A biobjective model for resource provisioning in multi-cloud environments with capacity constraints
Resumen: Private and public clouds are good means for getting on-demand intensive computing resources. In such a context, selecting the most appropriate clouds and virtual machines (VMs) is a complex task. From the user’s point of view, the challenge consists in efficiently managing cloud resources while integrating prices and performance criteria. This paper focuses on the problem of selecting the appropriate clouds and VMs to run bags-of-tasks (BoT): big sets of identical and independent tasks. More precisely, we define new mathematical optimization models to deal with the time of use of each VMs and to jointly integrate the execution makespan and the cost into the objective function through a bi-objective problem. In order to provide trade-off solutions to the problem, we propose a lexicographic approach. In addition, we introduce, in two different ways, capacity constraints or bounds on the number of VMs available in the clouds. A global limit on the number of VMs or resource constraints at each time period can be defined. Computational experiments are performed on a synthetic dataset. Sensitivity analysis highlights the effect of the resource limits on the minimum makespan, the effect of the deadline in the total operation cost, the impact of considering instantaneous capacity constraints instead of a global limit and the trade-off between the cost and the execution makespan.
Idioma: Inglés
DOI: 10.1007/s12351-023-00773-x
Año: 2023
Publicado en: Operational research (Berlin) 23, 2 (2023), 31 [32 pp.]
ISSN: 1109-2858

Factor impacto JCR: 2.3 (2023)
Categ. JCR: OPERATIONS RESEARCH & MANAGEMENT SCIENCE rank: 42 / 106 = 0.396 (2023) - Q2 - T2
Factor impacto CITESCORE: 5.7 - Computational Theory and Mathematics (Q1) - Statistics, Probability and Uncertainty (Q1) - Modeling and Simulation (Q1) - Numerical Analysis (Q1) - Management Science and Operations Research (Q2) - Strategy and Management (Q2) - Management of Technology and Innovation (Q2)

Factor impacto SCIMAGO: 0.654 - Computational Theory and Mathematics (Q2) - Management of Technology and Innovation (Q2) - Management Science and Operations Research (Q2) - Strategy and Management (Q2) - Numerical Analysis (Q2) - Statistics, Probability and Uncertainty (Q2) - Modeling and Simulation (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/T21-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-104263RB-C43
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-09:59:52)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-07-06, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)