000126560 001__ 126560
000126560 005__ 20240206150121.0
000126560 0247_ $$2doi$$a10.3390/geohazards4020009
000126560 0248_ $$2sideral$$a133971
000126560 037__ $$aART-2023-133971
000126560 041__ $$aeng
000126560 100__ $$0(orcid)0000-0003-4444-778X$$aVallés, Pablo$$uUniversidad de Zaragoza
000126560 245__ $$a2D numerical simulation of floods in Ebro river and analysis of boundary conditions to model the Mequinenza reservoir dam
000126560 260__ $$c2023
000126560 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126560 5203_ $$aThe computational simulation of rivers is a useful tool that can be applied in a wide range of situations from providing real time alerts to the design of future mitigation plans. However, for all the applications, there are two important requirements when modeling river behavior: accuracy and reasonable computational times. This target has led to recent developments in numerical models based on the full two-dimensional (2D) shallow water equations (SWE). This work presents a GPU accelerated 2D SW model for the simulation of flood events in real time. It is based on a well-balanced explicit first-order finite volume scheme able to run over dry beds without the numerical instabilities that are likely to occur when used in complex topography. The model is applied to reproduce a real event in the reach of the Ebro River (Spain) with a downstream reservoir, in which a study of the most appropriate boundary condition (BC) for modeling of the dam is assessed (time-dependent level condition and weir condition). The whole creation of the model is detailed in terms of mesh optimization and validation. The simulation results are compared with field data over the flood duration (up to 20 days), allowing an analysis of the performance and time saved by different GPU devices and with the different BCs. The high values of fit between observed and simulated results, as well as the computational times achieved, are encouraging to propose the use of the model as a forecasting system.
000126560 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000126560 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126560 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126560 700__ $$aEcheverribar, Isabel
000126560 700__ $$0(orcid)0000-0001-7056-6913$$aMairal, Juan$$uUniversidad de Zaragoza
000126560 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, Sergio$$uUniversidad de Zaragoza
000126560 700__ $$aFernández-Pato, Javier
000126560 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000126560 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000126560 773__ $$g4, 2 (2023), 136-156$$pGeoHazards$$tGeoHazards$$x2624-795X
000126560 8564_ $$s896904$$uhttps://zaguan.unizar.es/record/126560/files/texto_completo.pdf$$yVersión publicada
000126560 8564_ $$s2642387$$uhttps://zaguan.unizar.es/record/126560/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126560 909CO $$ooai:zaguan.unizar.es:126560$$particulos$$pdriver
000126560 951__ $$a2024-02-06-14:56:43
000126560 980__ $$aARTICLE