000126586 001__ 126586
000126586 005__ 20240731103326.0
000126586 0247_ $$2doi$$a10.3390/ma16113909
000126586 0248_ $$2sideral$$a134098
000126586 037__ $$aART-2023-134098
000126586 041__ $$aeng
000126586 100__ $$aLi, Deye
000126586 245__ $$aThe spontaneous escape behavior of silver from graphite-like carbon coatings and its effect on corrosion resistance
000126586 260__ $$c2023
000126586 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126586 5203_ $$aSilver-doped graphite-like carbon (Ag-GLC) coatings were prepared on the surface of aluminum alloy and single-crystal silicon by magnetron sputtering under different deposition parameters. The effects of silver target current and deposition temperature, as well as of the addition of CH4 gas flow, on the spontaneous escape behavior of silver from the GLC coatings were investigated. Furthermore, the corrosion resistance of the Ag-GLC coatings were evaluated. The results showed that the spontaneous escape phenomenon of silver could take place at the GLC coating, regardless of preparation condition. These three preparation factors all had an influence on the size, number and distribution of the escaped silver particles. However, in contrast with the silver target current and the addition of CH4 gas flow, only the change in deposition temperature had a significant positive effect on the corrosion resistance of the Ag-GLC coatings. The Ag-GLC coating showed the best corrosion resistance when the deposition temperature was 500 °C, which was due to the fact that increasing the deposition temperature effectively reduced the number of silver particles escaping from the Ag-GLC coating.
000126586 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126586 590__ $$a3.1$$b2023
000126586 592__ $$a0.565$$b2023
000126586 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b20 / 90 = 0.222$$c2023$$dQ1$$eT1
000126586 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2
000126586 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b208 / 438 = 0.475$$c2023$$dQ2$$eT2
000126586 593__ $$aCondensed Matter Physics$$c2023$$dQ2
000126586 591__ $$aPHYSICS, CONDENSED MATTER$$b32 / 79 = 0.405$$c2023$$dQ2$$eT2
000126586 591__ $$aPHYSICS, APPLIED$$b63 / 179 = 0.352$$c2023$$dQ2$$eT2
000126586 591__ $$aCHEMISTRY, PHYSICAL$$b90 / 178 = 0.506$$c2023$$dQ3$$eT2
000126586 594__ $$a5.8$$b2023
000126586 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126586 700__ $$aWang, Wenqiang
000126586 700__ $$aLiu, Cancan
000126586 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, Luis Alberto$$uUniversidad de Zaragoza
000126586 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, Germán F.
000126586 700__ $$aJiang, Bailing
000126586 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000126586 773__ $$g16, 11 (2023), 3909 [11 pp.]$$pMaterials (Basel)$$tMaterials$$x1996-1944
000126586 8564_ $$s5777435$$uhttps://zaguan.unizar.es/record/126586/files/texto_completo.pdf$$yVersión publicada
000126586 8564_ $$s2849991$$uhttps://zaguan.unizar.es/record/126586/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126586 909CO $$ooai:zaguan.unizar.es:126586$$particulos$$pdriver
000126586 951__ $$a2024-07-31-09:44:37
000126586 980__ $$aARTICLE