000126596 001__ 126596
000126596 005__ 20240731103339.0
000126596 0247_ $$2doi$$a10.1039/D3LC00136A
000126596 0248_ $$2sideral$$a134087
000126596 037__ $$aART-2023-134087
000126596 041__ $$aeng
000126596 100__ $$0(orcid)0000-0003-2660-3726$$aLafuente, Marta
000126596 245__ $$aOn-chip monitoring of toxic gases: capture and label-free SERS detection with plasmonic mesoporous sorbents
000126596 260__ $$c2023
000126596 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126596 5203_ $$aAThe detection of the spread of toxic gas molecules in the air at low concentration in the field requires a robust miniaturized system combined with an analytical technique that is portable and able to detect and identify the molecules, as is the case with surface enhanced Raman scattering (SERS). This work aims to address capability gaps faced by first responders in real-time detection, identification and monitoring of neurotoxic gases by developing robust, reliable and reusable SERS microfluidic chips. Thus, the key performance attributes of a portable SERS detection system that must be addressed in detail are its limit of detection, response time and reusability. To this purpose, we integrate a 3D plasmonic architecture based on closely packed mesoporous silica (MCM48) nanospheres decorated with Au nanoparticle arrays, denoted as MCM48@Au, into a Si microfluidic chip designed and used for preconcentration and label-free detection of gases at a trace concentration level. The SERS performance of the plasmonic platform is thoroughly analyzed using DMMP as a model neurotoxic simulant over a 1 cm2 SERS active area and over a range of concentrations from 100 ppbV to 2.5 ppmV. The preconcentration-based SERS signal amplification by the mesoporous silica moieties is evaluated against dense silica counterparts, denoted as Stöber@Au. To assess the potential for applications in the field, the microfluidic SERS chip has been interrogated with a portable Raman spectrometer, evaluated with temporal and spatial resolution and subjected to several gas detection/regeneration cycles. The reusable SERS chip shows exceptional performance for the label-free monitoring of 2.5 ppmV gaseous DMMP.
000126596 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-20R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T57-17R$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/EC/H2020/823895/EU/SMART SENSING FOR RAPID RESPONSE TO CHEMICAL THREATS ON SOFT TARGETS/SENSOFT$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823895-SENSOFT$$9info:eu-repo/grantAgreement/EC/H2020/883390/EU/Advanced Surface Enhanced Raman Spectroscopy (SERS) based technologies for gas and liquids sensING in the area of chemical protection/SERSing$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 883390-SERSing$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104739GB-I00/AEI-10.13039-501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108660RB-I00
000126596 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000126596 590__ $$a6.1$$b2023
000126596 592__ $$a1.246$$b2023
000126596 591__ $$aBIOCHEMICAL RESEARCH METHODS$$b5 / 85 = 0.059$$c2023$$dQ1$$eT1
000126596 593__ $$aBiochemistry$$c2023$$dQ1
000126596 591__ $$aCHEMISTRY, ANALYTICAL$$b8 / 106 = 0.075$$c2023$$dQ1$$eT1
000126596 593__ $$aBioengineering$$c2023$$dQ1
000126596 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b7 / 76 = 0.092$$c2023$$dQ1$$eT1
000126596 593__ $$aBiomedical Engineering$$c2023$$dQ1
000126596 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b50 / 230 = 0.217$$c2023$$dQ1$$eT1
000126596 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000126596 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b39 / 140 = 0.279$$c2023$$dQ2$$eT1
000126596 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ2
000126596 594__ $$a11.1$$b2023
000126596 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126596 700__ $$0(orcid)0000-0001-5063-2987$$aAlmazán, Fernando
000126596 700__ $$aBernad, Eduardo
000126596 700__ $$aFlorea, Ileana
000126596 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, Raul
000126596 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo, Miguel A.
000126596 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, Reyes$$uUniversidad de Zaragoza
000126596 700__ $$0(orcid)0000-0001-9897-6527$$aPina, Maria P.$$uUniversidad de Zaragoza
000126596 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000126596 773__ $$g23, 14 (2023), 3160–3171$$pLab chip$$tLab on a chip$$x1473-0197
000126596 8564_ $$s3629313$$uhttps://zaguan.unizar.es/record/126596/files/texto_completo.pdf$$yVersión publicada
000126596 8564_ $$s1909804$$uhttps://zaguan.unizar.es/record/126596/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126596 909CO $$ooai:zaguan.unizar.es:126596$$particulos$$pdriver
000126596 951__ $$a2024-07-31-09:49:32
000126596 980__ $$aARTICLE