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Abstract: The computational simulation of rivers is a useful tool that can be applied in a wide range
of situations from providing real time alerts to the design of future mitigation plans. However, for
all the applications, there are two important requirements when modeling river behavior: accuracy
and reasonable computational times. This target has led to recent developments in numerical models
based on the full two-dimensional (2D) shallow water equations (SWE). This work presents a GPU
accelerated 2D SW model for the simulation of flood events in real time. It is based on a well-balanced
explicit first-order finite volume scheme able to run over dry beds without the numerical instabilities
that are likely to occur when used in complex topography. The model is applied to reproduce a real
event in the reach of the Ebro River (Spain) with a downstream reservoir, in which a study of the
most appropriate boundary condition (BC) for modeling of the dam is assessed (time-dependent
level condition and weir condition). The whole creation of the model is detailed in terms of mesh
optimization and validation. The simulation results are compared with field data over the flood
duration (up to 20 days), allowing an analysis of the performance and time saved by different GPU
devices and with the different BCs. The high values of fit between observed and simulated results,
as well as the computational times achieved, are encouraging to propose the use of the model as a
forecasting system.

Keywords: river flows; numerical simulation; shallow water equations; finite volume method; boundary
conditions

1. Introduction

For centuries, natural disasters have been a source of concern for human beings
due to the damage and losses they cause. In addition, in recent years, these losses and
their frequency have been on the rise [1], leading to increased concern from governments,
institutions and society in general. Within natural disasters, floods are one of the most
destructive extreme events [2] and are the second leading cause of natural-disaster-related
deaths in Spain, with 209 deaths between 2000 and 2019 [3]. They also entail a high expense
due to damage repair, with losses in Spain amounting to EUR 12,000 million in the period
between 2016 and 2020, with Zaragoza—located at NE of Spain—being the province with
the third highest economic damage in the agricultural sector in this period. Figure 1 shows
examples of such losses, demonstrating images of the surroundings of Zaragoza during
flooding of the Ebro River, which is the largest river in terms of discharge in Spain. In view
of these numbers, governments and public institutions require tools [4–9] and plans [10–12]
to foresee and mitigate the damage caused by these events. One of these tools is the use of
predictive models based on numerical simulations which are able to provide an accurate
description of the spatial and temporal evolution of flow [13–19].
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(a) (b)

Figure 1. Damage produced by a flood event in crops around Zaragoza (Spain): flooding in Pina de
Ebro (2015) (a) (Source: EFE) and flooding in Novillas (2018) (b) (Source: Guardia Civil).

Due to the physical complexity of these phenomena, it is common to consider ap-
proximations to simplify the equations describing the flow. Although a river flood event
is naturally a 3D problem, it is common to study it by averaging the equations in the
vertical coordinate to reduce the problem to two horizontal dimensions [13,20]. Practical
applications require a trade-off between spatial accuracy and computational efficiency [21],
so approximations that reduce the dimensions of the problem are frequently used. The shal-
low water model (SWE) is a widely used approach to simulate surface geophysical flows
in situations that involve large domains and long time scales [22–24]. This approach is
based on the assumption that horizontal scales are larger than vertical scales, which leads
to the possibility of neglecting vertical accelerations and assumes a hydrostatic pressure
distribution in the vertical direction. This is the basis of the dynamic non-linear 2D SWE
formulation. In some cases, the full dynamic equations are reduced in complexity by
neglecting inertial terms. Reductions of the SWE system can be used to model floods
with zero inertia models, which maintain the 2D framework and neglect terms that do not
govern the phenomena, although special attention must be paid to their limits [25]. Further
dimensional simplifications consider the average of the equations in the cross-section to re-
duce the formulation to a 1D approximation [14,26,27]. In large and complex flow domains,
as is the case of a river in a flood event, two-dimensional models are the most frequently
used to obtain the temporal and spatial description of the flow [13,20,21,25,28–33].

When modeling hydraulic structures present in the domain, the adopted different
numerical strategies are of wide variety not only when these structures govern all the
flow [34], but also if they only affect a part of the flow. For instance, when modeling
complete reservoirs affecting a part of river, several strategies can be considered. On one
hand, as the reservoir dynamics are close to quiescent equilibrium, some aggregated
dimensionless models can be used to model their presence [35–39]. When more detail is
required, the reservoir can be discretized [40] as a river extension by incorporating it to the
computational domain and the dam presence is introduced via boundary conditions with a
different hypothesis, as applied in this study.

To represent the behavior of a dam spillways, several boundary conditions can be used.
If the main objective is to model the backwater generated by the dam, a constant water
level with the main surface elevation of the reservoir can provide good results in terms
of discharge and modeling the river. However, if the level of the reservoir is a variable to
compute, which is a requirement of many applications focused on dam regulation, other,
more sophisticated BCs must be applied. In particular, when the physical characteristics of
the dam spillway are known, the outflow provided by the general discharge law of a dam
spillway can be imposed as a boundary condition, so the backwater is still generated but
the level is allowed to vary. Both strategies are analyzed in the this study.

Therefore, the main aim of this work is to study the region of the middle reach of the
Ebro river between Zaragoza and Mequinenza, both located in Aragón (Spain), as seen in
Figure 2. This region is not only of special interest due to the significant damage caused
by large floods that occur in the meandering flood prone areas in the first half of the
river in flood events, as seen in Figure 1a, but also because it contains a long reservoir,
the Mequinenza reservoir, limited by the Mequinenza dam downstream. In this work,
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a 2D model is used for the discretization of both the river and the reservoir in order to
compromise between computational efficiency and accuracy of the results. Therefore,
the main objectives are to obtain an accurate computational model setup to study the Ebro
River region and to optimize it, obtaining a predictive tool to foresee and mitigate potential
damage caused by flooding events. Moreover, the presence of a reservoir allows the study
of different boundary conditions that model dam spillways in order to obtain a realistic
temporal evolution of the surface water level in the reservoir.

(a) (b) (c)

Figure 2. Location of Spain in Europe (a); location of the Ebro River basin in Spain (b) and location of
the computational domain of the study in the basin (c).

For the simulation, the PEKA2D program [16], developed at the University of Zaragoza,
is applied to the mentioned river reach. A version of this program is included as computa-
tional core of the brand name RiverFlow2D® (Hydronia LLC, https://www.hydronia.com/,
accessed on 1 March 2023).

2. Governing Equations and Numerical Model

The governing equations and the numerical aspects of the scheme used can be found
in full detail in [41,42] and it has been extended to 2D unstructured meshes in [20]. Their
most important details are outlined in the following subsections.

2.1. 2D Shallow Water Equations

The mathematical model that describes the surface flow is given by the hyperbolic 2D
shallow water system of equations based on mass and momentum conservation [43]:

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
= S(U) (1)

where the conserved variables:

U =
(
h, qx, qy

)T (2)

are the water depth, h, and the unit discharge in x and y direction, qx = hu and qy = hv,
respectively, with (u, v) being the depth averaged components of the velocity. The fluxes of
these conserved variables are

F(U) =
(
hu, hu2 + 1

2 gh2, huv
)T, G(U) =

(
hv, huv, hv2 + 1

2 gh2
)T (3)

The source term for the mass conservation equation is zero because neither precipita-
tion, infiltration nor evaporation are included, assuming their contribution is practically
negligible during a flooding event. Finally, the momentum source terms are related to the
bed slopes and friction stresses:

S(U) =
(
0, gh(Sox − S f x), gh(Soy − S f y)

)T (4)

https://www.hydronia.com/
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The bed slopes represent the variation in the x and y directions of the bottom level, zb:

Sox = −∂zb
∂x

, Soy = −∂zb
∂y

(5)

and the friction stress components are given by:

S f x =
n2u
√

u2 + v2

h4/3 , S f y =
n2v
√

u2 + v2

h4/3 (6)

where n is Manning’s roughness coefficient [44].

2.2. Numerical Scheme

The system in Equation (1) must be solved numerically due to the lack of an analyt-
ical solution. For this purpose, an explicit upwind finite volume scheme, based on the
Roe–Riemann solver [45,46], is used in this case. From (1), in compact form, this can be
expressed as:

∂U
∂t

+
−→∇ · E(U) = S(U) (7)

where E =
(
F, G

)
. Integrating (7) in a control volume or cell, Ω, and applying the

divergence theorem to the second term, we obtain:

d
dt

∫
Ω

U dΩ +
∮

∂Ω
E(U) · n̂ dl =

∫
Ω

S(U) dΩ (8)

where ∂Ω is the contour of the control volume and n̂ is the outgoing unit vector normal to
the Ω volume. By discretizing (8) in time and space, the basis of the numerical method in
finite volumes is given by:

Ωi
Un+1

i −Un
i

∆t
+

3

∑
k=1

(δE)k · n̂k lk =
3

∑
k=1

Sk (9)

where Ωi is the area of cell i, n is the current time level and the number of neighboring cells
is 3 because triangular cells are used in this work (see, for example, Figure 3). In addition,
the fluxes E are evaluated at cell boundaries:

(δE)k = Ej − Ei (10)

where Ej is the flux value at cell Ωj, and shares a wall k of length lk with cell Ωi with a flux
value of Ei.

Uj2

Uj3

Ui

Uj1

lk

nij1
nij2

nij3

Figure 3. Diagram of the cells in a two-dimensional case with triangular cells.
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Considering the hyperbolic character of system (7), the Jacobian matrix normal to the
flow direction, E, can be defined as:

Jn =
∂En

∂U
=

∂(E · n̂)
∂U

=
∂F
∂U

nx +
∂G
∂U

ny (11)

The local value of the Jacobian matrix (11), J̃n k, at wall k is

J̃n k = P̃k Λ̃k P̃−1
k (12)

where Λ̃k is the diagonal matrix whose non-zero elements are the eigenvalues of the system
λ̃m, and P̃m is the matrix containing the eigenvectors of the system ẽm, providing a matrix
with three eigenvalues to the 2D model. The eigenvalues and eigenvectors of the Jacobian
matrix are:

λ̃1 = ũ · n̂− c̃ , λ̃2 = ũ · n̂ , λ̃3 = ũ · n̂ + c̃ (13)

ẽ1 =

 1
ũ− c̃ nx
ṽ− c̃ ny

 , ẽ2 =

 0
−c̃ ny
c̃ nx

 , ẽ3 =

 1
ũ + c̃ nx
ṽ + c̃ ny

 (14)

where ũ · n̂ = ũ nx + ṽ ny and c̃ is the celerity of the infinitesimal surface deformation
waves. The tilde variables represent an average state at each cell edge. Therefore, starting
from the expression (9), and using the eigenvalues and eigenvectors of the Jacobian matrix,
an updated expression at cell i is obtained:

Un+1
i = Un

i −
∆t
Ωi

3

∑
k=1

3

∑
m=1

[(
λ̃− γ̃ẽ

)m
k lk
]n

(15)

The time step ∆t is calculated dynamically throughout the simulation by:

∆t = CFL min
k,m

(
δxk

λ̃m
k

)
(16)

with 0 < CFL ≤ 1 to guarantee stability in the numerical scheme, where CFL is the
Courant–Friedrichs–Lewy number [47] and

δxk = min(χi, χj) (17)

where
χi =

Ωi
max

k
lk

(18)

Equation (15) is only solved in those cells where water is present and the flooded
boundary is not regulated but advances according to the flow dynamics. The method is
well designed to deal with this type of calculation ensuring accurate and robust results.

The time step depends, on one hand, on the dynamics of the problem to be solved
through λ̃m

k and, on the other hand, on the cell size chosen for the computational grid, given
by lk. Therefore, from (16), (17) and (18), it becomes clear that increasing the refinement of
the computational grid leads to smaller time steps, and therefore a higher computational
cost. For this reason, an unstructured mesh is used, in order not to restrict either the
accuracy of the results with a very coarse mesh over the whole domain or the time step ∆t
with a very fine mesh [28].
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3. Study Case and Model Setup
3.1. Study Case

The studied reach of the Ebro River is located between the city of Zaragoza and the
Mequinenza Dam. It is more than 200 km long and covers 722 km2 of surface area. Along
the river there are a few gauging stations managed by the Ebro River Authority (CHE,
www.chebro.es, accessed on 1 March 2023), where the evolution of the flow and surface
level are continuously (fortnightly) recorded. Their locations are represented in Figure 4.

Figure 4. Representation of the 2D simulation domain of the Ebro River with the most important
cities and gauging stations of CHE. The labels correspond to the official names of the gauging stations.

The area is continuously suffering from the damage provoked by these events, which
have even flooded the A-1107 motorway and collapsed the regional highway (ARA-1) in
Villafranca de Ebro (www.heraldo.es/noticias/aragon/2018/04/12/crecidas-del-ebro-las-
ultimas-riadas-aragon-1234800-300.html, accessed on 1 March 2023) during the 2015 event
(see Figure 1). In addition, it is an area of great importance due to the presence of the
Mequinenza reservoir, which runs along about 75 km of the river, and the regulation of
its dam. The first 25 km of the studied reach is characterized by meanders and associated
with important inundation areas. The final part, on the other hand, is characterized by the
reservoir vessel where water is practically at rest.

The Mequinenza reservoir, whose satellite view can be seen in Figure 5, covers a
surface area of approximately 7540 hectares, with a maximum capacity of 1530 hm3 when
the surface level is 121 m.

The Mequinenza dam (see Figure 6) has a crest height of 124 m and a single spillway
with six gates located at an elevation of 106.5 m whose discharge limit is 11,000 m3/s. Data
on the reservoir and dam were provided by the Ebro River Authority. The gates at the
spillway are used to regulate the volume of water in the reservoir for various purposes,
but mainly to control floods and guarantee hydroelectric generation.

Figure 5. Satellite view of the final stretch of the Mequinenza reservoir. [Source: Mapquest].

www.chebro.es
www.heraldo.es/noticias/aragon/2018/04/12/crecidas-del-ebro-las-ultimas-riadas-aragon-1234800-300.html
www.heraldo.es/noticias/aragon/2018/04/12/crecidas-del-ebro-las-ultimas-riadas-aragon-1234800-300.html
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Figure 6. Front view of the Mequinenza dam. [Source: CHE].

3.2. Computational Model Setup

The configuration of the computational model is based on the following parts:

1. A digital terrain model (DTM);
2. a surface roughness map;
3. The creation of a triangular mesh;
4. Boundary conditions and initial conditions.

3.2.1. Topography: DTM

A raster digital terrain model with a resolution of 5 × 5 m provided by the IGN
(http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en, accessed
on 1 March 2023) and obtained by interpolating data from flights with LIDAR sensors in
2010 was used as a base. However, the used data do not contain a reliable representation of
the riverbed. Thus, this DTM is used only for floodplains, where a proper representation
of the terrain can be found, as seen Figure 7, while complementary information from
measured cross-sections is used to reconstruct the river bed, since the LIDAR provides a
uniform free surface at the river, as seen in Figure 7.

Elevation [m]

Figure 7. Raster representation with an elevation scale in meters of Galacho de la Alfranca and its
surroundings with a resolution of 5× 5 m.

Reconstruction of the Riverbed from Sástago

To achieve a reliable riverbed, cross-sections of the river are taken at the end of the
Osera-Sástago DTM. These cross-sections, which are groups of coordinates (x, y, z), are

http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en
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duplicated along the riverbed up to the Chiprana area. Afterwards, the elevation of the
copied sections is corrected, since the terrain through which the river flows descends in
altitude. To do this, two points are taken, one at the beginning of the part to be reconstructed
and the other at the end. The difference between their elevations is calculated, and the
distance that separates them is a straight line. The quotient of these two values is an average
slope in the river segment, so that the elevation of each of the sections can be recalculated:

zij = z1j + m
√
(xij − x1j)2 + (yij − y1j)2 (19)

where the index i denotes the section number and the index j denotes the point within each
section. m denotes the average slope. This methodology is followed from Sástago to the
Mequinenza reservoir, where, since there are no sections to start from, it cannot be used.

Reconstruction of the Reservoir

River cross-sections cannot be used to reconstruct the bottom of the reservoir. There-
fore, to incorporate that information to the global DTM, geo-referenced historical maps prior
to the construction of the dam, also available on the IGN website (http://centrodedescargas.
cnig.es/CentroDescargas/locale?request_locale=en, accessed on 1 March 2023) were used.
Using their contour lines, new cross-sections are obtained formed by groups of five points
with coordinates (x, y, z), as shown in the example in Figure 8, which, after interpolation,
produces a DTM with the appropriate reservoir bed elevations. Figure 9 shows an image of
the historical map of part of the reservoir, comparing it with the current state. The historical
topographic map clearly shows how the Ebro riverbed ran under what is now covered by
the reservoir.

Figure 8. Examples of the sections used to interpolate the reservoir bed level.

The center points of each section, which were not placed on grade lines, were corrected
using Equation (19). The lowest elevation of the reservoir bottom, z = 60 m, was taken in
the first section next to the dam, and from there, the minimum elevation of each section
was raised. An example of the result is shown in Figure 10.

http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en
http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en
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(a) (b)

Figure 9. Comparison between two maps showing a part of the Mequinenza reservoir. (a) shows the
historical topographic map (Source: IGN) and (b) shows the same area photographed today (Source:
Google Maps).

Using the presented strategy, a channel in the reservoir region similar to the one shown
in Figure 11 is obtained, containing the information of the interpolated sections shown in
Figure 8. By doing this, a new DTM fo the bottom of the reservoir is obtained and can be
added to the global DTM.

(a) (b)

Figure 10. Comparative images of the DTM raster at the height of the Mequinenza dam. (a) shows
the IGN DTM with the reservoir at constant elevation 117.9 m. (b) shows the result of interpolating
the sections obtained from the old topographic maps.

Figure 11. Example of the result of interpolating the sections shown in Figure 8.
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3.2.2. Surface Roughness Map

Each computational grid cell is associated with a value of the Manning roughness
coefficient, n, which is assigned from a terrain roughness raster map provided by CHE.
This map covers the potential floodplain from Zaragoza to Escatrón, where the reservoir
starts and the dynamics are not as affected by roughness. Thus, the region covered by the
Mequinenza reservoir has a simpler roughness distribution reconstructed following the
criteria in the literature [44,48,49]. This distribution is shown in Table 1, and the whole
distribution map can be seen in Figure 12.

Table 1. Manning’s coefficient for different types of soil.

Type of Soil Manning’s Coefficient

Farm land 0.028
Riverbed 0.035

Urban area 0.05
River island 0.06

Figure 12. Manning coefficient distribution in the domain of the Ebro River.

3.2.3. Meshing

The numerical simulation is based on the discretization of the terrain into cells that
form the so-called computational grid. Relevant magnitudes are associated with each of
its cells during the simulation, such as bed elevation, water depth or velocity. The compu-
tational mesh has a triangular geometry and is spatially adaptive, i.e., the cell size varies
in space. The riverbed, the adjacent levees and, in general, all the areas to be represented
in detail require a much finer mesh. Less relevant areas or areas with no abrupt changes
in elevation can be discretized with larger cell sizes. Figure 13 shows an example of this,
where it can be seen that the cells close to the channel have smaller sizes than those of the
fields with more or less uniform elevation. In addition, a greater refinement of the mesh is
also observed at the levees.

3.2.4. Initial Condition

In river problems, the initial and boundary conditions are of great importance. In order
to perform a flooding event simulation, the initial condition must correspond to the steady
state state of the river flow before the flood event occurs. For this reason, the initial
condition comes from the convergence of the model to a steady flow condition, where the
entire river flows with a constant flow of the same value as the discharge at the initial
instant of the flood.
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(a) (b)

Figure 13. Real satellite view (a) (Source: Google Maps) and the meshing (b) of an area of Ebro
River domain.

3.3. Boundary Conditions

The boundary conditions provide information about how the flow enters and leaves the
domain. For the river inflow, the commonly used rating curve boundary condition is applied,
i.e., a time variation in discharge at the inlet section of the reach, provided by the gauging
station. On the other hand, for the downstream boundary conditions, river simulations
typically use a gauging curve. However, the domain under study ends at the Mequinenza
dam, so it is necessary to study the most appropriate outflow boundary conditions.

3.3.1. Upstream Boundary Conditions

In the present case, there are inlet sections: the main channel of the Ebro river and the
mouths of two tributary rivers (the Gallego River and the Huerva River). A hydrograph-
type boundary condition is imposed for all of them. The temporal evolution of the flow
imposed in each of the regions is obtained from data provided by CHE at gauging points.

3.3.2. Downstream Boundary Conditions

The boundary conditions considered to model the behavior of the dam are detailed below.

Time-Dependent Level

Considering that the flow is almost at rest when it reaches the reservoir, it can be
considered that the level in this region is practically uniform and constant [50]. The way
to use this boundary condition in our case will be to impose a constant downstream level
throughout the simulation, the value of which will depend on the dimensions of the flood
event under study.

Dam Spillway Condition

A weir boundary condition is implemented in this work as a function, Qout = f (H),
to model the dam outflow [51]. Considering certain simplifications, the outflow of a
trapezoidal weir follows the expression:

Qout =
2
3

√
2g Cd b H3/2

w +
8
15

√
2g tan(α/2) Cd H5/2

w (20)

where Hw = H − hCrest is the thickness of the sheet of water above the weir crest hCrest;
H is the level of the free surface (H = h + zb); α is twice the angle that the lateral sides
of the trapezoid make with the vertical; b is the width of the minor base of the trapezoid
(see Figure 14); and Cd = 0.611 [52]. Taking into account the shape of the gates of the
Mequinenza dam (see Figure 6), the latter case will be imposed on the output of our
problem. In this work, the spillway law is applied to the dam boundary condition as a
generic discharge law.
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b

Hw

α/2 α/2

(a) (b)

Figure 14. Frontal (a) and side (b) view of the weir boundary condition.

Depending on the value of Hw, different outflows through the spillway will be ob-
tained. When the level in the cross-section in contact with the weir is below the crest height,
there will be a zero outflow (Hw ≤ 0), while if the level is above (Hw > 0) the crest height,
the outflow will follow the expression (20). Thus, the flow function Qout = f (H) through
the weir is defined as follows:

Qout =

{
0 if Hw ≤ 0
2
3

√
2g Cd b H3/2

w if Hw > 0
(21)

4. Calibration and Optimization of the Computational Mesh

Although the numerical model used has been validated on numerous occasions and in
different domains [20,53], each model configuration requires a calibration process to adjust
parameters and correct data that may contain errors. Moreover, even if the model has been
calibrated and validated, this does not mean that it is optimal, leading to high computational
consumption if the discretization is excessively fine. Therefore, the configuration of the
model must be optimized to reduce computational consumption as much as possible.

4.1. Calibration of Mesh Refinement

In this work, an unstructured triangular mesh is used with the advantage of being
able to adapt to the topography. This mesh contains smaller cell sizes in those areas with
a need for detail, while coarser cells are used in areas where there are few or no relevant
terrain irregularities.

Each floodplain has its own topographical particularities that may be relevant not
only because of their geometrical characteristics, but also because of the effect they usually
have on flooding. There are always overtopped river banks in the first instants of a flood,
the modeling of which may have a lower impact than other more distant levees that retain
water for long periods of time until they are over passed by water. The detection of these
structures is crucial for a correct modeling of the terrain through refinement.

In order to choose the most appropriate mesh, satellite observations of the flood
extension are used. By comparing the flooded areas provided by the different computational
meshes, sensible zones where refinement was needed were detected. Thus, the cell size
distribution of the preliminary mesh, M1, was modified, leading to a refined mesh, M2.
The differences in resolution between the meshes are shown in Figure 15, where it can
be seen that in M1, some of the floodplain levees are not well represented. This results
in different flood extensions that can be seen in Figure 16, where the water depth for a
certain time is represented. Finally, in the same figure, those areas provided by the two
different meshes are compared to the observed flood envelope points. The preliminary
mesh does not retain the water as it should because of the coarse representation of the
floodplain irregularities.

To carry out this analysis, the 2018 discharge evolution was used as the inlet boundary
condition. As the reservoir has no influence in the flood prone area upstream, a simple
constant level is set to the reservoir as the downstream boundary condition.
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Figure 15. Comparison between the first computational mesh, M1 (left), and the refined mesh, M2
(right), in a certain area of the domain.

Figure 16. Comparison between the first computational mesh, M1 (left), and the refined mesh, M2
(right), at a certain area of the domain.

In Table 2, some data related to the meshes and their performance can be seen. In view
of these results, it can be concluded that, although M2 provides more accurate results, its
computational cost is unfeasible. For this reason, a second optimization step was carried
out and is detailed in next subsection.

Table 2. Summary of the preliminary mesh and the refined mesh.

Mesh Number of Cells Computational Cost (hours)

Preliminary mesh M1 351,799 9.52
Refined mesh M2 949,445 23.80

4.2. Optimization

When the mesh is calibrated to refine the results and provide more accurate results,
optimization should be performed to reduce the computational consumption without
reducing the accuracy of the results. In this work, the optimization of the model was
carried out by using internal boundary conditions that allow modeling some hydraulic
structures of the channel, such as dikes and motes, without the need for very fine com-
putational meshes [34,54]. In this way, a mesh with a smaller number of cells, M3 mesh,
was obtained, with a consequent reduction in computational consumption. The validation
of the optimization of the model is carried out by simulating the historical flood event of
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2018 and the comparison in the Gelsa gauging station (A263). The results of water level
and discharge temporal evolution are shown in Figures 17 and 18, where it can be seen
that M1 is much less accurate than M2 and M3, and these two are similar, although M3 is
somewhat less accurate than M2. However, this loss of accuracy is justified by the reduction
in computational consumption obtained, going from 23.80 h with mesh M2 to 12.48 h with
mesh M3, as can be seen in Table 3. Moreover, Table 4 shows the Root Mean Square Error
(RMSE) of the discharge values to demonstrate how accurate each mesh is. The Root Mean
Square Error is calculated by the following equation [55]:

RMSE =

√
∑N

n=1(x f ,n − xo,n)2

N
(22)

where x f ,n is the simulated value at time n, xo,n is the measured value at time n and N is
the number of measures at a point. Table 4 shows that the accuracy of M1 is lower than M2
and M3, and these two offer a very similar accuracy.

Figure 17. Discharge temporal evolution comparison between preliminary mesh, M1, refined mesh,
M2, and optimized mesh, M3, in Gelsa (A263).

Table 3. Summary of the calibrated mesh and the optimized mesh.

Mesh Number of Cells Computational Cost (hours)

Refined mesh M2 949,445 23.80
Optimized mesh M3 633,216 12.48

Table 4. Summary of the RMSE of the discharge for the three meshes.

Mesh RMSE

Preliminary mesh M1 164.65
Refined mesh M2 119.62

Optimized mesh M3 120.24

Finally, to provide information on the cell size distribution of the meshes, Figure 19
shows the cell area distribution for each of the analysed meshes (M1, M2 and M3). As the
three meshes share the maximum cell size, the x-axis of the figure is bound to 1000 m2,
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with the purpose of focusing on the refinement distribution. The M1 mesh contains less
refined elements than the other two, with only small cells in the river bed area. The most
refined mesh, M2, has a higher concentration of small cells, as the refinement affects not
only the river bed but also the levees in the floodplains. Finally, the figure shows how
the optimized mesh, M3, is in the middle of the two previously mentioned distributions.
The use of an internal boundary condition allows a coarser mesh in the floodplains without
loosing accuracy.

Figure 18. Water level temporal evolution comparison between preliminary mesh, M1, refined mesh,
M2, and optimized mesh, M3, in Gelsa (A263).

Figure 19. Cell size histogram for preliminary mesh, M1; refined mesh, M2; and optimized mesh, M3.

5. Numerical Results

A relevant historical event of flooding of the Ebro River which occurred in 2018 was
simulated with both analysed downstream boundary conditions: the constant level and
the dam model.
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2018 Event

The 2018 inlet hydrograph (see Figure 20), obtained from the Zaragoza gauging station
(A011), is set as the upstream boundary condition. As an initial condition, a steady flow
with a discharge value that coincides with the initial discharge of the inflow hydrograph is
established. A comparison between numerical results and real observation was performed
using data from the Gelsa gauging station (A263) (Figures 21 and 22) and the Mequinenza
gauging station (E003) (Figures 23 and 24). The results show that at the Gelsa gauging
station, both boundary conditions provide the same results since the reservoir does not
affect upstream areas such as Gelsa (see Figure 4), as the flow regime is very different from
the reservoir in the first half of the studied reach, as can be seen in Figures 21 and 22. At the
Mequinenza gauging station, the constant level boundary condition provides a discharge
temporal evolution more similar to the actual data than that given by the weir boundary
condition (see Figure 23). However, the water level temporal evolution provided by the
weir boundary condition is much more realistic than the results from the constant level
boundary condition, which cannot represent the temporal evolution of this value, as can be
seen in Figure 24.

Figure 20. Inlet hydrograph for the Ebro River flooding event in 2018 in Zaragoza (A011).

Figure 21. Discharge temporal evolution comparison between the models and observations at Gelsa
(A263) for the 2018 flooding event.
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Figure 22. Water level temporal evolution comparison between the models and observations at Gelsa
(A263) for the 2018 flooding event.

Figure 23. Discharge temporal evolution comparison between the models and observations at
Mequinenza (E003) for the 2018 flooding event.
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Figure 24. Water level temporal evolution comparison between the models and observations at
Mequinenza (E003) for the 2018 flooding event.

6. Conclusions

In this work, a finite volume numerical model, well designed for the resolution of
unsteady 2D SWE on flexible and adpatative triangular meshes, is used for the simulation
of flood events in a specific region of the Ebro River (Spain). This region, which contains a
very unique reservoir that changes the river dynamics, presents a challenge for the model
regarding dam modeling. For this reason, this work has been able not only to prove the
good performance of the model in a particular region, but also to explore new strategies for
dam simulations.

First, this study highlights the importance of the choice of computational model. This
implies the calibration and optimization of the computational mesh that is first transformed
from a coarse to a refined mesh, showing the importance of adaptive meshes and the
proper refinement at relevant topography points. From this calibration, it can be concluded
that the discretization in certain areas, such as the limits of riverbeds, is crucial to obtain
accurate results. However, this produces a very fine mesh with a high number of cells at a
high computational cost.

The application to the simulation of flood events in a reach of the Ebro river highlights
that the use of real data introduces some uncertainties related with coarse discretization of
the terrain measurements, non-detailed characterization of bed roughness, spurious points
on the discharge time series and other problems that may provoke errors in the results
regardless of the numerical scheme. Hence, a calibration processes must be carried out.
An optimal computational mesh has been generated and calibrated for the 2018 flooding
event in the Ebro River. Additionally, although real test cases introduce some errors due
to the lack of available data, the model is still able to provide very good results. Finally,
the benefits of an accurate and fast numerical method are not only desirable for flood
prediction, but also the generation of an appropriate computational mesh involving internal
boundary conditions. This strategy provides results with enough accuracy, allowing the
use of a coarser mesh where the small loss of accuracy obtained is justified by the 12 h of
computational savings. These strategies, together with an adequate representation of land
use maps, are demonstrated to be necessary in order to carry out computations leading to
accurate numerical results.
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The historical event was simulated using two different downstream boundary condi-
tions at the Mequinenza dam location. The predictions of discharge and water level at the
gauging locations improve when the outlet boundary condition is expressed as a discharge
rating curve. This work has highlighted the need for the modeling of hydraulic structures
integrated within simulation models instead of simpler boundary conditions. It is worth
noting that the downstream boundary condition has no influence on the first half of the
river reach, where the cross-sections are shallow and well connected to the floodplain;
however, in the second half of the reach, dominated by the long reservoir, a weir-type
boundary condition should be used if the temporal evolution of the level is of interest, thus
obtaining more realistic results. At this point, it should be noted that this work highlights
this need, but opens it up to improvements in terms of dam modeling, where more complex
discharge laws could be used and combined to represent bottom spillways, gates and other
hydraulic structures.

The numerical results obtained have been presented and compared with measure-
ments. It should be emphasized that the use of HPC technologies is vital when carrying
out simulations with large domains and long event durations. In this work, the results
for the Ebro River, containing a large domain and great number of computational cells,
were obtained using a GPU-parallelized well-balanced upwind numerical scheme which
simulates a hydrograph of 14.5 days in a little more than 12 h with a GPU NVIDIA GeForce
RTX 3070. Thus, it has been made feasible to reproduce such events on a real-time basis.
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