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Abstract: The importance of counter electrodes in Dye Sensitized Solar Cells (DSSCs) cannot be
neglected as they enable the transfer of electrons across the outer circuit, thereby facilitating the
reduction reaction of the I3

−/I− redox electrolyte. However, the dissolution and deposition of the
usual platinum layer on the counter electrode has resulted in contamination concerns. To address
this issue, metal-free counter electrodes made of reduced graphene oxide (rGO) aerogels were
developed and their catalytic performance towards I3

− reduction was evaluated. The reduced
graphene materials were characterized, and the fitting analysis of XPS revealed the presence of
various nitrogen species, with the primary peaks attributed to pyridinic and pyrrolic nitrogen. The
hydrothermal treatment of graphene oxide (GO) resulted in a higher graphitic character and the
intensification of the contacts between graphene nanosheets, which should entail higher electrical
conductivity, both in-plane and between rGO sheets. Additionally, the presence of nitrogen-provided
active sites promoted the catalytic reduction of the electrolyte. Encouragingly, good charge transfer
rates were observed between the counter electrode and the electrolyte in the assembled DSSCs,
resulting in good photocurrents and exceptional stability over the course of nearly 1200 h after cell
assembly. The results obtained suggest that these GO-based systems are promising candidates for
developing metal-free counter electrodes for DSSC, supporting the interest of further study.

Keywords: graphene; aerogels; dye sensitized solar cells; metal-free counter electrode

1. Introduction

Dye Sensitized Solar cells (DSSCs) have been considered attractive energy conversion
devices because they are easy to build [1]. They are composed of a dye-sensitized semi-
conductor, which acts as photoanode, a counter electrode and a redox mediator [2]. Here,
organic dyes are essential components for sensitizing photoanodes, and their molecular
structures play a critical role in this process. These structures can be readily engineered, and
they typically exhibit high molar extinction coefficients. Specifically, the donor-π-spacer-
acceptor (D-π-A) system is a widely utilized architecture for such dyes. By adequately
modulating each constituent (D, π-spacer and A), it is possible to systematically fine-tune
the molecular properties and broaden the absorption spectra. This is achieved by adjusting
the HOMO and LUMO orbitals to facilitate intramolecular charge separation that, in turn,
enhances the dye photovoltaic performance, resulting in improved energy conversion
efficiency. The dye is excited upon light absorption, and its efficiency and spectral range are
strongly dependent on the nature of D and A subunits, as well as on the π-conjugated bridge
that facilitates the intramolecular charge transfer from D to A [3]. The excited dye injects
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electrons into the conduction band of the semiconductor through the electron-withdrawing
group. Other architectures, like D-A-π-A systems, have been also considered [4]. The low
bandgap and the strong electron-withdrawing auxiliary unit of these systems provide fa-
vorable properties in the areas of light-harvesting and efficiency for designing efficient and
stable organic sensitizers [5,6]. Thus, extensive studies have been conducted to optimize
the design of D, π-spacer, and A [7–9] components. Regarding donors, N,N’-dialkylanilines
are interesting due to their intense light absorption, with a red-shifted intramolecular
charge transfer band compared to triphenylamines derivatives [10]; π-spacers containing
heterocycles, such as thiophenes, are shown to stabilize the sensitizers [11]; and finally,
groups such as pyrimidine, with electron withdrawing properties but also acting as an
anchoring group, have recently been explored [12].

The DSSC counter electrode (CE) has the function of collecting the flow of electrons
from the external circuit and plays an important role because it catalyzes the reduction of
the redox couple species (typically I3

−/I−, although the use of electrolytes based on other
redox couples constitutes an area of growing interest [13]) with the consequent regenera-
tion of the dye. The counter electrode should have a high reduction catalytic activity, low
resistance, good stability, and low cost [2]. Numerous assays have been reported with the
aim of developing low-cost metal-free catalysts as an alternative to precious metal materi-
als [14]. Carbonaceous materials, such as carbon nanotubes (CNTs) [15] and graphene oxide
(GO) [16], possess excellent electrical conductivity, but relatively poor catalytic activity
to replace or reduce the use of Pt. Therefore, when attempting to improve device perfor-
mances with a carbon-based counter electrode, it is crucial to tune the device’s electrical
conductivity and electrocatalytic activity. In recent years, a variety of metal-free catalysts,
such as nitrides, carbides, and oxides, have been proposed to replace Pt. Among these,
carbide catalysts have demonstrated higher catalytic activity than Pt for the regeneration of
di-5-(1-methyltetrazole)disulfide/5-mercapto-1-methyltetrazole N-tetramethylammonium
salt (T2/T−) [17]. Furthermore, nitrogen-doped graphene has emerged as a promising
metal-free catalyst for DSSCs due to the active sites provided by its nitrogen states, in-
cluding pyridinic and quaternary nitrogen for the reduction of the electrolyte [18]. In
this context, a novel non-catalytic thermal annealing method using melamine has been
proposed to prepare nitrogen-doped graphene, which has shown good catalytic activity in
alkaline electrolytes, making it a potentially valuable material for DSSC applications [19].
Finally, graphitic carbon has been identified as a viable material for a CE due to its low
impact on the working electrode, with CO or CO2 gases produced as corrosion products
easily removable from the counter electrode compartment [20]. Therefore, accurate material
characterization, particularly with respect to electrochemical performance, is critical for
electrode performance applied to these photovoltaic studies.

This paper aims to explore the performance of carbon counter electrodes based on
nitrogen-doped graphene oxide aerogels, while paying attention to the long-term stability
of their responses in DSSCs.

2. Materials and Methods
2.1. Preparation of N-Doped Reduced Graphene Oxide Aerogels

The graphene oxide (GO) was a commercial 4 mg/mL dispersion from Graphenea Co.
(San Sebastián, Spain, Ref. GO-4-1000). The graphene oxide aerogels (GA) were prepared
according to a previously described procedure [21]. In brief, 10 mL of a 2 mg/mL GO
aqueous dispersion was mixed with 200 µL of 25% NH4OH solution and introduced into a
Teflon-lined autoclave. The liquid to autoclave volume ratio was 0.22. The autoclave was
introduced into an oven at 180 ◦C, reaching a pressure of 10 bar, and kept for a certain time.
We selected two times, namely, 45 min (sample GA-45 min) and 18 h (sample GA-18 h),
separate enough to obtain materials with different properties. Subsequently, the autoclave
was withdrawn from the oven and left to cool down at ambient conditions. Likewise, the
rate of cooling down was comparable for all the preparations. When the autoclave reached
room temperature, it was opened and a monolithic hydrogel was formed.
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The hydrogel was introduced into a vial consisting of glass walls and an aluminum
bottom. The vial walls are thermally insulated with Styrofoam. The aluminum bottom was
placed onto a 5 cm diameter metal platform which was externally cooled by liquid N2. This
created a uniaxial thermal gradient, allowing the hydrogel to cool from the bottom to the
top. The solidified cryogel was then transferred into a freeze-drying vessel (Telstar Cryodos)
under vacuum (less than 0.3 mbar) and freeze-dried at around 223 K for 48 h to obtain
the aerogel. The aerogels were denoted as GA-X, where X is the time of hydrothermal
treatment. GO was freeze-dried, and the three materials (GO, GA-45 min and GA-18 h)
were ground into powder using a mortar for further characterization or utilization.

The obtained data from the characterization of the GO based materials (ultraviolet
visible (UV-vis), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD),
X-ray photoelectron spectroscopy (XPS)) can be found in the Supplementary Materials.

2.2. Synthesis and Structural Characterization of the Sensitizer Dye

The dye AT-Pyri was the result of the condensation reaction between the aldehyde
AT-CHO [22] and 4-methylpyrimidine with Aliquat 336 as a phase-transfer catalyst in the
alkaline medium [12]. The detailed synthetic procedures (Scheme S1) and spectroscopic
data (1H, 13C-NMR spectra, and mass spectrum, Supplementary Materials Figures S1–S5),
as well as the corresponding parameters obtained from UV-vis and electrochemical charac-
terization, have already been reported [12].

2.3. DSSC Device Fabrication

Preparation of the counter electrodes: The counter electrodes were prepared using the
mentioned GO, GA-45 min and GA-18 h materials.

These aerogels were ground to a powder in an agate mortar; 11 mg of aerogel powder
and 3.3 mg of PVPk10 were dispersed into 0.7 mL of ethylene glycol. The paste was
maintained for 5 h in an ultrasonic bath. The CEs were made of F-doped tin oxide (FTO)
glass (8 Ω·sq-1 sheet resistance). After an ozone treatment of the substrates for 20 min, the
three carbonaceous materials were deposited via spin-coating.

The first coating step was conducted at 600 rpm for 9 s, and the second step was
conducted at 3600 rpm for 30 s. Finally. these counter electrodes were annealed at 400 ◦C
for 1 h under flowing argon.

Preparation of the photoanodes: Anodes were fabricated by screen printing the TiO2
paste (Dyesol 18NR-AO) on FTO glass substrates (15 Ω·sq−1 sheet resistance). Prior to the
deposition of the TiO2 paste, the conducting glass substrates were washed sequentially with
the cleaning solution Hellmanex III (15 min), MilliQ water (15 min) and ethanol (15 min).
The electrodes were heated at 500 ◦C for 30 min then treated with ozone for 20 min. Finally,
they were immersed in a solution of TiCl4 (40 mM) at 90 ◦C for 30 min, washed with MilliQ
water and ethanol and then dried. The screen-printed electrodes were gradually heated
up to 325 ◦C (10 ◦C/min, 5 min), 375 ◦C (5 ◦C/min, 5 min), 450 ◦C (8 ◦C/min, 5 min) and
500 ◦C (5 ◦C/min, 15 min), and after cooling down these TiO2 electrodes were immersed
again in a solution of TiCl4 (40 mM) at 90 ◦C for 30 min and then subsequently washed
with water and ethanol. The electrodes were heated again at 500 ◦C for 30 min before the
sensitization process. The active area of the devices was 0.25 cm2.

The TiO2 photoanodes (7 µm thick) were sensitized with AT-Pyri dye [12] at room
temperature by dipping in 0.1 mM dichloromethane dye solution for 72 h. The sensitized
electrodes were rinsed with dichloromethane and dried with air.

The electrolyte was prepared with 0.53 M 1-butyl-3-methylimidazolium iodide (BMII),
0.1 M lithium iodide, 0.05 M iodine and 0.52 M tert-butylpyridine in anhydrous acetonitrile.

Finally, the photoanode and counter electrodes were sandwiched together using a
thin thermoplastic sealing agent (Greatcell) that melts at 120 ◦C. The cells were prepared
in duplicate.
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3. Results
3.1. Structural Characterization of the Graphene-Oxide-Based Materials

We studied the effect of the duration of hydrothermal treatment on the dimensions of
reduced graphene oxide in a previous article [23]. The external dimensions of the graphene
aerogel decreased as the time of hydrothermal treatment increased. This was due to the
fact that the graphene sheets intensify their contacts with treatment time, leaving less space
between them, as can be observed in Figure S6a,b, corresponding to aerogels GA-45 min
and GA-18 h, respectively.

The characterization of the materials with XRD was also studied previously [21]. The
diffractogram of GO showed a peak at 2θ = 10◦, corresponding to an interlayer spacing of
0.879 nm in agreement with the literature values [24]. This was a consequence of the water
intercalation into the space between the graphene layers, as well as of the incorporation
of oxygen functional groups (oFGs) in the basal plane during harsh oxidation [25]. For
aerogels GA-18 h and GA-45 min, the peak (002) appeared at 25.1◦, which corresponded
to an interlayer spacing of around 0.358 nm, which approached natural graphite (0.342 nm).
The shorter interlayer spacing compared to GO evidenced the intensification of contact
between the rGO nanosheets after hydrothermal treatment.

The surface chemistry was thoroughly characterized in a previous article by FTIR
spectroscopy [23], elemental analysis, TPD and XPS [21]. The quantitative results of these
techniques are summarized in Table 1. GO contained an O/C ratio = 72.4 wt%, and the
oxygen content decreased as the hydrothermal treatment time increased. Unlike GO,
both aerogels contained up to 6.8 wt.% of nitrogen, which was introduced during the
hydrothermal treatment due to NH4OH being added to the GO suspension. The nitrogen
content of the aerogels slightly decreased with a longer hydrothermal treatment time.
Figure 1 illustrates the fitting of the XPS N 1s peaks for the aerogel materials. The analysis
revealed the presence of various nitrogen species, with the primary peaks attributed to
pyridinic and pyrrolic nitrogen. The relative contribution of pyridinic nitrogen increased
with the progression of hydrothermal treatment. This nitrogen type could act as an active
site in the catalytic mechanism of I3

− reduction.
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Figure 1. The fitting of N 1s XPS peak (violet: N pyridinic; cyan: N pyrrolic; green: N quaternary;
orange: blue: pyridinic oxide).



Colorants 2023, 2 447

Table 1. Oxygen and nitrogen content by XPS and elemental analysis [26].

Elemental Analysis XPS

O/C N/C O/C N/C

wt% wt% wt% wt%

72.4 4.1 n.d n.d. GO
14.9 10.6 8.9 6.5 GA-45 min
13.0 10.3 8.0 6.3 GA-18 h

n.d.: Non-determined because it was unstable under the vacuum of the XPS chamber.

3.2. UV-Vis Transmittance Spectra and Electrochemical Characterization of Counter Electrodes

The UV-vis transmittance spectra of the counter electrodes are depicted in Figure S7.
The transmittance of GO was around 80 % in the range of 600 to 700 nm, while the aerogel
counter electrodes exhibited a transmittance of about 60%. The graphitic interlayer distance
calculated by XRD ([21], Figure S7) and the space between the thermally reduced GO
nanosheets (Figure S6) decreased in the order GO > GA-45 min > GA-18 h. The larger
distance between the graphene nanosheets for GO would favor the transmittance of the
light through this material.

In order to evaluate the potential application of the prepared materials as counter
electrodes in DSSCs, we conducted Cyclic Voltammetry (CV) to study their electrocatalytic
activities. As shown in Figure 2, the left and right peaks at low and high potentials
corresponded to I3

−/I− and I2/I3
−, respectively. As the counter electrode must catalyze the

reduction of I3
− in the electrolyte, we analyzed the peak-to-peak separation (∆Ep) between

oxidation and reduction peaks of the carbonaceous counter electrodes (GO, GA-45 min and
GA-18 h). A more effective catalyst was indicated by a reduced ∆Ep. The potential values
of the carbonaceous electrodes prepared using the reduced GO aerogels (GA) were lower
than those of GO. The wider first oxidation peak observed for GA 45 min and GA-18 h
compared to the GO counter electrode indicated that the porous aerogel structure provided
a higher number of catalytic reaction sites than the pristine GO [15]. Table 1 shows that GO
had no nitrogen, while GA-45 min and GA-18 h contained 6–7% nitrogen. The presence
of nitrogen in aerogels significantly influenced their catalytic activity because it provided
active sites for the reduction of the electrolyte [18]. In addition, the prepared aerogels
exhibited higher reduction levels than GO, leading to superior electrocatalytic activity
for the reduction of the electrolyte. Compared to GO, the GA-based counter electrodes
had lower numbers of oxygen functional groups, resulting in graphene sheets that were
more graphitic and had more contacts, consequently leading to graphene materials with
increased electrical conductivity both in-plane and between the graphene nanosheets [17].
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3.3. DSSCs Performance

The DSSC device fabrication and its corresponding characterization are described
in the Supplementary Materials. The electrolyte was the I3

−/I− system in anhydrous
acetonitrile [27]. The photoanode was sensitized by AT-Pyri (0.1 mM CH2Cl2 dye solution)
for 72 h. This chromophore was constituted by an aniline as the donor, a thiophene as
the π-spacer and a pyrimidine as the anchoring and acceptor group, all this favoring the
electron charge transfer towards the semiconductor.

The charge-transfer resistance (Rct) at the counter electrode/electrolyte interface is
an important parameter for DSSCs power conversion efficiency (PCE), so in order to
investigate this phenomenon a study was carried out with electrochemical impedance
spectroscopy (EIS).

The electrochemical characteristics were studied in DSSC devices (Figure 3-left). The
Nyquist plots in dark conditions and at the open circuit voltage (Voc) of GO, GA-45 min
and GA-18 h are shown in Figure 3, on the right.
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Figure 3. Schematic and photograph of a DSSC device (left). Nyquist plot of devices prepared with
GO, GA-45 min and GA-18 h as counter electrode and AT-Pyri as dye, 1176 h after assembly. Dark,
Voc (right).

The Nyquist plots of each carbonaceous electrode cell did not show clearly differen-
tiated arcs, although in some cases more than one contribution could be guessed. The
semicircle in the higher frequency range [28] was attributed to the charge-transfer resis-
tance (Rct) at the counter electrode/electrolyte interface, which gave information about the
electrocatalytic activity for the reduction of the ion triiodide [29].

The charge-transfer resistance value was small for materials with kinetically fast
charge transfer. Then, the RCT value for the counter electrodes decreased in the order
of GO > GA-45 min > GA-18 h. The smallest Rct value for GA-18 h indicated a faster
charge-transfer between the counter electrode and the electrolyte, and hence a superior
catalytic effectiveness for the reduction of I3

− than the GA-45 min and GO materials.
GA-18 h showed the smallest Z, implying the fast diffusion of the electrolyte to the GA-18 h
electrode [15].

In order to both simplify and understand the system, symmetrical dummy cells were
been built and the Nyquist plots are reported in the Supplementary Materials (Figure S8).
This study corroborates the results already obtained (Figure 3, right).

DSSCs are assessed by power conversion efficiency, which is calculated from the
current-voltage plots (Figure 4) [30]. The photovoltaic properties of the DSSCs prepared
with GO, GA-45 min and GA-18 h as counter electrode (Table 2), as well as the long-term
stability (Table 3) of the characteristic parameters, were evaluated.
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Figure 4. Photocurrent-voltage plots of DSSCs. (Left): 24 h after cell assembly; (right): 1176 h after
cell assembly.

Table 2. Measured photovoltaic parameters of AT-Pyri dye-sensitized solar cells: open circuit
voltage (Voc), short circuit current density (Jsc), fill factor (ff ) and overall efficiency (η) at 24 h after
cell assembly.

η
(%)

ff
(%)

J SC
(mA cm−2)

VOC
(V) Catalyst

1.0 18 8.88 0.620 GO

1.7 32 9.00 0.590 GA-45 min

1.2 35 7.69 0.445 GA-18 h

2.7 67 7.23 0.560 Pt

Table 3. Measured photovoltaic parameters of AT-Pyri dye-sensitized solar cells: open circuit
voltage (Voc), short circuit current density (Jsc), fill factor (ff ) and overall efficiency (η) at 1176 h after
cell assembly.

η
(%)

ff
(%)

JSC
(mA cm−2)

VOC
(V) Catalyst

1.1 23 7.76 0.605 GO

1.8 39 7.98 0.575 GA-45 min

1.4 45 6.57 0.470 GA-18 h

An analogous device was prepared using a Pt counter electrode with the aim of
comparing its behavior with these carbonaceous materials. The J/V plots showed the
S-shape plots for devices prepared with carbonaceous materials; however, a rectangular
response was obtained for the device prepared with platinum as a counter electrode, which
may indicate contact problems of carbonaceous materials in these devices [31]. The GO-
based DSSC exhibited a low power conversion efficiency (PCE) of 1%, primarily attributed
to its low fill factor. Interestingly, when carbon materials were used as counter electrodes,
the resulting short circuit current density (JSC) was higher than that achieved with platinum
as CE. Moreover, a device prepared with GA-45 min as the counter electrode displayed a
20% higher JSC than platinum DSSC. This observation could be attributed to the ability of
graphene sheets to enhance the electron transport [32].

In the area of DSSCs, the charge transfer resistance (Rct), as measured by EIS, was
frequently used to elucidate the dissimilarities in the performance of DSSCs employing
different counter electrodes. The data presented in Figure 3 demonstrate that a lower Rct
value corresponded to a reduced total internal resistance. This is beneficial for improving
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the fill factor [18], as indicated in Table 2, particularly in the case of DSSCs fabricated with
aerogel GA-18 h.

A desirable catalyst should present a high catalytic activity and a good temporal
stability. The fill factor improved, but the short circuit current density decreased [33,34].
Accordingly, the performance of the devices was assessed over a period of 1176 h after cell
assembly, and the results are shown in Table 3. A comparison with the results obtained
from Table 2 revealed an improvement in the fill factor over time. Notably, DSSCs prepared
with GO, GA-45 min or GA-18 h as counter electrodes demonstrated exceptional stability
over the course of nearly 1200 h after cell assembly. Previous studies [12] have shown that
analogous devices with platinum as counter electrodes have also shown stability over the
course of nearly 1000 h.

To sum up, the high interplanar distance in graphene oxide was reduced with hy-
drothermal treatment, resulting in rGO aerogels with higher out of plane conductivity [16].
Meanwhile, the hydrothermal treatment also increased the graphitic character of the
graphene sheets in rGO aerogels, which led to superior in-plane conductivity (Figure S6).
Moreover, aerogel GA-45 min had a higher concentration of oxygen and nitrogen than
aerogel GA-18 h (Table 1), indicating a higher number of active sites for catalysis. This was
consistent with the superior catalytic performance of GA-45 min towards electrolyte I3

−

reduction, as well as its better photovoltaic response (Figures 2 and 4 and Tables 2 and 3).
This should be confirmed in future works by systematically varying the N content. Notably,
an adequate charge transfer rate between the counter electrodes and the electrolyte has
also been observed, evidencing sufficient conductivity to prepare devices and showing a
higher photocurrent than those using platinum-counter electrodes (Table 2). Additionally,
DSSCs incorporating GO, GA-45 min or GA-18 h as counter electrodes demonstrated
high stability for almost 1200 h after cell assembly, with an improvement in the fill factor
(Table 3). These promising findings encourage further investigation to develop free-metal
counter electrodes for DSSCs.
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