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Abstract. Trajectory optimization is a complex process that includes an in-
finite number of possibilities and combinations. This work focuses on a par-

ticular aspect of the trajectory optimization, related to the optimization of

a velocity along a predefined path, with the aim of minimizing power con-
sumption. To tackle the problem, a functional formulation and minimization

strategy is developed, by means of Lagrange’s equation. The minimization

is later performed using a neural network approach. The strategy is deemed
Lagrange-Net, as it is based on the minimization of the energy functional, by

the means of Lagrange’s equation and neural network approximations.

1. Introduction. With an eye towards autonomous vehicles, new ways to achieve
fuel consumption optimization are in sight [1]. Several studies highlighted the need
to achieve optimal power consumption control, for fuel cost reduction, but also
as a means of reduction of CO2 emissions also known as eco-driving [2, 3]. The
problem of fuel consumption reduction by means of velocity optimization consists
of a particular case of path optimization problems, where the path is previously
defined, and the objective function aims to optimize the velocity profile along the
path [4].

The problem of optimal velocity planning is tackled by several authors, while
assuming a known path, to achieve minimum travel time subjected to environmental
and configuration constraints [4]. For example, in [5] and [6], the authors focus on
the torque distribution over the tire and the moment generation effect to optimize
energy consumption. Motion optimization using sampling algorithms using random
sampling and random forests are described in [7], while the authors in [8] use an
A∗ search algorithm to optimize the consumption and battery life in autonomous
electric vehicles. More recent approaches focus on the use of reinforcement learning
approach for optimal velocity estimation and fuel consumption reduction [1].
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The present work explores a procedure based on the use of physics-based algo-
rithms coupled to neural networks, to solve the energy consumption optimization
problem, inspired of the Physics Informed Neural Networks –PINN– [9] while using
the associated Euler-Lagrange equations.

In Section 2 we first review the functional formulation of the energy consumption,
along with the derivation of the local differential equation minimizing it. Section
3 presents and discusses some numerical examples on a given consumption cost
function. Finally, Section 4 addresses some concluding remarks.

deduce some conclusions.

2. Consumption minimization and functional formulation. We assume that
the fuel consumption (or, equivalently, charge consumption for electrical cars) is
expressed as a cost function C that depends on the velocity v, on its rate of change
v′ and on the position along the trajectory, represented by the curvilinear coordinate
s ∈ Ω, Ω representing the path of length L, i.e. Ω = [0, L]. The slope in the case
of a road, or any other environmental resistance (wind, ...) can be defined as a
function of that coordinate s. Thus, once a consumption cost function C(s, v, ∂v∂s )
is available, one may wish to minimize the total consumption (in an analogous way
the action functional is defined in Lagrangian mechanics) along the path using:

I(v) =

∫
Ω

C
(
s, v,

∂v

∂s

)
ds, (1)

with Ω the total curvilinear path and I(v) the functional to minimize.
The optimization problem becomes now a minimization of the functional I(v),

whose minimum can be found from

δI(v) = 0. (2)

By using the associated Euler-Lagrange equation [10, 11]

∂C
∂v
− ∂

∂s

∂C
∂v′

= 0, (3)

the optimal velocity is the one that results from the solution of Eq. (3).
The problem defined in Eq. (3) can be solved numerically when the analytical

expression of C(s, v, ∂v∂s ) is available, by using finite elements or finite differences,
for instance. However, one can imagine the case where the analytical expression
of C(s, v, ∂v∂s ) is not available. This may require a surrogate model using neural
networks, for example. In such a case, we are using a neural network to solve the
optimization problem and find the optimal velocity v as a function of the path
coordinate s.

3. Numerical examples. In this section, for illustration purposes, and without
any loss of generality, we consider the local cost function C(s, v, ∂v∂s ) having the
following form:

C = av2 + bα(s)v2 + c
∂v

∂s
+ λ (v − vmax)

2
, (4)

where a, b, c and λ are four consumption parameters, the first expressing the drag,
the second the slope or other environment effect modeled by α(s) (term that could
be positive or negative, resisting or favoring the motion), and the third the inertia.
The last term introduces the cost related to longer travels, with the consequent loss
of time, whose cost scales with the lambda λ coefficient.
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Figure 1. Flow chart for the training of the control network H,
when having access to the analytical form of the cost function C.
The network’s weights and biases are named Θ, while v′ = ∂v

∂s .

In a first section, we will introduce the optimization process on the known an-
alytical cost function defined in Eq. (4). Then, in a second stage, we will fit the
cost function using a regression and attempt to minimize the total cost without any
previous knowledge of the analytical form of the associated local cost function. The
fact of having the analytical form of C given by Eq. (4), enables the integration of
the Euler-Lagrande equation by using the finite difference method, to obtain the
so-called “ground truth” numerical solution, to which we can compare the output
of the neural network to quantify the results accuracy.

3.1. Lagrange-Net optimization using the analytical formulation of the
local consumption C. In this section we consider the velocity control neural net-
work H has access to the analytical form of the local cost function given by Eq.
(4). The neural network will attempt to solve Eq. (3) in s ∈ Ω = [0, L], with the
following boundary conditions: {

v(s = 0) = 0,
v(s = L) = 0.

(5)

Boundary conditions are imposed using the following change of variables

v(s) = γ(s) · y(s) + ψ(s), (6)

with γ(s) vanishing on the boundary conditions and ψ(s) satisfying the required
boundary conditions. In the present case we consider ψ(s) = 0 and γ(s) = s(L −
s)/200.

The output of the neural network H is therefore y(s) instead of v(s). A flow chart
is illustrated in Fig. 1. The partial derivatives of the cost function are obtained by
automatic differentiation of the neural network surrogate modelH using tensorflow’s
function GradientTape. The functions γ and ψ are predefined and not trainable
parameters.

A custom neural network training loop is created for this problem, the adopted
parameters are L = 30 km, vmax = 1 m/s, N = 200 sampling point in the domain
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Figure 2. Neural network solution of the optimal velocity for a =
1, b = 1, c = 0 and λ = 1, along with the corresponding finite
difference solution for the same number of nodes N in the domain
Ω.

Ω, and

α = cos(πs/L), (7)

representing a decreasing positive slope (resistance) in [0, L/2] and then, an increas-
ing negative slope in [L/2, L], as depicted in Fig. 2.

The adopted network architecture is described in Table 1. The loss L function
to be minimized is the sum of square errors of the Euler-Lagrange equation residual

L =

i=N∑
i=1

(
∂C

∂v

∣∣∣∣
si

− ∂2C

∂s∂v′

∣∣∣∣
si

)2

. (8)

This formulation bears some similitudes with the Lagrangian neural networks by
Cranmer et al. [12], although in our case the Lagrangian is replaced by the cost
function, whose precise form could be known in advance or determined from data.

Results are presented in Fig. 2 for a = 1, b = 1, c = 0, and λ = 1 and in Fig. 3
for a = 10, b = 10, c = 1 and λ = 10, respectively. The prediction accuracy is very
good in bot cases, with a MAPE of 0.35% in the former and of 1.19% in the last.

3.2. Lagrange-Net optimization using the regression of the local con-
sumption C. In this section, we start by creating a surrogate model of the local
cost function. For instance, we are building a regression surrogate model G that
can reproduce the local cost function C given in Eq. (4). The general flow chart of
the algorithm is now illustrated in Fig. 4.

In absence of experimental data, the surrogate model of the local cost, G, is
obtained by sampling the known local cost function given in Eq. (4).

In what follows, we use a polynomial regression to fit G. To this end, we start by
creating a database of 10.000 velocity fields, all built by using polynomials of degrees
1 to 10 (1000 polynomials for each degree) with the coefficients randomly chosen in
[−10, 10]. Then, 200 points are distributed in Ω, where the 10.000 polynomials are
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Figure 3. Neural network solution of the optimal velocity for a =
10, b = 10, c = 1 and λ = 10, along with the corresponding finite
difference solution for the same number of nodes N in the domain
Ω.

Figure 4. Flow chart for the training of the control network H,
when the cost function C is approximated by a regression model G.
The weights and biases of H are named Θ, while v′ = ∂v

∂s .

particularized and then the local cost function evaluated from Eq. (4), for a given
choice of parameters a, b, c and λ. A regression is performed for each value of α,
that is, 200 polynomial regression in the present case.

Each regression proceeds from the matrix formulation

X =

 | | | | |
v v2 ∂v

∂s

(
∂v
∂s

)2
1

| | | | |

 . (9)

with 80% of the data is selected for training the algorithm, 20% for testing.
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Figure 5. Neural network solution of the optimal velocity for a =
10, b = 1, c = 1 and λ = 10, along with the corresponding finite
difference solution for the same number of nodes N in the s domain.
The cost is approximated using the regression G.

The fitting weights Υ of G are obtained using:

Υ =
(
XTX

)−1
XTY, (10)

with Y being the cost vector.
The cost function mean relative errors (mean absolute errors –MAE) are about

10−10 for both the training and the testing sets.
Once G is available, it is set as non trainable and the training of H can start.

The same loss function and neural network shape illustrated in Section 3.1 are
considered here. Moreover, the same boundary conditions are used, and imposed
using the same change of variables. The results are illustrated in Fig. 5 for a = 10,
b = 1, c = 1 and λ = 10. Figure 6 for a = 10, b = 10, c = 1 and λ = 10. Again, the
accuracy in the performed predictions seems good enough, with a MAPE of 5.72%
in the former case, and of 1.09% in the last case.

3.3. Lagrange-Net optimization using a neural network approximation of
the local consumption C. Similarly to section 3.2, we start by creating a surro-
gate model of the local cost function. However, in the present case the regression G,
here referred as G2, representing the cost function C is obtained by using a neural
network, that is trained offline. The general flow chart is now illustrated in Fig. 7.

To efficiently construct and train the neural network used as a surrogate model,
G2, the inputs are naturally the velocity v and its derivative ∂v

∂s . Moreover, just
after the input layers, a custom layer is build using Keras library, which computes

v2 and
(
∂v
∂s

)2
point-wise. Once all the relevant inputs are available, a concatenation

is followed by a single fully connected layer to compute the regression output.
The model G2 is trained using ADAM stochastic gradient descent algorithm, with

an adaptive learning rate, defined using a custom loop. The converged G2 can ap-
proximate the cost function C with a mean absolute percentage error MAPE of
1.26 × 10−4% on the training set and 1.27 × 10−4% on the testing set. The same
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Figure 6. Neural network solution of the optimal velocity for a =
10, b = 10, c = 1 and λ = 10, along with the corresponding finite
difference solution for the same number of nodes N in the s domain.
The cost is approximated using the regression G

Figure 7. Flow chart for the training of the control network H,
when the cost function C is approximated by a neural network based
regression G2. The weights and biases of H are named Θ, while
v′ = ∂v

∂s .

data described in section 3.2 is used to train G2.

The parameters of the surrogate model G2 are now set as not trainable, and G2

is embedded in the training loop of H, as illustrated in figure 7. The same loss
function, neural network shape and boundary conditions imposition is used to train
H, as described in Section 3.1. The optimal velocity output of H is finally passed
into a shallow Laplacien smoothening filter to flatten any tiny noise still existing
in the velocity solution. The results illustrated in Fig. 8 represent the solution for
a = 10, b = 1, c = 1 and λ = 10, while the ones in Fig. 9 correspond to a = 10,
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Figure 8. Neural network solution of the optimal velocity for a =
10, b = 1, c = 1 and λ = 10, along with the corresponding finite
difference solution for the same number of nodes N in the s domain.
The cost is approximated using the neural network surrogate model
G2.

Figure 9. Neural network solution of the optimal velocity for a =
10, b = 10, c = 1 and λ = 10, along with the corresponding finite
difference solution for the same number of nodes N in the s domain.
The cost is approximated using the neural network surrogate model
G2

b = 10, c = 1 and λ = 10. The accuracy in the performed predictions is good, with
a MAPE of 1.433% in the former case, and of 1.445% in the last case.
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4. Conclusion. In this work proves the feasibility of training a neural network
control to prescribe the optimal velocity profile in a predefined path. The network
involves two parts, the one that defines the local cost function and the one that
optimizes the velocity.

Such cost function can be defined analytically or obtained by using regressions
operating on experimental data. The cost is differentiated to obtain the Euler-
Lagrange formulation of the problem, that serves to compute the loss function.

The proposed neural network is able to reproduce the solution with high fidelity,
if compared to the finite-difference, ground truth solution. The obtained results are
also a demonstration that such an approach can be used to optimize the velocity
profile in any moving object, such as cars or drones, along a predefined path.
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