQ1$$eT1
000126552 593__ $$aBiomaterials$$c2023$$dQ1
000126552 593__ $$aMedicine (miscellaneous)$$c2023$$dQ1
000126552 593__ $$aBiomedical Engineering$$c2023$$dQ1
000126552 594__ $$a11.6$$b2023
000126552 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126552 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, María Ángeles$$uUniversidad de Zaragoza
000126552 700__ $$0(orcid)0000-0001-7062-9099$$aGarcía-Gareta, Elena$$uUniversidad de Zaragoza
000126552 700__ $$0(orcid)0000-0002-3784-1140$$aBorau, Carlos$$uUniversidad de Zaragoza
000126552 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000126552 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000126552 773__ $$g14 (2023), [16 pp.]$$pJournal of Tissue Engineering$$tJournal of Tissue Engineering$$x2041-7314
000126552 8564_ $$s2237947$$uhttps://zaguan.unizar.es/record/126552/files/texto_completo.pdf$$yVersión publicada
000126552 8564_ $$s2541886$$uhttps://zaguan.unizar.es/record/126552/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126552 909CO $$ooai:zaguan.unizar.es:126552$$particulos$$pdriver
000126552 951__ $$a2024-07-31-09:54:58
000126552 980__ $$aARTICLE