000126562 001__ 126562
000126562 005__ 20241125101154.0
000126562 0247_ $$2doi$$a10.1007/s10763-023-10380-z
000126562 0248_ $$2sideral$$a133979
000126562 037__ $$aART-2023-133979
000126562 041__ $$aeng
000126562 100__ $$0(orcid)0000-0002-0516-0463$$aArnal-Bailera, Alberto$$uUniversidad de Zaragoza
000126562 245__ $$aA Characterization of Van Hiele’s Level 5 of Geometric Reasoning Using the Delphi Methodology
000126562 260__ $$c2023
000126562 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126562 5203_ $$aThe Van Hiele model of geometric reasoning establishes five levels of development, from level 1 (visual) to level 5 (rigor). Despite the fact that this model has been deeply studied, there are few research works concerning the fifth level. However, there are some works that point out the interest of working with activities at this level to promote the acquisition of previous levels. Our goal is to describe this level through the construction and validation of a list of indicators for each of the processes involved in geometrical reasoning (definition, proof, classification, and identification). Due to the lack of previous research, we have decided to use the Delphi methodology. This approach allowed us to collect information from a panel of experts to reach a consensus through a series of phases about the indicators that describe each of the processes. The final product of the iterative application of this method is a list of validated indicators of the fifth Van Hiele level of reasoning. In particular, proof and definition processes have turned out to be the most relevant processes at this level.
000126562 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-115652GB-I00$$9info:eu-repo/grantAgreement/ES/DGA/S60-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104964GB-I00
000126562 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126562 590__ $$a1.9$$b2023
000126562 592__ $$a1.038$$b2023
000126562 591__ $$aEDUCATION & EDUCATIONAL RESEARCH$$b212 / 760 = 0.279$$c2023$$dQ2$$eT1
000126562 593__ $$aMathematics (miscellaneous)$$c2023$$dQ1
000126562 593__ $$aEducation$$c2023$$dQ1
000126562 594__ $$a5.1$$b2023
000126562 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126562 700__ $$0(orcid)0000-0001-9884-7995$$aManero, Víctor$$uUniversidad de Zaragoza
000126562 7102_ $$12006$$2200$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Didáctica Matemática
000126562 773__ $$g22 (2023), 537–560$$pINTERNATIONAL JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION$$tINTERNATIONAL JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION$$x1571-0068
000126562 8564_ $$s1572760$$uhttps://zaguan.unizar.es/record/126562/files/texto_completo.pdf$$yVersión publicada
000126562 8564_ $$s1310022$$uhttps://zaguan.unizar.es/record/126562/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126562 909CO $$ooai:zaguan.unizar.es:126562$$particulos$$pdriver
000126562 951__ $$a2024-11-22-12:08:13
000126562 980__ $$aARTICLE