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Montiel, Professor Laurent Kneip and Professor Federica Arrigoni. I admire your research
and contributions to the field, and I am honored that you are taking part in the final phase of
my PhD journey. Thank you for the time and effort you put into reviewing this thesis.

Above all, I want to express my special thanks to my supervisor, Javier. It all started in
early 2017 when I wrote my first email to Javier. I asked him if I could be his PhD student
and do research on visual SLAM. At that time, I was still working on my Master’s thesis at
TU Delft in the Netherlands and had never met any academic researchers working on SLAM.
I only knew of Javier from my prior internship at Wikitude in Salzburg, during which I read
a lot of SLAM papers, including those of Alejo (Javier’s PhD student at that time) and Javier.
At Wikitude, I heard good things about Jaiver from the colleagues who had talked to him.
So, knowing his previous works and that my ex-colleagues seemed to like him, I did what
any sane PhD applicant should do: I sent an email to his PhD student, Alejo, asking about
his experience with Javier. He was kind enough to send me a detailed reply telling me that
Javier is an excellent person and researcher and that he really enjoys working with him. This
made me feel certain that I want to work with Javier, and for that, I am very grateful to Alejo.

After I sent my first email to Javier (which ended up being the only PhD application I
have ever sent, because I didn’t consider anyone other than him), I had my first online meet-
ing with him. The meeting lasted for more than three hours, and it was such an exhilarating
experience. We talked about literally everything we were both interested in, sharing papers
and ideas and imagining all the cool things we could do together. It was the first time I felt
that my passion and curiosities were understood as a whole and mutually shared. In the end,
I got the position, and in September 2017, my PhD journey started.

Now, looking back at all those years, I definitely feel that it was a much crazier roller-
coaster ride than I had initially anticipated. When I think about the lows, I am glad that I
had not known them beforehand, because I don’t know if I would have still had the courage
to take the first step if I had known the difficulties and challenges waiting ahead of me. In
this sense, I believe that ignorance is bliss, although it may not be the most befitting thing to
say in a PhD thesis. During this crazy roller-coaster ride, Javier was my safety bar (a well



II

functioning one, of course). No offense to the Spaniards, but when it comes to administra-
tions, the Spanish system can give you one hell of time, especially if you are a foreigner who
does not speak Spanish. Whenever I needed help, Javier took matters into his hands and took
care of so many things for me, including the residence, university contract/administrations,
scholarship applications, bank problems, etc. Without his countless rescue operations, I
would have been still stuck in an infinite loop of administration hell to this day.

Also, Javier has given me a tremendous amount of trust and encouragement whenever
I was having a hard time doing research. I still cannot believe that he allowed me to work
on two-view triangulation after we had successfully published our first work on SLAM. Any
other reasonable supervisor would have said that two-view triangulation was solved long
time ago and it is not really interesting to anyone anymore. Certainly, if I were in his po-
sition, I would have said that to my student. But he didn’t. Instead, he told me to take my
time and give it enough thought until I am satisfied and ready to pursue a new direction.
In fact, changing the research direction from visual SLAM to two-view triangulation was a
risky move because I might have ended up spending a lot of time without finding anything
new or useful. But Javier understood me and supported me when I told him that I wanted to
work on a very small problem so that I can understand every little details and come up with
something on my own from the scratch. In the end, this decision led to two publications on
triangulation at top vision conferences, and possibly, a journal paper (which is still a work in
progress). It also had a pivotal impact on my mindset, which helped me pursue new research
directions without feeling like an imposter.

Javier was an amazing supervisor during not only the hard times, but also the good times.
Undoubtedly, the best time we had together was the ICCV 2019 in Seoul. In Spain, I often
felt like I was a tourist and Javier was my tour guide. In Korea, the roles were reversed and
I finally got the chance to take the lead and introduce him to Korean culture and food. We
went to so many places in Seoul and it was so fun! I am especially fond of the memory of
us going to Itaewon on Halloween night, enjoying great South-African food, and dancing in
a club together. How many PhD students get to do that with his/her supervisor? Honestly,
I wouldn’t exchange this experience with anything else, not even with a best paper award
(although Javier might think otherwise).

(Okay, I promise this is the last paragraph about Javier.) There are so many things I have
learned from Javier, especially from his attitude towards his students. During our weekly
meetings, Javier was always attentive and supportive. Even when I didn’t have any good
results to show, I would often feel optimistic by the end of the meeting. He always gives me
detailed and constructive feedback, and his comments are insightful in many ways, helping
me think and question from new perspectives. When he expresses his concerns in rare oc-
casions, he is always careful with his words, not to hurt my feeling. He is so humble and



III

often gives credit to others when there are achievements. From years of working with him, I
really see that before he is a good supervisor, he is a good person. He genuinely cares about
his students, and I can sincerely feel that. I am so lucky and grateful to have you as my
supervisor, Javier. Thank you for being such an awesome mentor!

I also want to thank my former lab mates who have given me lots of help whenever I
had problems in my daily life in Zaragoza. Thanks to them, I got to experience the fun part
of living in Spain. I really enjoyed our time together and I feel sorry that I have not been
able to fully reciprocate the favors I have received for so long. Thank you Chema, Berta,
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사랑하는엄마아빠그리고성호야. 끝이안보이던기나긴박사과정에드디어마침표를

찍게됐어. 그동안항상걱정해주고응원해주고같이있을때마다잘챙겨줘서고마워.우리

가어디에있든무엇을하든항상서로를사랑하고응원하고있다는걸기억하자.무엇보다

건강이최고니까앞으로도우리가족계속건강하고행복하자.사랑해! 사랑하는할머니,할

아버지.큰손자열심히공부해서이제박사됐어요!항상저와가족을위해기도해주시는할

머니덕분이고멀리서도응원해주시는할아버지덕분이에요.두분모두항상건강하시고오

래오래행복하게사세요.사랑해요!
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Abstract

In order for a computer to “see” the 3D geometry of the world, it needs to be able to derive
the geometric relations between the 2D images and the 3D world. Multiple view geometry
is the field of research that studies this problem. Many existing methods attempt to solve
a small part of this big problem by minimizing a certain objective function. This function
is typically made of algebraic or geometric errors representing the deviations of the obser-
vation from the model. In short, we often try to recover the 3D structure of the world and
the camera poses by finding the model that minimizes the discrepancy with respect to the
observations.

The focus of this thesis is placed mainly on two aspects of multiview reconstruction prob-
lems: the error criteria and the robustness. First, we study the error criteria used in several
geometric problems and ask ourselves ‘Why do we optimize what we optimize?’ Specifi-
cally, we analyze their pros and cons and come up with novel methods that either combine
the existing criteria or adopt a better alternative. Second, we try to achieve state-of-the-art
robustness against outliers and challenging scenarios that are often encountered in practice.
To this end, we propose multiple novel ideas that can be incorporated in the optimization-
based methods.

Specifically, we study the following problems: monocular SLAM, two-view and multi-
view triangulation, single and multiple rotation averaging, rotation-only bundle adjustment,
robust averaging of numbers, and quantitative trajectory evaluation.

For monocular SLAM, we propose a novel hybrid approach that combines the strengths
of direct and feature-based methods. Direct methods minimize the photometric errors be-
tween corresponding pixels in images, whereas feature-based methods minimize the repro-
jection errors. Our method loosely couples direct odometry and feature-based SLAM, and it
is shown to improve the robustness in challenging scenarios, as well as the accuracy when
the camera motion is mostly loopy.

For two-view triangulation, we propose optimal methods that minimize the angular re-
projection errors in closed form. Since the angular error is rotationally invariant, these meth-
ods can be used for perspective, fisheye or omnidirectional cameras. Also, they are much
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faster than the existing optimal methods. Another two-view triangulation method we propose
takes a completely different approach: We modify the classical midpoint method slightly and
show that it provides a superior balance of 2D and 3D accuracy even though it is non-optimal.

For multiview triangulation, we propose a robust and efficient method using two-view
RANSAC. We introduce several early termination criteria for two-view RANSAC using the
midpoint method, and show that it improves the efficiency when the outlier ratio is high.
Additionally, we show that the uncertainty of a triangulated point can be modeled as a func-
tion of three factors: the number of cameras, the mean reprojection error and the maximum
parallax angle. By learning this model, the uncertainty can be interpolated at test time.

For single rotation averaging, we propose a robust method based on the Weiszfeld algo-
rithm. The main idea is to start with a robust initialization and perform an implicit outlier
rejection scheme inside the Weiszfeld algorithm to further boost the robustness. Also, we
use an approximation of the chordal median on SO(3) which provides a significant speedup.

For multiple rotation averaging, we propose HARA, a novel approach that incrementally
initializes the rotation graph based on a hierarchy of triplet support. Essentially, we build
a spanning tree by prioritizing the edges with many strong triplet supports and gradually
adding those with weaker and fewer supports. As a result, we reduce the risk of adding
outliers in the initial solution, which then allows us to filter outliers prior to nonlinear opti-
mization. Furthermore, we show that we can improve the results by using the smoothed L0+

function in the local refinement step.

Next, we propose rotation-only bundle adjustment, a novel method for estimating the ab-
solute rotations of multiple views independently of the translations and the scene structure.
The key is to minimize a specially designed cost function based on the normalized epipolar
error, which is closely related to the L1-optimal angular reprojection error among other ge-
ometric quantities. Our approach provides multiple benefits such as complete immunity to
inaccurate translations and structure, robustness to pure rotations and planar scenes, and the
accuracy improvement when used with rotation averaging.

We also propose RODIAN, a robust method for averaging a set of numbers contaminated
by a large proportion of outliers. In our method, we assume that the outliers are uniformly
distributed within the range of the data and we search for the region that is least likely to
contain outliers only. We then take the median of the data within this region. Our method is
fast, robust and deterministic, and it does not rely on a known inlier error bound.

Finally, for quantitative trajectory evaluation, we point out the weakness of the commonly
used Absolute Trajectory Error (ATE) and propose a novel alternative named Discernible
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Trajectory Error (DTE). In the presence of just a few outliers, the ATE quickly starts losing its
sensitivity to the inlier trajectory error and the number of outliers. The DTE overcomes this
weakness by aligning the estimated trajectory to the ground truth using a robust method based
on several different types of medians. Using similar ideas, we also propose a rotation-only
metric, named Discernible Rotation Error (DRE). Additionally, we propose a simple method
for calibrating the camera-to-marker rotation, which is a prerequisite for the computation of
both DTE and DRE.



Resumen

Para que un computador sea capaz de entender la geometrı́a 3D de su entorno, necesitamos
derivar las relaciones geométricas entre las imágenes 2D y el mundo 3D. La geometrı́a de
múltiples vistas es el área de investigación que estudia este problema. La mayor parte de
métodos existentes resuelve pequeñas partes de este gran problema minimizando una deter-
minada función objetivo. Estas funciones normalmente se componen de errores algebraicos
o geométricos que representan las desviaciones con respecto al modelo de observación. En
resumen, en general tratamos de recuperar la estructura 3D del mundo y el movimiento de
la cámara encontrando el modelo que minimiza la discrepancia con respecto a las observa-
ciones.

El enfoque de esta tesis se centra principalmente en dos aspectos de los problemas de re-
construcción multivista: los criterios de error y la robustez. Primero, estudiamos los criterios
de error usados en varios problemas geométricos y nos preguntamos ‘¿Por qué optimizamos
lo que optimizamos?’ Especı́ficamente, analizamos sus pros y sus contras y proponemos
métodos novedosos que combinan los criterios existentes o adoptan una mejor alternativa.
En segundo lugar, tratamos de alcanzar el estado del arte en robustez frente a valores atı́picos
y escenarios desafiantes, que a menudo se encuentran en la práctica. Para ello, proponemos
múltiples ideas novedosas que pueden ser incorporadas en los métodos basados en opti-
mización.

Especı́ficamente, estudiamos los siguientes problemas: SLAM monocular, triangulación
a partir de dos y de múltiples vistas, promedio de rotaciones únicas y múltiples, ajuste de
haces únicamente con rotaciones de cámara, promedio robusto de números y evaluación
cuantitativa de estimación de trayectoria.

Para SLAM monocular, proponemos un enfoque hı́brido novedoso que combina las for-
talezas de los métodos directos y los basados en caracterı́sticas. Los métodos directos mini-
mizan los errores fotométricos entre los pı́xeles correspondientes en varias imágenes, mien-
tras que los métodos basados en caracterı́sticas minimizan los errores de reproyección. Nue-
stro método combina de manera débilmente acoplada la odometrı́a directa y el SLAM basado
en caracterı́sticas, y demostramos que mejora la robustez en escenarios desafiantes, ası́ como
la precisión cuando el movimiento de la cámara realiza frecuentes revisitas.
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Para la triangulación de dos vistas, proponemos métodos óptimos que minimizan los
errores de reproyección angular en forma cerrada. Dado que el error angular es rotacional-
mente invariante, estos métodos se pueden utilizar para cámaras perspectivas, lentes de ojo
de pez u omnidireccionales. Además, son mucho más rápidos que los métodos óptimos ex-
istentes en la literatura. Otro método de triangulación de dos vistas que proponemos adopta
un enfoque completamente diferente: Modificamos ligeramente el método clásico del punto
medio y demostramos que proporciona un equilibrio superior de precisión 2D y 3D, aunque
no es óptimo.

Para la triangulación multivista, proponemos un método robusto y eficiente utilizando
RANSAC de dos vistas. Presentamos varios criterios de finalización temprana para RANSAC
de dos vistas utilizando el método de punto medio y mostramos que mejora la eficiencia
cuando la proporción de medidas espúreas es alta. Además, mostramos que la incertidumbre
de un punto triangulado se puede modelar en función de tres factores: el número de cámaras,
el error medio de reproyección y el ángulo de paralaje máximo. Al aprender este modelo, la
incertidumbre se puede interpolar para cada caso.

Para promediar una sola rotación, proponemos un método robusto basado en el algo-
ritmo de Weiszfeld. La idea principal es comenzar con una inicialización robusta y realizar
un esquema de rechazo de valores espúreos implı́cito dentro del algoritmo de Weiszfeld para
aumentar aún más la robustez. Además, usamos una aproximación de la mediana cordal en
SO(3) que proporciona una aceleración significativa del método.

Para promediar rotaciones múltiples proponemos HARA, un enfoque novedoso que ini-
cializa de manera incremental el grafo de rotaciones basado en una jerarquı́a de compat-
ibilidad con tripletas. Esencialmente, construimos un árbol de expansión priorizando los
enlaces con muchos soportes triples fuertes y agregando gradualmente aquellos con menos
soportes y más débiles. Como resultado, reducimos el riesgo de agregar valores atı́picos en
la solución inicial, lo que nos permite filtrar los valores atı́picos antes de la optimización no
lineal. Además, mostramos que podemos mejorar los resultados usando la función suavizada
L0+ en el paso de refinamiento local.

A continuación, proponemos el ajuste de haces únicamente con rotaciones, un método
novedoso para estimar las rotaciones absolutas de múltiples vistas independientemente de las
traslaciones y la estructura de la escena. La clave es minimizar una función de coste especial-
mente diseñada basada en el error epipolar normalizado, que está estrechamente relacionado
con el error de reproyección angular óptimo L1 entre otras cantidades geométricas. Nuestro
enfoque brinda múltiples beneficios, como inmunidad total a translaciones y triangulaciones
imprecisas, robustez frente a rotaciones puras y escenas planas, y la mejora de la precisión
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cuando se usa tras el promedio de promedio de rotaciones explicado anteriormente.

También proponemos RODIAN, un método robusto para promediar un conjunto de números
contaminados por una gran proporción de valores atı́picos. En nuestro método, asumimos
que los valores atı́picos se distribuyen uniformemente dentro del rango de los datos y bus-
camos la región que es menos probable que contenga solo valores atı́picos. Luego tomamos
la mediana de los datos dentro de esta región. Nuestro método es rápido, robusto y deter-
minista, y no se basa en un lı́mite de error interno conocido.

Finalmente, para la evaluación cuantitativa de la trayectoria, señalamos la debilidad del
Error de Trayectoria Absoluta (ATE) comúnmente utilizado y proponemos una alternativa
novedosa llamada Error de Trayectoria Discernible (DTE). En presencia de solo unos pocos
valores espúreos, el ATE pierde su sensibilidad respecto al error de trayectoria de los valores
tı́picos y respecto al número de datos atı́picos o espúreos. El DTE supera esta debilidad al
alinear la trayectoria estimada con la verdadera (ground truth) utilizando un método robusto
basado en varios tipos diferentes de medianas. Usando ideas similares, también proponemos
una métrica de solo rotación, llamada Error de Rotación Discernible (DRE). Además, pro-
ponemos un método simple para calibrar la rotación de cámara a marcador, que es un requi-
sito previo para el cálculo de DTE y DRE.
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Chapter 1

Introduction

Multiple view geometry is a sub-field of computer vision dealing with the geometric re-
lations between a 3D scene and multiple cameras that project such scene into 2D images.
This field has been increasingly active in the past few decades due to its relevance in many
emerging technologies, such as photogrammetry (Ondrúška et al., 2015), geo-localization
(Moulon et al., 2017), autonomous navigation of ground/air vehicles (Qin et al., 2018), and
virtual/augmented reality (Klein and Murray, 2007). As a result of such immense research
endeavors during these decades, the field of multiple view geometry has seen significant
progress in both theory and practice.

One of the most influential books in our field is Multiple View Geometry, written by R. I.
Hartley and A. Zisserman in the early 2000s (Hartley and Zisserman, 2003). In the preface of
their book, they mention two important factors that led to the great achievements in multiple
view geometry at that time:

“The achievements in multiple view geometry have been possible because of de-
velopments in our theoretical understanding, but also because of improvements
in estimating mathematical objects from images. The first improvement has been
an attention to the error that should be minimized in over-determined systems
– whether it be algebraic, geometric or statistical. The second improvement
has been the use of robust estimation algorithms (such as RANSAC), so that
the estimate is unaffected by “outliers” in the data. Also these techniques have
generated powerful search and matching algorithms.”

More than 20 years later since this book was published, these two topics (the error crite-
ria and robust estimation) are still actively studied to this day and progress is being made
steadily. In this thesis, we also focus on these two aspects of multiview geometry problems.
The two overarching themes of this thesis are (1) the study of error criteria and cost func-
tions, and (2) the robust estimation in the presence of outliers:
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(1) Study of error criteria and cost functions:
We ask ourselves ‘Why do we optimize what we optimize in multiple view geometry?’, which
is also the title of this thesis. Many existing methods in multiview reconstruction aim to re-
cover the underlying geometric model of the world and the cameras by minimizing a certain
objective function. Typically, this function is based on algebraic or geometric errors that rep-
resent the deviations of the observation from the model we are guessing. Depending on the
choice and design of this function, we obtain different results and encounter different levels
of difficulty solving the problem (Hartley and Zisserman, 2003). In this thesis, we analyze
the role of error criteria and cost functions in several geometric problems, namely monoc-
ular simultaneous localization and mapping (SLAM), triangulation, single/multiple rotation
averaging, rotation-only bundle adjustment and quantitative trajectory evaluation.

(2) Robust estimation in the presence of outliers:
When outliers in the data are not handled properly, they significantly reduce the resulting
accuracy in most geometric reconstruction problems (Stewart, 1999, Antonante et al., 2022).
For applications such as autonomous driving, unsuccessful handing of outliers poses a criti-
cal risk that can endanger our life and safety. For applications such as AR and VR, this can
instantly ruin the user experience. Therefore, it is essential that we always take into account
potential outliers when we solve an estimation problem. In this thesis, we propose several
novel ideas to better handle outliers in multiview triangulation, single/multiple rotation av-
eraging, number averaging, and quantitative trajectory evaluation.

1.1 Research Areas and Contributions

Multiple view geometry is a very broad field covering a number of diverse research and ap-
plication areas. In this thesis, we focus on two main research areas: Monocular Simultaneous
Localization and Mapping (SLAM) and Structure-from-Motion (SfM). Both areas consist of
multiple components, each of which can be considered as a research area itself. Here we
provide the complete list of the problems we consider in this thesis:

• Monocular SLAM

• Structure-from-Motion (SfM)

• Two-view and multiview triangulation

• Single and multiple rotation averaging

• Rotation-only bundle adjustment

• Number averaging

• Quantitative trajectory evaluation

In the following, we briefly explain each of the problems above and our contributions therein.
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Figure 1.1: The pipeline of a keyframe-based monocular SLAM system.

1.1.1 Monocular SLAM

Monocular SLAM is a problem of simultaneously estimating the motion of a single camera
and the 3D scene structure from a real-time video input. There are two main approaches for
monocular SLAM: filter-based and keyframe-based. Filter-based methods such as (Davison
et al., 2007) include the camera pose and 3D feature positions in a single state vector and
update it sequentially using an Extended Kalman Filter (EKF). In contrast, keyframe-based
methods such as (Klein and Murray, 2007) select a subset of past frames called keyframes
and jointly optimize their poses and the 3D map, so that the resulting map can be used
for real-time camera tracking. In (Strasdat et al., 2010a), it is shown that keyframe-based
methods tend to be more accurate than the filter-based methods given a sufficient amount
of processing resources. In this thesis, we focus on the keyframe-based approach. Fig. 1.1
presents a generic pipeline of a keyframe-based monocular SLAM system (e.g., (Strasdat
et al., 2010b, 2011, Mur-Artal et al., 2015)). Interested readers are referred to (Younes et al.,
2017) for a survey of keyframe-based methods.

The keyframe-based methods can be further classified into three categories: feature-
based (or indirect), photometric (or direct) and hybrid (or semi-direct). Feature-based meth-
ods estimate structure and motion by matching 2D features and performing geometric bundle
adjustment, which minimizes the reprojection error (e.g., (Klein and Murray, 2007, Mur-
Artal et al., 2015)). Direct methods, on the other hand, estimate structure and motion by
minimizing the photometric error (i.e., intensity difference) between corresponding pixels in
images (e.g., (Newcombe et al., 2011, Engel et al., 2014, 2018)). Finally, hybrid methods
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estimate structure and motion by combining feature-based and direct methods, taking ad-
vantage of the complementary strengths of each method (e.g., (Forster et al., 2014, Forster,
Zhang, Gassner, Werlberger and Scaramuzza, 2017, Krombach et al., 2016, Younes et al.,
2019, Luo et al., 2021, 2022)).

Our contributions: In Chapter 2, we propose LCSD-SLAM, a novel hybrid method for
monocular SLAM that inherits both the robustness of direct visual odometry and the map-
reusing capability of feature-based SLAM. The novelty of our method lies in the loose cou-
pling of direct and feature-based systems such that, locally, a direct method is used to track
new frames rapidly and robustly with respect to a local semi-dense map, and globally, a
feature-based method is used to refine the keyframe poses, perform loop closures, and build
a globally consistent, reusable, sparse feature map. Our evaluation shows that LCSD-SLAM
achieves state-of-the-art results on two public benchmark datasets.

1.1.2 Structure-from-Motion (SfM)

SfM refers to the problem of reconstructing the camera poses and the scene structure from
the list of unordered images. Unlike visual odometry and SLAM, the input images are often
taken from different cameras with different calibration parameters. Also, it is impossible to
use the temporal data to relate successive frames to each other because the input is not a
video. Over the years, various SfM approaches have been proposed, including incremental
(Snavely et al., 2006, Agarwal et al., 2011, Schönberger and Frahm, 2016), hierarchical
(Gherardi et al., 2010) and global approaches (Moulon et al., 2013, Wilson and Snavely,
2014, Cui and Tan, 2015). In this thesis, we consider the global approach, which has the
following pipeline:

1. Feature extraction and matching across all images (e.g., using SIFT descriptors (Lowe,
2004)).

2. Relative pose estimation between image pairs (e.g., using Nistér’s five-point method
(Nistér, 2004) in RANSAC (Fischler and Bolles, 1981)).

3. Global rotation estimation by multiple rotation averaging.

4. Global translation estimation.

5. Multiview triangulation.

6. Bundle adjustment, i.e., a joint optimization of the camera poses and the 3D points.

Our contributions: In this thesis, we study Step 3 and 5 in the pipeline above. We also
propose rotation-only bundle adjustment as an additional intermediate step between Step 3
and 4. Fig. 1.2 illustrates the proposed pipeline of a global SfM system.



6 1. Introduction

Translation estimation

Multiple rotation averaging

Rotation-only bundle adjustment

Multiview triangulation

Relative pose estimation

Bundle adjustment

Images

Relative rotations

Global rotations

Global rotations

3D points

Global
translations

Inlier feature matches

Global
rotations

Global
translations

3D points

Reconstruction results

Feature extraction and matching

Feature matches

Figure 1.2: The proposed pipeline of a global SfM system.

1.1.3 Two-View Triangulation

Triangulation is the problem of estimating the position of a 3D point given its projections
in two or more calibrated cameras of known pose (see Fig. 1.3). This is a fundamental
problem in computer vision, and it plays an important role in geometric reconstruction, such
as SLAM (Mur-Artal et al., 2015) and SfM (Schönberger and Frahm, 2016). As shown in
Fig. 1.2, triangulation provides the initial seed of the 3D points for the bundle adjustment
step that follows. Bundle adjustment aims to find the optimal structure and camera poses
jointly by minimizing the image reprojection errors (Triggs et al., 2000). Being a nonlinear
optimization, it requires a good initialization since it mostly converges to a local minimum
near the starting point. Therefore, accurate triangulation is needed not only for the accurate
scene reconstruction, but also for the accurate camera pose estimation in bundle adjustment.

The minimum number of views required for triangulation is two. Compared to triangu-
lation from three or more views, two-view triangulation is considered relatively simple and
straightforward. Nevertheless, its importance must not be understated, as it has unique ap-
plications in SfM (Schönberger and Frahm, 2016, Cui and Tan, 2015, Cai et al., 2021).

Our contributions: In Chapter 3, we propose, for the first time to our knowledge, the exact
closed-form solutions to the L1 and L∞ optimal triangulation from two views based on the
angular reprojection error. We also present our own deviation of the L2 optimal solution that
is much more compact and geometrically intuitive than the existing one (Oliensis, 2002).
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Camera 1

Camera 2
Camera 3 Camera n

?

Figure 1.3: Synopsis of the triangulation problem. The unknown 3D point’s position can be estimated from its
projections in n views of known calibration and pose.

Since all three methods are based on the angular error, they can be applied for any type of
central cameras, be it perspective, fisheye or omnidirectional. Our experiments show that our
methods do indeed achieve global optimality under respective cost functions and that they
are faster than the existing optimal methods.

In Chapter 4, we propose an alternative method which does not minimize geometric
errors at all. This method is a variant of the classical midpoint method (Beardsley et al., 1994,
1997, Hartley and Sturm, 1997), and we show that for small parallax angles it outperforms
the classical midpoint method in terms of 2D accuracy and the optimal methods in terms of
3D accuracy. We provide an in-depth discussion on the discrepancy between the 2D and 3D
errors at low parallax, which was previously reported in (Hartley and Sturm, 1997).

1.1.4 Multiview Triangulation

For multiview triangulation with more than two views (as shown in Fig. 1.3), the follow-
ing practical aspects should be considered: 2D and 3D accuracy, robustness to outliers and
speed. Arguably, the most critical aspect is the robustness to outliers because, in practice,
feature tracks often contain a very large number of outliers (Schönberger and Frahm, 2016)
and failing to filter them out is detrimental to the reconstruction accuracy. (Schönberger and
Frahm, 2016) proposes a robust and efficient triangulation method using two-view RANSAC.

Our contributions: In Chapter 6, we propose a robust and efficient method for multiview
triangulation, also based on two-view RANSAC. Specifically, we propose several early ter-
mination criteria for two-view RANSAC using the classical midpoint method (Beardsley
et al., 1994, 1997, Hartley and Sturm, 1997), and show that it improves the efficiency when
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the outlier ratio is high. We also compare three different local optimization methods in terms
of 2D and 3D accuracy. Lastly, we propose a novel method for estimating the uncertainty
of a triangulated point. We show that the uncertainty can be modeled as a function of three
factors: the number of inlier cameras, the mean reprojection error and the maximum parallax
angle. Learning this model then allows us to quickly interpolate the uncertainty at test time.

1.1.5 Single Rotation Averaging

Single rotation averaging refers to the problem of averaging several noisy estimates of a
single rotation to obtain its best estimate (see Fig. 1.4). This is relevant in relative pose
estimation (Hartley et al., 2011) and multiple rotation averaging (Hartley and Schaffalitzky,
2004, Lee and Civera, 2022), both of which play an important role in geometric recon-
struction such as SLAM and SfM. We refer to (Hartley, Trumpf, Dai and Li, 2013) for an
excellent study of single rotation averaging from a theoretical perspective. In (Hartley et al.,
2011), an outlier-robust method is proposed based on the geodesic median in SO(3) using
the Weiszfeld algorithm (Weiszfeld, 1937).

Our contributions: In Chapter 7, we propose a novel method for robust single rotation av-
eraging, also based on the Weiszfeld algorithm (Weiszfeld, 1937). Unlike (Hartley et al.,
2011), however, we implicitly disregard the outliers at each iteration of the Weiszfeld al-
gorithm, and also, we use an approximation of the chordal median in SO(3) instead of the
geodesic median. Our evaluation shows that our method outperforms (Hartley et al., 2011)
in terms of speed and robustness.

1.1.6 Multiple Rotation Averaging

Multiple rotation averaging (also called rotation synchronization) aims to find multiple global
rotations Ri given noisy estimates of the relative rotations between some camera pairs
Rij = RiR

⊤
j (Hartley, Trumpf, Dai and Li, 2013). This problem is illustrated in Fig. 1.5.

It provides the initial estimates of the global camera rotations, which directly affect all of
the subsequent operations in a global SfM pipeline (see Fig. 1.2). Therefore, multiple ro-
tation averaging plays a crucial role in achieving reliable reconstruction and it needs to be
sufficiently robust to outliers in order to mitigate the propagation and amplification of large
errors down the SfM pipelines. State-of-the-art methods such as (Chatterjee and Govindu,
2018) and (Shi and Lerman, 2020) formulate rotation averaging as a non-linear optimization
problem and solve it iteratively starting from some initial guess of the global rotations.

Our contributions: In Chapter 8, we propose HARA, a a hierarchical approach for robust
multiple rotation averaging. Our main contribution is a hierarchical initialization scheme
that incrementally builds a spanning tree of a rotation graph by propagating most reliable
edges first and less reliable ones later. The hierarchy of reliability is established based on
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Figure 1.4: Synopsis of the single rotation averaging problem. The unknown rotation can be estimated by
averaging multiple noisy estimates of it.

...

Multiple
rotation 

averaging

World
reference

Cam 2
Cam 3

Cam nCam 1

R21

R1n

Rn3
R31R2n

Cam 1

Cam 2

Cam 3

Cam n

R1

R2

R3

Rn

Figure 1.5: Synopsis of the multiple rotation averaging problem. The unknown global rotations can be esti-
mated by combining noisy estimates of the relative rotations between multiple camera pairs.

the number of consistent triplet constraints, as well as their level of consistency. We also
show that we can optionally incorporate the number of valid inlier feature matches into
our initialization scheme (indicated by the dotted line in Fig. 1.2). Having a robust initial
solution enables us to filter outlier edges prior to nonlinear optimization, and experimental
results show that HARA achieves state-of-the-art results on both synthetic and real datasets.
Additionally, in Chapter 9, we show that using the smoothed L0+ function (Peng et al., 2022)
in the local refinement step of HARA further improves the results on the real datasets. We
provide the probabilistic interpretations of this cost function and show that it is suitable for
the outlier-prone large-scale rotation averaging problem.
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1.1.7 Rotation-Only Bundle Adjustment

Rotation-only bundle adjustment is the problem of finding the global rotations of multi-
ple cameras by directly leveraging the image measurements without computing the global
translations or the scene structure. Since the estimated rotations are subsequently used for
the translation estimation, multiview triangulation and bundle adjustment (see Fig. 1.2), it
would be helpful if they can be further refined immediately after multiple rotation averaging.

Our contributions: In Chapter 10, we propose a novel method for rotation-only bundle ad-
justment. To the best of our knowledge, we are the first to propose a multiview rotation-only
optimization method that uses the image measurements as direct input and can be generalized
to both pure and non-pure rotations. The main idea is to extend the two-view rotation-only
method of (Kneip and Lynen, 2013) and minimize the aggregated cost using the Adam op-
timizer (Kingma and Ba, 2015). Extensive evaluations on both synthetic and real datasets
show that our method consistently and significantly improves the rotation accuracy when
used after multiple rotation averaging. Additionally, in Chapter 5, we provide several geo-
metric interpretations of the normalized epipolar error, which is what our aggregated cost is
based on.

1.1.8 Number Averaging

Averaging numbers in the presence of a large amount of outliers is a simple yet relevant prob-
lem in a wide variety of domains, including 3D computer vision (Gesto Diaz et al., 2015,
Lee and Civera, 2020b, Cui and Tan, 2015) among others. Commonly, the median is used
for averaging outlier-prone numbers because it has a higher breakdown point (50%) than the
arithmetic mean (0%). If there is an efficient method with a breakdown point even higher
than 50%, then such a method could be used instead of the median, and this change could
potentially improve the robustness of some of the existing reconstruction algorithms (e.g., a
translation averaging method proposed in (Cui and Tan, 2015)).

Our contributions: In Chapter 11, we propose RODIAN, a novel measure of central ten-
dency that can handle more than 50% outliers in the data. Our method is inspired by MIN-
PRAN (Stewart, 1995), but unlike MINPRAN, RODIAN is deterministic and runs in time
O(n log n). Also, unlike RANSAC (Fischler and Bolles, 1981) and Huber-like cost functions
(Huber, 1981), no parameter tuning is needed to account for different inlier distributions.
Our extensive simulations demonstrate the superior robustness of RODIAN compared to the
median and the least-median-of-squares (LMedS) (Rousseeuw, 1984).
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Figure 1.6: Quantitative trajectory evaluation consists of two main steps: (1) Align the estimated trajectory
(right) to the ground truth (left) as closely as possible, and (2) compute the distances between each correspond-
ing camera pair and aggregate them into a single error metric.

1.1.9 Quantitative Trajectory Evaluation

By quantitative trajectory evaluation, we refer to the quantification of the deviation of the
estimated camera poses (also called trajectory) from the known ground truth. This is an im-
portant problem because a reliable and fair evaluation is crucial not only for benchmarking
purposes but also for progressive improvements of existing methods. The basic mechanism
of trajectory evaluation is to align the ground-truth and estimated trajectories as closely as
possible, and then aggregate the offsets between each corresponding camera pair into a sin-
gle metric (see Fig. 1.6). For odometry and SLAM, a commonly used error metric is the
Absolute Trajectory Error (ATE) (Sturm et al., 2012).

Our contributions: In Chapter 12, we point out a limitation of the ATE, which is that its sen-
sitivity quickly deteriorates in the presence of just a few outliers and that it fails to robustly
discern the varying accuracy as the inlier trajectory error or the number of outliers varies. To
overcome this limitation, we propose an alternative error metric, named Discernible Trajec-
tory Error (DTE). Our extensive simulations demonstrate that the DTE behaves much more
favorably than the ATE in terms of sensitivity to the aforementioned factors. Additionally,
we propose a rotation-only metric, named Discernible Rotation Error (DRE), and a novel
calibration method that can be used for computing our metrics.
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1.2 List of Publications

Some of the works presented in this thesis were peer-reviewed and published in prestigious
academic conferences and journals. Among the remaining works, some were made public in
the form of preprints, although they have not been published in any conferences or journals
(yet). Here is the complete list of our works in order of appearance in this thesis:

• Seong Hun Lee and Javier Civera, Loosely-Coupled Semi-Direct Monocular SLAM,
in IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 399-406, 2019,

• Seong Hun Lee and Javier Civera, Closed-Form Optimal Two-View Triangulation
Based on Angular Errors, Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 2681-2689, 2019,

• Seong Hun Lee and Javier Civera, Triangulation: Why Optimize?, British Machine
Vision Conference (BMVC), 2019,

• Seong Hun Lee and Javier Civera, Geometric Interpretations of the Normalized
Epipolar Error, arXiv preprint, arXiv:2008.01254, 2020,

• Seong Hun Lee and Javier Civera, Robust Uncertainty-Aware Multiview Triangu-
lation, arXiv preprint, arXiv:2008.01258, 2020,

• Seong Hun Lee and Javier Civera, Robust Single Rotation Averaging, arXiv preprint,
arXiv:2004.00732, 2020,

• Seong Hun Lee and Javier Civera, HARA: A Hierarchical Approach for Robust
Rotation Averaging, IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 15756-15765, 2022,

• Seong Hun Lee and Javier Civera, L0+ Optimization: Application to Multiple Ro-
tation Averaging, unpublished, 2022,

• Seong Hun Lee and Javier Civera, Rotation-Only Bundle Adjustment, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 424-433, 2021,

• Seong Hun Lee and Javier Civera, RODIAN: Robustified Median, arXiv preprint,
arXiv:2206.02570, 2022,

• Seong Hun Lee and Javier Civera, What’s Wrong with the Absolute Trajectory
Error?, unpublished, 2022.
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1.3 Code Released

• Loosely-Coupled Semi-Direct Monocular SLAM
https://github.com/sunghoon031/LCSD_SLAM

• Robust Uncertainty-Aware Multiview Triangulation:
https://github.com/sunghoon031/RobustUncertaintyAwareMultiviewTriangulation

• Robust Single Rotation Averaging
https://github.com/sunghoon031/RobustSingleRotationAveraging

• HARA: A Hierarchical Approach for Robust Rotation Averaging
https://github.com/sunghoon031/HARA

• Rotation-Only Bundle Adjustment
https://github.com/sunghoon031/ROBA

• RODIAN: Robustified Median
https://github.com/sunghoon031/RODIAN

1.4 Videos and Presentations

• Loosely-Coupled Semi-Direct Monocular SLAM
https://www.youtube.com/watch?v=j7WnU7ZpZ8c

• Triangulation: Why Optimize?
https://youtu.be/K-d4EDQCpHk?t=18

• Rotation-Only Bundle Adjustment
https://youtu.be/JXnEwXwVKus

• HARA: A Hierarchical Approach for Robust Rotation Averaging
https://youtu.be/oAR-LMStRS4

https://github.com/sunghoon031/LCSD_SLAM
https://github.com/sunghoon031/RobustUncertaintyAwareMultiviewTriangulation
https://github.com/sunghoon031/RobustSingleRotationAveraging
https://github.com/sunghoon031/HARA
https://github.com/sunghoon031/ROBA
https://github.com/sunghoon031/RODIAN
https://www.youtube.com/watch?v=j7WnU7ZpZ8c
https://youtu.be/K-d4EDQCpHk?t=18
https://youtu.be/JXnEwXwVKus
https://youtu.be/oAR-LMStRS4




Chapter 2

Loosely-Coupled Semi-Direct Monocular
SLAM

In this chapter, we propose a novel semi-direct approach for monocular simultaneous lo-
calization and mapping (SLAM) that combines the complementary strengths of direct and
feature-based methods. The proposed pipeline loosely couples direct odometry and feature-
based SLAM to perform three levels of parallel optimizations: (1) photometric bundle ad-
justment (BA) that jointly optimizes the local structure and motion, (2) geometric BA that
refines keyframe poses and associated feature map points, and (3) pose graph optimization
to achieve global map consistency in the presence of loop closures. This is achieved in
real-time by limiting the feature-based operations to marginalized keyframes from the direct
odometry module. Exhaustive evaluation on two benchmark datasets demonstrates that our
system outperforms the state-of-the-art monocular odometry and SLAM systems in terms of
overall accuracy and robustness.

2.1 Introduction

Real-time visual odometry (VO) and simultaneous localization and mapping (SLAM) play
an important role in many emerging technologies, such as autonomous ground/air vehicles
(Nistér et al., 2006, Lee and de Croon, 2018) and virtual/augmented reality (Klein and Mur-
ray, 2007). In particular, monocular methods have drawn significant attention due to their
minimal hardware constraints.

Traditional algorithms relied heavily on feature extraction and matching to estimate
structure and motion (Davison et al., 2007, Klein and Murray, 2007). In recent years, how-
ever, direct methods have gained rapidly increasing popularity (Engel et al., 2014, 2018).
In contrast to feature-based ones, direct methods are capable of leveraging raw photometric
information from a chosen set of pixels in the image. This removes the need for costly per-
frame feature extraction and matching. Also, they are shown to be relatively more robust in
low-texture scenes (Engel et al., 2018).
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Although direct methods have their own merits in several aspects, they inevitably miss
certain benefits of salient features. For example, feature descriptors such as SIFT (Lowe,
2004) or ORB (Rublee et al., 2011) have a high degree of invariance to viewpoint and illu-
mination changes, and they can be matched over wide baselines. Such properties are favor-
able for tracking large inter-frame motions and recognizing revisited places. Recent studies
indeed confirm that direct and feature-based methods have their own strengths and weak-
nesses in respective areas (Engel et al., 2018, Yang et al., 2018). Semi-direct methods such
as (Forster et al., 2014) attempt to take advantage of such complementary characteristics by
incorporating ideas from both direct and feature-based methods.

In this chapter, we propose a novel semi-direct approach for monocular SLAM that in-
herits both the robustness of direct VO and the map-reusing capability (e.g., loop closure) of
feature-based SLAM. Our contribution is a loose coupling between direct and feature-based
algorithms such that:

1. Locally, a direct method is used to track the camera pose rapidly and robustly with
respect to a locally accurate, short-term, semi-dense map.

2. Globally, a feature-based method is used to refine the keyframe poses, perform loop
closures, and build a globally consistent, long-term, sparse feature map that can be
reused.

This strategy allows us to complement the weaknesses of each method without compromis-
ing their real-time efficiency and performance. We implement our approach on top of DSO
(Engel et al., 2018) and ORB-SLAM (Mur-Artal et al., 2015), respectively the state-of-the-
art in direct and feature-based methods, and demonstrate that our system outperforms both
of them on two public benchmark datasets. Fig. 2.1 shows an example snapshot of the es-
timated camera trajectory and associated scene reconstruction using our method. The full
reconstruction process is demonstrated in the accompanying video:

https://youtu.be/j7WnU7ZpZ8c

2.2 Related Work

Modern keyframe-based VO/SLAM systems can be categorized into three classes:
(1) Feature-based: Feature-based (or indirect) methods recover both camera pose and

scene structure by matching features and performing geometric bundle adjustment (BA) that
minimizes the reprojection error. PTAM (Klein and Murray, 2007) is one of the most rep-
resentative systems of this type, where it was first proposed to split tracking and mapping
into two parallel threads. As of this writing, ORB-SLAM (Mur-Artal et al., 2015) is one
of the best-performing feature-based systems. Based on multiple successful ideas of PTAM
and others (Galvez-López and Tardos, 2012, Strasdat et al., 2010b, 2011), ORB-SLAM uses
ORB features (Rublee et al., 2011) to perform tracking, mapping, relocalization and loop

https://youtu.be/j7WnU7ZpZ8c
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Figure 2.1: Top: We combine a direct and a feature-based method for monocular SLAM: the former is used for
tracking and reconstructing a short-term local map (blue), and the latter for building a reusable global map (red
and green). Bottom: (from left to right) the current frame, the latest direct keyframe with color-coded depths,
and the latest feature-based keyframe with the matched features (red) and the projection of direct map points
(blue).

closing in a scalable manner. In (Mur-Artal and Tardos, 2015), an extension of ORB-SLAM
was proposed to generate a semi-dense reconstruction of the scene. This last method, how-
ever, does not use the resulting semi-dense map for tracking.

(2) Direct: Direct methods estimate structure and motion by minimizing the photometric
error (i.e., intensity difference) between corresponding pixels in images (Irani and Anandan,
1999). Unlike most feature-based methods, direct methods are not limited to a sparse map
and can maintain either a sparse (Engel et al., 2018), semi-dense (Engel et al., 2013, 2014)
or dense (Newcombe et al., 2011, Greene et al., 2016) map in real-time. As of this writing,
one of the best-performing odometry systems is DSO (Engel et al., 2018) which performs
photometric BA to jointly optimize camera intrinsics, extrinsics and inverse depths of sparse
(or semi-dense) points in a sliding window fashion. In (Platinsky et al., 2017), it was found
that, for a small number of map points (e.g., < 1000), such joint optimization tends to be
more accurate than alternating tracking and mapping as in, for example, LSD-SLAM (Engel
et al., 2014). DSO is also the first work to demonstrate the benefits of photometric calibration
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(Engel et al., 2016) in direct methods. However, it is subject to drift over time as it is a pure
odometry method and does not reuse the map points that leave the field of view (FOV).
(Gao et al., 2018) presented a modified DSO with the loop-closing capability similar to
LSD-SLAM. Unlike our method, however, their system does not produce a reusable sparse
feature map which is useful for applications such as global relocalization, fixed-map tracking
and collaborative mapping.

(3) Semi-Direct: Semi-direct (or hybrid) methods estimate camera poses using both di-
rect and feature-based methods. For example, SVO (Forster et al., 2014) performs direct
sparse image alignment to estimate the initial guess of the camera pose and feature corre-
spondences. Afterwards, it performs geometric BA to refine the pose and structure. It was
shown in (Pizzoli et al., 2014) that SVO could also be used for dense mapping. In (Forster,
Zhang, Gassner, Werlberger and Scaramuzza, 2017), several improvements to the original
SVO were proposed. Although this system is highly efficient, it was shown to be less ro-
bust (Forster, Zhang, Gassner, Werlberger and Scaramuzza, 2017, Yang et al., 2018) than
ORB-SLAM (Mur-Artal et al., 2015) and DSO (Engel et al., 2018). In (Li et al., 2019) and
(Bu et al., 2017), similar approaches to SVO were proposed for monocular visual(-inertial)
and RGB-D SLAM, respectively. Both methods adopt a direct method for tracking and a
feature-based method for keyframe pose refinement, mapping and loop closing. At the end
of Section 2.3, we briefly discuss how our method differs from these existing semi-direct
methods. In (Krombach et al., 2016) and (Kim et al., 2018), different semi-direct approaches
were proposed for stereo odometry. Both methods use feature-based tracking to obtain a
motion prior, and then perform direct semi-dense or sparse alignment to refine the camera
pose. While they were respectively shown to perform well against large inter-frame motions
and illumination changes, they do not utilize the robustness of direct tracking in low-texture
scenes.

2.3 System Overview

Fig. 2.2 illustrates our proposed semi-direct pipeline. The idea is to combine the currently
best-performing feature-based and direct algorithms, namely ORB-SLAM (Mur-Artal et al.,
2015) and DSO (Engel et al., 2018), with some modifications. To achieve real-time per-
formance, we take inspiration from SVO (Forster et al., 2014) and apply a direct method
to quickly track each frame and provide an initial seed for feature-based map optimization.
Specifically, we use DSO to achieve real-time tracking and a modified version of ORB-
SLAM to build a globally consistent map at a slower rate with marginalized keyframes from
DSO. This is shown in Fig. 2.2 as a direct and a feature-based module, respectively. As
the two separate asynchronous modules exchange information without sharing states, this
approach is considered loosely coupled.

Our system architecture involves three different layers of optimization windows. At the
most local level, a sliding window of keyframes and map points are photometrically bundle
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Figure 2.2: Our pipeline consists of two modules operating in parallel: One is a direct module that tracks
every new frame with respect to the last keyframe and performs windowed photometric BA. The other is a
feature-based module that reconstructs a globally consistent map and keyframe trajectory using the marginal-
ized information from the direct module.

adjusted to obtain an accurate representation of the surrounding environment. New frames
are tracked using direct image alignment (Baker and Matthews, 2004) with respect to the last
keyframe and its depth map created by projecting active points in the window (see Fig. 2.1).

When a keyframe is marginalized from the direct module, its image and pose information
is sent to the feature-based module, along with the map points within its FOV. The feature-
based module extracts ORB descriptors from these keyframes and refines their poses with
respect to the local feature map using motion-only BA. Some of these keyframes and map
points are added to the local map and geometrically bundle adjusted for optimal accuracy.
This process of feature-based mapping corresponds to the mid-level optimization.

Finally, at the most global level, a pose graph optimization (Strasdat et al., 2010b) is
performed over Sim(3) constraints after each loop detection. Afterwards, a full BA (Mur-
Artal and Tardós, 2017) optimizes all keyframes and feature points in the map for global
consistency.

The key difference between our approach and SVO (Forster et al., 2014) (or the semi-
direct methods in (Li et al., 2019, Bu et al., 2017)) is that we maintain in parallel two separate
maps, each in the direct and the feature-based module. This allows us to utilize a locally
accurate semi-dense map for fast and robust tracking, as well as a globally consistent sparse
feature map for long-term reuse (e.g., loop detection and closure).

2.4 Notation

Throughout the chapter, we use bold lower- and upper-case letters for vectors (v) and ma-
trices (M), and light lower- and upper-case letters for scalars (s) and scalar functions (F ),
respectively. The intensity image is denoted by I : Ω 7→ R where Ω ⊂ R2 is the im-
age domain. We denote the camera intrinsic parameters with c, and corresponding camera
projection and back-projection functions with Πc : R3 7→ Ω and Π−1

c : Ω × R 7→ R3,
respectively. Camera poses are represented as either rigid body or similarity transformation
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matrices Tiw ∈ SE(3) or Siw ∈ Sim(3) that transform a point from the world frame to frame
i. We use Pi to denote the set of map points belonging to keyframe i and obs(p) to denote
the set of keyframes in which the point p is visible. The Euclidean and Huber norms (Huber,
1964) are denoted by ∥·∥2 and ∥·∥γ respectively. The operator ⊞ is defined as a simple addi-
tion for Euclidean parameters and a left multiplication for the pose, i.e., for Lie-algebra se(3)
elements in twist coordinates x ∈ R6, x⊞T := expSE(3) (x)T. We use the same notation as
in (Strasdat et al., 2010b) for the exponential and logarithmic mapping for SE(3) and Sim(3).

2.5 Direct Module

We use the original implementation of DSO (Engel et al., 2018) as our direct module, which
is responsible for initial map bootstrapping, real-time camera tracking and local mapping. In
this section, we describe the windowed optimization and marginalization scheme of DSO.
The reader is referred to the original work (Engel et al., 2018) for details on direct tracking
and other front-end operations.

2.5.1 Windowed Photometric Bundle Adjustment

When a point p in a reference frame Ii is observed in another frame Ij , the photometric
error is defined as the weighted SSD over the 8-point neighborhood pixels Np as proposed
in (Engel et al., 2018):

Ep
ij :=

∑
p̃∈Np

ωp̃

∥∥∥∥Ij [p̃′]− bj −
tje

aj

tieai
(Ii [p̃]− bi)

∥∥∥∥
γ

(2.1)

with ωp̃ :=
c2

c2 + ∥∇Ii(p̃)∥22
, (2.2)

p̃′ = Πc

(
T−1

jwTiwΠ
−1
c (p̃, dp)

)
(2.3)

where t, a and b are exposure time and affine brightness function parameters, and dp is
the inverse depth (Civera et al., 2008b) of p in the reference frame Ii. The weight wp̃ down-
weights high-gradient pixels with some constant c. The total energy function to be minimized
is given by the full photometric error plus a prior pulling the affine brightness parameters to
zero:

Ephoto :=
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Ep
ij +

∑
i∈F

(
λaa

2
i + λbb

2
i

)
, (2.4)

where F denotes the set of all frames in the window. When exposure times are known, we
set λa and λb to some constant values. Otherwise, we set λa = λb = 0 and ti = tj = 1

in (2.1). The optimization is performed using an iteratively reweighted Gauss-Newton or
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Levenberg-Marquardt algorithm in a coarse-to-fine scheme. The update equation is given by

δξ = −
(
JTWJ

)−1
JTWr and ξnew ← δξ ⊞ ξ, (2.5)

where r is the stacked vector of residuals, J is its Jacobian and W is the diagonal weight
matrix. The state variable ξ contains all the active variables in the window, i.e., camera
poses, affine brightness parameters, inverse depths and camera intrinsics.

2.5.2 Marginalization

The size of the optimization window is kept bounded by marginalizing the least useful
keyframes and points using the Schur complement (Engel et al., 2018, Leutenegger et al.,
2015). Points are marginalized if they are not observed in the latest two keyframes or their
host keyframe is marginalized. Keyframes (other than the latest two) are marginalized if
either less than 5% of its points are visible in the latest keyframe, or if it has the highest
“distance score” when the window contains more than a certain number of keyframes. We
refer to the original work (Engel et al., 2018) for the computation of this heuristic score.

2.6 Feature-based Module

When a keyframe is marginalized from the direct module, the feature-based module receives
its image and pose information, as well as the 3D locations of both active and marginalized
map points within its FOV. This information is then used for feature-based pose refinement,
mapping and loop closing. Note that the marginalization strategy in Section 2.5.2 does not
necessarily marginalize the oldest keyframe in the window. To avoid temporal inconsistency
in such cases, we store the marginalized keyframes and points in a queue and wait until the
next oldest keyframe is marginalized. If more than five keyframes are queued and the next
oldest keyframe is still active, we take its latest pose and points to proceed further instead
of waiting. All optimizations are performed using the original implementation in ORB-
SLAM (Mur-Artal et al., 2015), which is based on the Levenberg-Marquardt algorithm in
g2o (Kümmerle et al., 2011).

2.6.1 Relative Scale and Initial Pose Estimation

In our loosely-coupled approach, the direct and the feature-based modules maintain two
separate maps. Due to the scale ambiguity of a monocular system, the scales of these two
maps drift over time and do not converge to the same value. Therefore, we continuously
compute the relative scale using Sim(3) alignment (Arun et al., 1987, Horn, 1987) between
the 30 most recent keyframes in the feature-based module and their counterparts in the direct
module.
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Once the relative scale s is known, the incremental transformation in the direct module
can be scaled appropriately and used as an initial pose guess in the feature-based module:
Let i and j denote the previous and current keyframe. Then,

Tjw|F =

[
Rji|F tji|F

01×3 1

]
Tiw|F (2.6)

with Rji|F = Rji|D = Rjw|D(Riw|D)
T, (2.7)

tji|F = stji|D = s
(
−Rji|Dtiw|D + tjw|D

)
, (2.8)

where the subscripts D and F indicate the direct and the feature-based module, respectively.
We provide the derivation of (2.7) and (2.8) in Appendix A.

2.6.2 3D Keypoints Generation

The map points from the direct module are used in two ways: (1) for creating an initial set of
3D keypoints to bootstrap the feature-based module, or (2) for adding more local map points
to improve the tracking robustness. Given the 2D position p of an ORB feature in frame i,
we generate a 3D keypoint xw in the world frame as

xw = T−1
iwΠ

−1
c

(
p,
dp
s

)
with dp =

∑
k∈Pp

dk/σ
2
k∑

k 1/σ
2
k

, (2.9)

where s is the relative scale between the direct and the feature-based module (Section 2.6.1),
and Pp and dk∈Pp respectively denote the set of all map points whose projection in frame i
is equal to p and their inverse depths in frame i. We dilate the projection by two pixels to
ensure a sufficient number of valid depths for the keypoints. Note that the inverse depth dp is
computed as the inverse-variance weighted average, which is equivalent to the Kalman filter
update with multiple measurements (Engel et al., 2013).

We found that extracting more features during slower camera motions often increases the
number of covisibility links (Mur-Artal et al., 2015) between the keyframes and improves
mapping accuracy. Therefore, we vary the number of features to extract per image as follows:
Let fkf be the keyframe addition frequency in the direct module. Using this as the indicator
of the relative camera speed, we set Nfeatures = 2500 if fkf < 4Hz and Nfeatures = 1500 if
fkf > 7Hz. Otherwise, we interpolate between the two bounds based on fkf.

2.6.3 Keyframe Pose Refinement and Failure Recovery

Once the direct module provides an initial pose estimate of a new keyframe (Section 2.6.1),
we refine it using motion-only geometric BA with respect to the local feature map. The total
energy function is composed of the variance-normalized reprojection errors of the local map
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Timet3t1 t2

Feature-based Keyframes

Direct Keyframes

Reinitialize

Figure 2.3: [TUM monoVO] Failure recovery in sequence 40: At t1 and t2, the feature-based module fails due
to the lack of features in the scene, whereas the direct module is able to track the high-gradient pixels. At t3,
the scene now contains a sufficient number of features, and their depths can be initialized with the help of the
direct module.

points:

Ereproj =
∑

i∈Flocal

∑
x∈Pi

∑
j∈obs(x)

∥∥∥∥pj,x −Πc (Tiwxw)

σ2
x

∥∥∥∥
γ

(2.10)

with σ2
x := (λpyr)

2Lpyr,x , (2.11)

where Flocal denotes the set of all local keyframes, i.e., all keyframes sharing map points
with the new keyframe and their neighbors in the covisibility graph (Mur-Artal et al., 2015),
pj,x ∈ R2 the match to the keypoint x in frame j, and σ2

x the variance of the feature location
in frame i. This variance depends on the constant scale factor of the image pyramid λpyr

(> 1) and the pyramid level Lpyr,x at which the keypoint was detected.
When the feature-based module fails due to insufficient matches, we reinitialize the mod-

ule, following the procedure explained in Section 2.6.2. This is illustrated in Fig. 2.3. Since
our direct module is robust to low-texture scenes, we can rely on its tracking while the
feature-based module is lost. Then, as soon as we detect more features, we reinitialize the
local map points using the depths from the direct module.

2.6.4 Feature-based Local Mapping and Loop Closing

After generating 3D keypoints and refining the keyframe pose, we insert them in the feature-
based map if the number of matches falls below 150 or more than three keyframes passed
from the last insertion. Once the keyframe and the points are added to the map, they are pro-
cessed by the local mapping, as outlined in (Mur-Artal et al., 2015). This includes the local
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geometric BA that minimizes (2.10) to jointly optimize the current keyframe, its neighbors
in the covisibility graph, and all the map points belonging to those keyframes.

In the loop closing thread, the place recognition module (Mur-Artal and Tardós, 2014)
based on DBoW2 (Galvez-López and Tardos, 2012) detects large loops by querying the
keyframe database. Once a loop is detected, the keyframes and map points on each side of
the loop are aligned and fused. To correct the scale drift, pose graph optimization (Strasdat
et al., 2010b) is performed over the essential graph (Mur-Artal et al., 2015), minimizing

Egraph =
∑

(i,j)∈Eedge

∥∥logSim(3)

(
Sij,0 Sjw S−1

iw

)∥∥2
2
, (2.12)

where Eedge denotes the set of edges in the essential graph, and Sij,0 = Siw,0S
−1
jw,0 is the fixed

similarity transformation (with the scale 1) between the frame i and j just prior to the pose
graph optimization. If the edge is created from a loop closure, this transformation is instead
computed using the method of Horn (Horn, 1987). Finally, a full BA (Mur-Artal and Tardós,
2017) is performed afterwards.

2.6.5 Does Feature-based Mapping Always Improve Accuracy?

The answer is no. In general, the feature-based mapping described in the previous sec-
tions improves the accuracy if there is a loop closure or when the camera motion is mostly
loopy, which enhances the covisibility of features in multiple keyframes and the reuse of
map points. However, we found that it actually causes more drift when the camera motion is
mostly exploratory without loop closures (a similar finding was also reported in (Engel et al.,
2018)).

We solve this by keeping two versions of the keyframe trajectory: one that is initially
given by the direct module and the other modified by the feature-based module. We assume
that the latter is more accurate if there is a loop closure or less than a quarter of all past
keyframes have collinear covisibility links at a given point in time. The covisibility links (i.e.,
3D lines connecting the keyframe to its neighbors in the covisibility graph) are considered
collinear if none of them form an angle between 30◦ and 150◦. This is illustrated in Fig.
2.4. We found that this method is especially effective for detecting exploratory translational
motions.

While this strategy allows us to mitigate the odometry drift in exploratory situations, a
more elegant solution would be to deal with the source of inaccuracy in the feature-based
mapping that causes drift. (Yang et al., 2018) suggests a few hints on how this could be done
(e.g., careful point management and sub-pixel matching refinement), but it is still an open
problem and remains for future work.
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Figure 2.4: Illustration of the keyframes with collinear covisibility links (red). None of their covisibility links
form an angle between 30◦ and 150◦.

2.7 Evaluation

2.7.1 Evaluated Settings, Datasets and Methodology

We implement our method using ROS1 and compare it against ORB-SLAM (Mur-Artal et al.,
2015) and DSO (Engel et al., 2018). We evaluate each algorithm in two different settings:

• ORB-VO and ORB-SLAM: For the VO setting, we disable the loop closing thread. Relo-
calization is disabled for both settings to evaluate the tracking robustness. We do not apply
photometric calibration (Engel et al., 2016), as we found that it worsens feature extrac-
tion and matching (similar findings were also reported in (Engel et al., 2018, Yang et al.,
2018)).

• DSO-default and DSO-reduced: We use the default and reduced settings provided in the
original DSO implementation. The only difference is that, for the reduced setting, we
always resize the input images by half. Photometric calibration (Engel et al., 2016) is
applied when available.

• Ours-VO and Ours-SLAM: The VO setting uses DSO-reduced and ORB-VO settings,
whereas the SLAM setting uses DSO-reduced and ORB-SLAM settings. This means that
the direct module processes photometrically calibrated images (if available) at half reso-
lution, while the feature-based module processes photometrically non-calibrated images
at full resolution. We found that using half resolution in the feature-based module sig-
nificantly worsens the performance, which is in line with the observation in (Engel et al.,
2016). For efficiency, we reduce the number of iterations in the local geometric BA by
half.

We use two public benchmark datasets for evaluation:

1. EuRoC MAV dataset (Burri et al., 2016), which contains 11 indoor stereo sequences
with 752 × 480 pixel resolution at 20 fps. As in (Engel et al., 2018), we crop the be-
ginning and end of each sequence to disregard large occlusions due to the ground and
aggressive motions meant for IMU initialization. We evaluate the tracking accuracy us-
ing the absolute trajectory RMSE (eate) of keyframe poses after Sim(3) alignment with

1Robot Operating System, http://www.ros.org/.

http://www.ros.org/
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the ground truth. Photometric calibration and exposure times are not available for this
dataset.

2. TUM monoVO dataset (Engel et al., 2016), which contains 50 in- and outdoor monoc-
ular sequences recorded at 20–50 fps. We use 640× 480 pixel resolution for undistorted
images. Since the full ground-truth data is not available for this dataset, the tracking ac-
curacy is evaluated in terms of the alignment error (ealign) proposed in (Engel et al., 2016).
The dataset also provides photometric calibration and exposure times.

To account for non-deterministic behaviour, we run each method 10 times. This amounts
to 220 runs for the EuRoC MAV dataset (i.e., 110 runs for each left and right camera) and
500 runs for the TUM monoVO dataset. On the EuRoC MAV dataset, we consider that
runs were unsuccessful if more than 20% of the total frames could not be tracked either
due to the delayed map initialization or complete tracking failures. On the TUM monoVO
dataset, we disable the keyframe culling of ORB-VO/SLAM and our systems within the start-
and end-segment of each trajectory where the ground-truth data is available. This prevents
the lack of keyframes when computing the alignment error on these segments. All images
were preloaded into memory, but not rectified or photometrically calibrated beforehand. All
results were obtained in real-time on a laptop CPU2.

2.7.2 Results

Fig. 2.9 shows the error values for each sequence of both datasets, and their median values
are reported in Appendix B. The aggregated results are given in Fig. 2.5 in the form of
cumulative error plots indicating how many runs have yielded error values below a certain
level. On both datasets, we make three common observations: First, DSO-reduced is more
robust than DSO-default, which is most likely due to the faster tracking speed, as shown in
Tab. 2.1. We observe similar accuracy between the two settings on the EuRoC MAV dataset,
but higher accuracy with DSO-default on the TUM monoVO dataset. Second, loop closing
in ORB-SLAM improves the performance. It increases accuracy on the TUM monoVO
dataset and robustness on both datasets. Third, due to the non-deterministic nature of real-
time multi-threading, the occurrence of loop closure is not necessarily consistent on each
sequence (see Fig. 2.9).

On the EuRoC MAV dataset, DSO (both default and reduced) yields the lowest accuracy.
It was also reported in (Engel et al., 2018) that DSO was less accurate than ORB-VO on
the same dataset. However, we were unable to reproduce their exact results, in particular
those showing that DSO was more robust in real-time. Our systems (both VO and SLAM)
and ORB-SLAM show very similar performance on this dataset, except for V1 03 difficult
where ORB-SLAM outperforms our SLAM system. This is because in ORB-SLAM, a loop
closure reintroduces the detected map points into the local map and robustifies the tracking.

2Intel Core i7-4810MQ, quad-core at 2.8 GHz with 15GB RAM
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Figure 2.5: Cumulative error plot aggregating (a) the absolute trajectory errors eate [m] over all runs of all
EuRoC MAV sequences and (b) alignment errors ealign [m] over all runs of all TUM monoVO sequences. The
closer the curve is to the y-axis, the higher the accuracy, as it means more runs with low errors. The farther the
end of the curve is from the x-axis, the higher the robustness, as it means more runs without tracking failures.

On the other hand, our direct tracking does not reuse the detected map points from the loop
closures, so its robustness is unaffected.

The comparison between DSO-reduced and our VO system indicates that the feature-
based pose refinement (Section 2.6.3) and local mapping (Section 2.6.4) can improve the
accuracy, even without loop closure. Fig. 2.6 shows this effect over time on two of the
sequences of the EuRoC MAV dataset. Notice the increased amount of drift when we do
not reuse the map points that leave the FOV. We also note that even with loop closure, the
local geometric BA is still important because the pose graph optimization alone does not
guarantee the optimal reconstruction of the local environment.

On the TUM monoVO dataset, DSO (both default and reduced) is significantly more
robust than ORB-SLAM/VO, which is similar to the results reported in (Engel et al., 2018,
Yang et al., 2018). Our VO system achieves very similar performance to DSO-reduced,
as none of the final trajectories are affected by the feature-based module. This is because
more than 75% of the total keyframes have collinear covisibility links in all sequences (see
Section. 2.6.5), which is in contrast to the EuRoC MAV dataset where the opposite is true.
Fig. 2.5 and 2.9 show that the loop closure significantly reduces the alignment errors for our
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Figure 2.6: [EuRoC MAV] Top: Time evolution of the ATEs with and without the feature-based refinement
(Section 2.6.3 and 2.6.4). The loop-closure detection is disabled. The average of 10 independent runs is shown
in bold. Bottom: The ATE difference over time, i.e., the gap between the red and the blue curves.

SLAM system in the majority of the sequences. As a result, our SLAM system achieves the
best overall performance across both datasets. Fig. 2.7 compares the estimated trajectories
on some of the TUM monoVO sequences. Note how ORB-SLAM fails in the middle of
some sequences and DSO accumulates drift, while our SLAM system completes the whole
sequences and closes loops.

Tab. 2.1 summarizes the statistics of dropped frames and tracking times3 on the EuRoC
MAV dataset. It can be seen that DSO-reduced and both our systems have lower frame
drops and faster tracking speed than the rest. This shows the advantage of direct tracking,
which eliminates the need to perform feature extraction and matching for every frame. In
Fig. 2.8, we further show how much percentage of keyframes and map points are reduced in
our systems compared to ORB-VO/SLAM. We observe average 27% (up to 46%) keyframes
reduction and average 6% (up to 27%) map points reduction for the SLAM system. This
suggests that our system is relatively more scalable than ORB-SLAM. Note that the sparsity
of the feature-based keyframes and map points is what enabled the efficient map reuse on
both local and global scale. Without relying on the sparse keypoints, it would require pro-
hibitively more computation to maintain a global covisibility graph with the large number of
map points in the direct module.

3This is defined as ti − ti−1 where ti and ti−1 are the two timestamps at which the tracking thread first
processes frame i and i− 1, respectively.



2. Loosely-Coupled Semi-Direct Monocular SLAM 29

Sequence 31 Sequence 36

Sequence 18

Sequence 26

Sequence 21

Sequence 22

Ours-SLAM ORB-SLAM DSO-default

Figure 2.7: [TUM monoVO] Sample trajectories estimated with the median accuracy. All sequences have
the ground-truth trajectories that start and end at the same positions. For several sequences, ORB-SLAM
repeatedly loses tracking and DSO suffers from consistent drifts. On the other hand, our system tracks the
entire trajectories and close the loops most of the time.

2.8 Conclusions

In this chapter, we proposed a loosely-coupled semi-direct method for real-time monocular
SLAM. Our system consists of two modules running in parallel. One module uses a direct
method to track new frames fast and robustly with respect to a local semi-dense map. The
other module uses the resulting points and pose estimates as prior to build a globally con-
sistent sparse feature-based map. We have shown on two public datasets that our method
outperforms the state-of-the-art in terms of tracking accuracy and robustness.
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Dropped frames (%) Tracking Times (ms)
Med* Mean Std Med* Mean Std

ORB-VO 0.95 1.56 1.61 22.09 25.46 8.62

ORB-SLAM 1.54 2.14 1.57 22.74 26.47 9.48

DSO-default 0.81 1.16 1.07 7.13 9.66 17.33

DSO-reduced 0.28 0.74 1.00 2.60 4.07 7.40

Ours-VO 0.31 1.02 1.48 4.62 6.19 8.62

Ours-SLAM 0.32 0.97 1.41 4.69 6.23 9.48

Table 2.1: [EuRoC MAV] Dropped frames percentage and tracking times. The two smallest values are high-
lighted in bold. *This is the median of the median results in each sequence.
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Figure 2.8: [EuRoC MAV] Percentage difference in the number of total KFs and map points of our VO/SLAM
compared to ORB-VO/SLAM, respectively. M1−5: Machine Hall sequences. V11−13, 21−23: Vicon Room 1
and 2 sequences.
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Figure 2.9: Each of the colored blocks represent the final error value from each trial on each sequence. The
letter ‘L’ indicates the presence of one or more loop closure links. Top row: Absolute trajectory errors eate [m]
on the EuRoC MAV dataset. M1−5: Machine Hall sequences. V11−13, 21−23: Vicon Room 1 and 2 sequences.
Bottom row: Alignment errors ealign [m] on the TUM monoVO dataset.





Chapter 3

Closed-Form Optimal Two-View
Triangulation Based on Angular Errors

In this chapter, we study closed-form optimal solutions to two-view triangulation with known
internal calibration and pose. By formulating the triangulation problem as L1 and L∞ mini-
mization of angular reprojection errors, we derive the exact closed-form solutions that guar-
antee global optimality under respective cost functions. To the best of our knowledge, we
are the first to present such solutions. Since the angular error is rotationally invariant, our
solutions can be applied for any type of central cameras, be it perspective, fisheye or omnidi-
rectional. Our methods also require significantly less computation than the existing optimal
methods. Experimental results on synthetic and real datasets validate our theoretical deriva-
tions.

3.1 Introduction

Recovering the position of a 3D point given its projections in two or more cameras is called
triangulation. It constitutes a fundamental building block in stereo vision (Tippetts et al.,
2016), simultaneous localization and mapping (SLAM) (Mur-Artal and Tardós, 2017) and
structure-from-motion (SfM) pipelines (Schönberger and Frahm, 2016). For large problems,
reconstructing thousands (or millions) of points is not uncommon, so achieving fast and
accurate triangulation is important for the performance of such systems.

If one assumes the exact knowledge of camera matrices and noiseless feature measure-
ments, triangulation amounts to intersecting two backprojected rays that correspond to the
same 3D point. In practice, however, this assumption is unrealistic, and the rays do not
necessarily intersect. Therefore, a nontrivial method is required even for just two views.

The standard approach is to find the 3D point that minimizes a chosen cost function given
the feature measurements. The most common are the L1 norm (sum of magnitude), L2 norm
(sum of squares) and L∞ norm (maximum) of image reprojection errors. While reasonable
for perspective cameras, the image reprojection error does not generalize well to different
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camera types (e.g., omnidirectional or fully spherical panoramic cameras). This motivates
the use of angular reprojection error, a rotationally invariant alternative to the image repro-
jection error that is generic and independent of the projection geometry (Mouragnon et al.,
2009, Oliensis, 2002, Pagani and Stricker, 2011).

In this chapter, we derive, for the first time to our knowledge, the exact closed-form
solutions to the L1 and L∞ optimal triangulation from two views based on the angular repro-
jection error. Unlike iterative methods (e.g., (Kanatani et al., 2008, Lindstrom, 2010)), the
proposed methods guarantee global optimality without any iterations, and unlike polynomial
methods (e.g., (Hartley and Sturm, 1997, Nı́ster, 2001, Stewénius et al., 2005)), they do not
involve finding the roots of a higher-degree polynomial. Hence, our methods simultaneously
provide the global optimality, speed and simplicity. We also present our own derivation of
the L2 optimal solution that is much more compact and geometrically intuitive than the ex-
isting one (Oliensis, 2002). Since all three methods are based on the angular error, they are
not limited to standard perspective cameras and can also be used for fisheye, omnidirectional
and fully spherical panoramic cameras.

The chapter is organized as follows. In the next three sections, we discuss the related
work and preliminaries. Section 3.5, 3.6 and 3.7 respectively present the closed-form solu-
tions to the L1, L2 and L∞ optimal triangulation. Section 3.8 addresses the cheirality con-
straint. Finally, experimental results are provided in Section 3.9, followed by the conclusions
in Section 3.10.

3.2 Related Work

The most widespread approach to triangulation is to find the 3D point that minimizes the
L2 norm of image reprojection errors (Hartley and Zisserman, 2003). Assuming that image
points are perturbed by Gaussian noise, the L2 optimal solution gives the maximum likeli-
hood estimate (MLE). This can be obtained in closed form by solving a polynomial of degree
6 for two views (Hartley and Sturm, 1997) and degree 47 for three views (Stewénius et al.,
2005). Such polynomial methods are, however, computationally expensive and susceptible
to ill-conditioning (Lindstrom, 2010). Besides, an iterative search for the roots may converge
to a local minimum (Hartley and Sturm, 1997).

Another two-view method by Kanatani et al. (Kanatani et al., 2008) iteratively corrects
the 2D projections of the points. Although this method was shown to be faster than the one
by Hartley and Sturm (Hartley and Sturm, 1997), it does not satisfy the epipolar constraint
(Longuet-Higgins, 1981) in each iteration. Lindstrom (Lindstrom, 2010) solved this problem
with an improved iterative algorithm that is even more stable and faster. However, neither his
method nor Kanatani’s guarantees global optimality. Oliensis (Oliensis, 2002) showed that
by formulating the problem as L2 minimization of the sine of angular reprojection errors, an
exact closed-form solution can be derived for two-view triangulation.

Instead of minimizing the L2 norm, one may choose to minimize the L1 norm of repro-
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jection errors. The advantage of L1 norm is that it is more robust to outliers as it places
less emphasis on large errors (Hartley and Sturm, 1997, Kahl et al., 2008). For two views,
Hartley and Sturm (Hartley and Sturm, 1997) showed that the L1 optimal solution can be
obtained in closed form by solving a polynomial of degree 8. They also found that the L1

optimization gives slightly more accurate 3D results than the L2 optimization.
In geometric problems, another popular norm is the L∞ norm. The L∞ optimal solution

corresponds to the MLE under the assumption of uniform noise in the image points (Hartley
and Kahl, 2007). The advantage of the L∞ cost function over the L2 cost is that it is relatively
simpler and has a single minimum (Hartley and Schaffalitzky, 2004). For the case of two
views, Nı́ster (Nı́ster, 2001) showed that the optimal solution can be obtained in closed form
by keeping the reprojection errors equal in the two views and solving the resulting quartic
equation. A main drawback of the L∞ cost is that it is relatively more sensitive to outliers
(Hartley and Schaffalitzky, 2004). This being said, such sensitivity was shown to be useful
for outlier removal (Sim and Hartley, 2006, Olsson et al., 2010, Li, 2007).

While most of the aforementioned works formulate their optimization problem in terms
of the image reprojection error, the angular reprojection error is another popular choice.
It embodies a better noise model for fisheye or omnidirectional cameras (Oliensis, 2002,
Mičušı́k and Pajdla, 2006). Even for perspective cameras, the assumption of Gaussian noise
is not justified (Hartley and Kahl, 2007), and the angular reprojection error is just as valid
as the image reprojection error, if not more so. In the literature, it has been proposed to
minimize the sine of angular reprojection errors in L2 norm (Oliensis, 2002), the tangent in
L2 or L∞ norm (Hartley, Kahl, Olsson and Seo, 2013, Hartley and Schaffalitzky, 2004, Kahl
and Hartley, 2008), and the cosine in negative L1 norm (Recker et al., 2013, Chesi, 2014).
In contrast to these methods, our L1 and L∞ optimization do not involve trigonometric func-
tions.

3.3 Preliminaries on 3D Geometry

Throughout the chapter, we adopt the following notation: We use bold letters for vectors and
matrices, and light letters for scalars. The Euclidean norm of a vector v is denoted by ∥v∥,
and the unit vector by v̂ = v/∥v∥. The angle between two lines L0 and L1 is denoted by
∠ (L0, L1) ∈ [0, π/2].

The following vector identities will come in handy later:

a · (b× c) = b · (c× a) = c · (a× b) (3.1)

∥â× b̂∥2 = 1− (â · b̂)2 (3.2)

We also make frequent use of the following formulas:

1. The distance between a point p and a plane Π0(x) = n0 ·(x−c0) = 0 is given by ∥p−r0∥
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where r0 is the projection of p onto Π0. This is computed as follows:

∥p− r0∥ = |n̂0 · (p− c0)|. (3.3)

2. The distance between two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1 is
given by ∥r0 − r1∥ where r0 and r1 are the points on each line that form the closest pair.
Letting t = c0 − c1 and q = m0 ×m1, this is computed as follows:

∥r0 − r1∥ = |t · q̂| . (3.4)

The two points can also be obtained individually (Kanazawa and Kanatani, 1995):

r0 = c0 +
q · (m1 × t)

∥q∥2
m0, (3.5)

r1 = c1 +
q · (m0 × t)

∥q∥2
m1. (3.6)

Additionally, the following two lemmas will be useful later:

Lemma 1 (Cone-On-Plane Perpendicularity)
When a plane is tangent to a right circular cone, the line of intersection is the projection of
cone’s axis onto the plane.

Proof. Consider a cone with axis L0 and plane Π tangent to this cone. They are both
symmetric with respect to the plane that contains L0 and the normal of Π. Let this plane of
symmetry be Πsym. For any circular cross-section of the cone, there is a single point touching
Π. Therefore, this point must lie on Πsym, and so must the line of intersection, L′

0. It follows
that Πsym contains L0 and L′

0. Since Πsym is perpendicular to Π, L′
0 is a projection of L0

onto Π. ■

Lemma 2 (Single vs Multi-Pivot for Intersection)
Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1, let L′

0 be the line
that forms the smallest angle θ0 ∈ [0, π/2] to L0 among all possible lines that intersect
both point c0 and line L1. For any positive integer N , consider the following arbitrary lines
passing c0 such that

L∗
i (s

∗
i ) =

L0 for i = 0

c0 + s∗im
∗
i for i = 1, 2, · · · , N

where only L∗
N intersects L1. Then,

θ0 ≤
N∑
i=1

∠(L∗
i , L

∗
i−1). (3.7)
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Figure 3.1: (a) Pivoting line L∗
0 in two steps (L∗

0 → L∗
1 → L∗

2) to make it intersect to another line L1. (b) A
tetrahedron formed by point c0, p, q1 and q2.

Proof. The right-hand side of (3.7) corresponds to the sum of N pivot angles that make
line L0 to intersect L1. Fig. 3.1a depicts such operation for N = 2. Let ϕ = ∠ (L∗

0, L
∗
1),

ψ = ∠ (L∗
1, L

∗
2) and τ = ∠ (L∗

0, L
∗
2). Now, consider three arbitrary points p, q1 and q2 on

L∗
0, L

∗
1 and L∗

2, respectively. A tetrahedron formed by these three points and c0 are shown
in Fig. 3.1b. At a vertex of a tetrahedron, the three edges form three angles such that the
sum of any two angles is greater than the third one (Lines, 1935, Klamkin, 1970). Thus,
τ ≤ ϕ+ ψ. Since θ0 is the minimum pivot angle for intersection, we have θ0 ≤ τ ≤ ϕ+ ψ,
which proves (3.7) for N = 2. Now, for N > 2, we know that replacing the last two pivots
by the corresponding single minimum pivot will produce N − 1 pivots that take equal or
smaller angle. Repeating this process until N = 1 proves (3.7) for any N > 2. ■

Note that (3.4) can be interpreted as the minimum amount of translation required for
the two lines to intersect. Later, it will be also important to know the minimum amount of
rotation (or pivot) required for the two lines to intersect. We answer this question in the
following lemma:

Lemma 3 (Minimum Pivot Angle for Intersection)
Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1, let L′

0 be the line that
forms the smallest angle θ0 ∈ [0, π/2] to L0 among all possible lines that intersect both
point c0 and line L1. Then, L′

0 is the projection of L0 onto the plane that contains c0 and L1.
Furthermore, letting t = c0 − c1 and n1 = m1 × t,

sin (θ0) = |n̂1 · m̂0|. (3.8)

We call θ0 the minimum pivot angle for intersection, as it represents the smallest angle
required for pivoting line L0 at c0 to make it intersect L1.

Proof. Consider a right circular cone with apex c0 and axis L0, lying sideways on a plane
Π that contains c0 and line L1 (see Fig. 3.2). The equation of the plane is given by

Π(x) = n1 · (x− c0) = 0 with n1 = m1 × t. (3.9)
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Figure 3.2: The angle θ0 is the smallest angle required for pivoting line L0 at point c0 to make it intersect L1.

The line of intersection between the plane and the cone forms the smallest angle to L0

among all possible lines on the plane that pass c0. That is, it forms the smallest angle to L0

among all possible lines that pass both c0 and L1. Hence, this line of intersection must be
L′

0. Now, consider a point a0 = c0 + m̂0 located one unit away from c0 along L0. Let r be
the projection of a0 onto plane Π. According to lemma 1, the point r must be located along
L′

0. Let d = ∥a0 − r∥, i.e., the distance between a0 and plane Π. Then, we obtain sin (θ0) as
follows:

sin (θ0) = d
(3.3)
= |n̂1 · (a0 − c0)| = |n̂1 · m̂0|. ■

3.4 Preliminaries on Two-View Triangulation

Consider two cameras C0 and C1 observing the same 3D world point xw. Let c0 and c1

be their positions in the world frame, and let R and t be the rotation matrix and translation
vector that together transform a point from the camera frame C0 to C1, i.e., x1 = Rx0 +

t, where x0 = [x0, y0, z0]
⊺ and x1 = [x1, y1, z1]

⊺ correspond to xw in camera frame C0

and C1, respectively. Since triangulation is impossible for zero translation, we set ∥t∥ =

∥c0 − c1∥ = 1 without loss of generality. Let u0 = (u0, v0, 1)
⊺ and u1 = (u1, v1, 1)

⊺ be the
homogeneous pixel coordinates of the estimated correspondence to xw in each frame. Given
the camera calibration matrix K, the normalized image coordinates f0 = [x0/z0, y0/z0, 1]

⊺

and f1 = [x1/z1, y1/z1, 1]
⊺ are related to u0 and u1 by u0 = Kf0 and u1 = Kf1.

The two backprojected rays in frame C1, i.e., r1(s1) = s1f1 and r0(s0) = s0Rf0 + t, do
not necessarily intersect due to inaccuracies in the image measurements and camera matrices.
For the rays to intersect, f0 and f1 must be corrected to f ′0 and f ′1 such that the epipolar
constraint (Longuet-Higgins, 1981) is satisfied. It enforces the coplanarity of f ′1, Rf ′0 and t,
and is given by

f ′1 · (t×Rf ′0) = 0. (3.10)

The goal of the optimal triangulation is to minimally correct the feature rays so that they
satisfy (3.10) and intersect at some point x′

1 in frame C1. What is meant by “minimal”
depends on the chosen cost function and error criterion. Fig. 3.3 illustrates two most pop-
ular error criteria, namely the image reprojection error and the angular reprojection error.
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Figure 3.3: The difference between the observed features (f0, f1) and the triangulation result (f ′0, f ′1) can be
quantified by either image reprojection errors (d0, d1) or angular reprojection errors (θ0, θ1).

Formally, they are defined as follows:

di := ∥ui − u′
i∥ = ∥K (fi − f ′i)∥ for i = 0, 1, (3.11)

θi := ∠ (fi, f
′
i) = ∠

(
K−1ui,K

−1u′
i

)
for i = 0, 1 (3.12)

In this work, we minimize the latter in L1, L2 and L∞ norms. Once we have the optimal
f ′0 and f ′1, the point of intersection x′

1 can be obtained using either (3.5) or (3.6):

x′
1 = t+

z · (t× f ′1)

∥z∥2︸ ︷︷ ︸
λ0

Rf ′0 =
z · (t×Rf ′0)

∥z∥2︸ ︷︷ ︸
λ1

f ′1 (3.13)

with z = f ′1 ×Rf ′0,

where λi equals the depth multiplied by ∥f ′i∥ for i = 0, 1.

Note that the epipolar constraint (3.10) is a necessary condition for intersecting the two
rays, but not a sufficient one. Fig. 3.4 illustrates scenarios where the two rays are coplanar,
but do not intersect. This happens when the intersection requires negative depth(s), violating
the cheirality constraint (Hartley and Zisserman, 2003). In the following analysis (until
Section 3.8), we will temporarily assume that satisfying the epipolar constraint (3.10) is
sufficient for intersecting the rays.

3.5 Closed-Form L1 Triangulation

The L1 triangulation based on the angular reprojection error (3.12) finds the feature rays f ′0
and f ′1 that minimize θ0 + θ1 subject to the epipolar constraint (3.10). The following lemma
reveals a surprising fact that (θ0 + θ1)min is achieved by correcting either one of f0 or f1, but
not both:
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Figure 3.4: Example scenarios satisfying the epipolar constraint (3.10). The epipolar plane (shown in green)
contains both the rays and the camera centers. Cheirality condition is violated in case (b) and (c).

Lemma 4 (L1 Angle Minimization)
Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1, consider any two
intersecting lines that also pass c0 and c1, respectively, i.e., L′

0(s
′
0) = c0 + s′0m

′
0 and

L′
1(s

′
1) = c1 + s′1m

′
1. Let t = c0 − c1, n0 = m0 × t, n1 = m1 × t, θ0 = ∠(L0,L

′
0)

and θ1 = ∠(L1,L
′
1). Then, (θ0 + θ1) is minimized for the following m′

0 and m′
1:

If ∥m̂0 × t∥ ≤ ∥m̂1 × t∥,
m′

0 = m0 − (m0 · n̂1) n̂1 and m′
1 = m1. (3.14)

Otherwise,

m′
0 = m0 and m′

1 = m1 − (m1 · n̂0) n̂0 (3.15)

Proof. One of the following is true when (θ0 + θ1) is minimized:

1. L′
0 ̸= L0 and L′

1 = L1 ←→ θ0 > 0 and θ1 = 0.

2. L′
0 = L0 and L′

1 ̸= L1 ←→ θ0 = 0 and θ1 > 0.

3. L′
0 ̸= L0 and L′

1 ̸= L1 ←→ θ0 > 0 and θ1 > 0.

Suppose, for the sake of argument, that one of the first two statements is true. In the first
case, lemma 3 states that m′

0 is obtained by projecting m0 onto the plane with the normal
m1 × t, which leads to (3.14) and

sin(θ0) =
|m̂0 · (m1 × t)|
∥m1 × t∥

=
|m̂0 · (m̂1 × t)|
∥m̂1 × t∥

. (3.16)

Likewise, in the second case, lemma 3 leads to (3.15), and

sin(θ1) =
|m̂1 · (m0 × t)|
∥m0 × t∥

(3.1)
=
|m̂0 · (m̂1 × t)|
∥m̂0 × t∥

. (3.17)
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Now, the question is how to determine which of the two statements is true. Comparing the
right-hand side of (3.16) and (3.17), we find that if ∥m̂0 × t∥ ≤ ∥m̂1 × t∥, then

min
θ0|θ1=0

θ0 ≤ min
θ1|θ0=0

θ1, (3.18)

and min(θ0 + θ1) is equal to the left-hand side of (3.18), indicating that the first statement
is true. Naturally, the second statement is true otherwise. Note that there is an ambiguity
if ∥m̂0 × t∥ = ∥m̂1 × t∥, and the solution is optimal whichever case is considered. This
concludes the proof of lemma 4 for the first two cases.

We will now prove that the third case never occurs. Given some angle θ1, minimizing
(θ0 + θ1) is equivalent to minimizing θ0. This is the identical situation as the first case if
we replace L1 by L′

1. We know from the proof of lemma 3 that pivoting a line to intersect
another with minimum angle can be modeled by a cone lying sideways on a plane. The top
of Fig. 3.5 illustrates this. Similarly, the bottom of Fig. 3.5 illustrates the minimization of θ1
with respect to L′

0 given θ0. Now, since both planes touching each cone contain the same two
intersecting lines L′

0 and L′
1, they must be the same plane. Let this plane be Π′. According

to lemma 3, L′
0 is the projection of L0 onto plane Π′. Therefore,

m̂′
0 =

m̂0 − (m̂0 · n̂′)n̂′

∥m̂0 − (m̂0 · n̂′)n̂′∥
, (3.19)

where n̂′ is the unit normal of plane Π′. Since Π′ contains both c0 and c1, n̂′ is perpendicular
to t = c0 − c1. Hence, computing the dot product with t on each side of (3.19) yields

t · m̂′
0 =

t · m̂0

∥m̂0 − (m̂0 · n̂′)n̂′∥
. (3.20)

Note that ∥m̂0 − (m̂0 · n̂′)n̂′∥ corresponds to the magnitude of the projection of m̂0 onto
plane Π′ for non-zero θ0, so it must be smaller than ∥m̂0∥ = 1. Thus,

|t · m̂′
0| =

|t · m̂0|
∥m̂0 − (m̂0 · n̂′)n̂′∥

> |t · m̂0|. (3.21)

Using (3.2), this inequality can be written as

∥t× m̂′
0∥ < ∥t× m̂0∥. (3.22)

Analogously, we can also derive

∥t× m̂′
1∥ < ∥t× m̂1∥. (3.23)

Now, suppose that

min
θ0,θ1

(θ0 + θ1) = θ∗0 + θ∗1 with θ∗0, θ
∗
1 > 0. (3.24)
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Figure 3.5: When two cones intersect at a single point p on their lateral surface, they are tangent to the same
plane containing p and the apexes of each cone. For visualization purposes, we show the two cones lying on
each side of the plane separately.

Without loss of generality, let us assume that ∥t × m̂0∥ ≤ ∥t × m̂1∥. Then, (3.22) gives
∥t× m̂′

0∥ < ∥t× m̂1∥. As we discussed for the first two cases, this means that pivoting L′
0

to intersect L1 takes smaller angle than pivoting L1 to intersect L′
0, i.e., θ′0 < θ∗1. Thus

θ∗0 + θ′0 < θ∗0 + θ∗1. (3.25)

According to lemma 2 in Section 3.3, pivoting a line twice for intersection takes equal or
greater angle than the single minimum pivot angle. Therefore,

min
θ0|θ1=0

θ0 ≤ θ∗0 + θ′0 < θ∗0 + θ∗1, (3.26)

which contradicts (3.24). Therefore, (θ0 + θ1) is minimized when either θ0 or θ1 is zero. ■

By substituting Rf0 and f1 into m0 and m1 in the above lemma, the resulting m′
0 and m′

1

become the corrected rays Rf ′0 and f ′1 that satisfy the L1 optimality, and n0 (or n1) becomes
the normal of the corresponding epipolar plane.

3.6 Closed-Form L2 Triangulation

Considering that the angular errors are small in practice, the “relaxed” L2 triangulation finds
the feature rays f ′0 and f ′1 that minimize sin2(θ0) + sin2(θ1) (instead of θ20 + θ21) subject to
the epipolar constraint (3.10). Note that the small-angle approximation by sin(θ) is more
accurate than by tan(θ) or 1− cos(θ) that have been used in literature (Hartley, Kahl, Olsson
and Seo, 2013, Hartley and Schaffalitzky, 2004, Kahl and Hartley, 2008, Recker et al., 2013,
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Chesi, 2014). This is easily seen by comparing their Maclaurin expansions. As will be
shown in the following lemma (and previously in (Oliensis, 2002)), the relaxation with the
sine function allows us to derive the L2 optimal solution in closed form.

Lemma 5 (L2 Angle Minimization)
Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1, consider any two
intersecting lines that also pass c0 and c1, respectively, i.e., L′

0(s
′
0) = c0 + s′0m

′
0 and

L′
1(s

′
1) = c1 + s′1m

′
1. Let t = c0 − c1, θ0 = ∠(L0,L

′
0) and θ1 = ∠(L1,L

′
1). Then,(

sin2 θ0 + sin2 θ1
)

is minimized for

m′
i = mi − (mi · n̂′)n̂′ for i = 0, 1, (3.27)

where n̂′ is the second column of the 3× 3 matrix V from

USV
⊺
= SVD

([
m̂0 m̂1

]⊺ (
I− t̂ t̂

⊺))
. (3.28)

Proof. Given some angle θ1,
(
sin2 (θ0) + sin2 (θ1)

)
min is achieved by minimizing θ0 and

vice versa. As discussed in the proof of lemma 4, this means that the underlying geometry
at
(
sin2 (θ0) + sin2 (θ1)

)
min can be represented by the two cones with apex c0, c1 and skew

axes L0, L1, respectively, touching each side of the same plane on their lateral surface. This
is visualized in Fig. 3.5. Let n′ be the normal of plane Π′. From Lemma 3, we know that

sin (θ0) = |n̂′ · m̂0| and sin(θ1) = |n̂′ · m̂1|. (3.29)

Combining these two equations, we get

sin2 (θ0) + sin2 (θ1) = ∥M
⊺
n̂′∥2 with M =

[
m̂0 m̂1

]
. (3.30)

Since plane Π′ contains both c0 and c1, n̂′ is perpendicular to t = c0 − c1. Therefore,
minimizing (sin2 (θ0)+sin2 (θ1)) is equivalent to solving the following equality-constrained
quadratic programming problem:

argmin
n̂′

∥M
⊺
n̂′∥2, s.t. ∥n̂′∥ = 1 and t · n̂′ = 0. (3.31)

In (Golub, 1973), it was shown that this problem can be solved using the method of La-
grange multipliers, and ∥M

⊺
n̂′∥2 is minimized when n̂′ is the eigenvector corresponding to

the smallest nontrivial eigenvalue of A = (I − t̂ t̂
⊺
)MM

⊺
. Letting P = (I − t̂ t̂

⊺
), it can

be easily shown that P = P
⊺
= P

⊺
P = PP

⊺
. Hence, A = PMM

⊺
= PP

⊺
MM

⊺
. Note

that for any square matrix X and Y, the eigen-decomposition of XY is the same as that
of YX. This means that the eigenvectors of A = P

(
P

⊺
MM

⊺)
are the same as those of(

P
⊺
MM

⊺)
P = (M

⊺
P)

⊺
(M

⊺
P), i.e., the right-singular vectors of M

⊺
P. Therefore, letting

USV
⊺
= SVD

(
M

⊺
P
)

with the diagonal entries of S in descending order, the optimal n̂′
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is given by the second column of V. Finally, projecting m0 and m1 onto plane Π′ leads to
(3.27). ■

Analogously to the L1 method, substituting Rf0 and f1 into m0 and m1 in the above
lemma gives Rf ′0 = m′

0 and f ′1 = m′
1 that satisfy the L2 optimality.

3.7 Closed-Form L∞ Triangulation

The L∞ triangulation based on the angular reprojection error (3.12) finds the feature rays
f ′0 and f ′1 that minimize max(θ0, θ1) subject to the epipolar constraint (3.10). The following
lemma states that this is achieved when θ0 = θ1:

Lemma 6 (L∞ Angle Minimization)
Given two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1, consider any two
intersecting lines that also pass c0 and c1, respectively, i.e., L′

0(s
′
0) = c0 + s′0m

′
0 and

L′
1(s

′
1) = c1 + s′1m

′
1. Let t = c0 − c1, na = (m̂0 + m̂1) × t, nb = (m̂0 − m̂1) × t,

θ0 = ∠(L0,L
′
0) and θ1 = ∠(L1,L

′
1). Then, max (θ0, θ1) is minimized when θ0 = θ1. This is

achieved for
m′

i = mi − (mi · n̂′)n̂′ for i = 0, 1, (3.32)

where

n′ =

na if ∥na∥ ≥ ∥nb∥

nb ohterwise
(3.33)

Proof. First, we show that θ0 = θ1 when max(θ0, θ1) is minimized: Consider two cones
with apex c0, c1 and skew axes L0, L1. Constrain both their apertures to be 2θ. When θ = 0,
the they are simply two skew lines. As we gradually increase θ, they will grow at the same
rate, and eventually, touch one another. Let θ = θ′ at this point. Now, suppose

θ∗ := min
θ0,θ1

max(θ0, θ1) < θ′. (3.34)

The definition of θ∗ implies that setting θ0 = θ1 = θ∗ will make the two cones partially
overlap in space (or at least meet at a point). However, the they do not meet when θ0 = θ1 <

θ′. This is a contradiction, so the inequality in (3.34) must be false, and θ∗ must be equal to
θ′. That is, θ0 = θ1 = θ′ in order for max(θ0, θ1) to be minimized.

We can now represent the underlying geometry at (max(θ0, θ1))min as two congruent
cones with skew axes, touching each side of the same plane Π′ on their lateral surface. This
is the situation shown in Fig. 3.5 for θ0 = θ1. Let n′ be the normal of plane Π′. Then, from
lemma 3, we get

sin (θ0) = sin (θ1) = |n̂′ · m̂0| = |n̂′ · m̂1|. (3.35)
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The last equality in (3.35) can be written as

(m̂0 + wm̂1) · n̂′ = 0, (3.36)

where w is −1 or 1, depending on the signs of n̂′ · m̂0 and n̂′ · m̂1. On the other hand, since
plane Π′ contains both c0 and c1, n̂′ is perpendicular to t = c0 − c1:

t · n̂′ = 0. (3.37)

Combining (3.36) and (3.37), n̂′ can be expressed as

n̂′ = λ(m̂0 + wm̂1)× t (3.38)

where λ is the normalizing factor. Evaluating (3.38) at w = 1 and w = −1 gives two can-
didates for optimal n̂′. The optimal solution is then determined by comparing the values of
(3.35) with each candidate n̂′, which amounts to choosing the solution with smaller λ. This
procedure corresponds to (3.33). Finally, projecting m0 and m1 onto plane Π′ with optimal
n̂′ leads to (3.32). ■

Analogously to the previous two methods, substituting Rf0 and f1 into m0 and m1 gives
Rf ′0 = m′

0 and f ′1 = m′
1 that satisfy the L∞ optimality.

3.8 Cheirality, Parallax and Outliers

We have used the term lines instead of rays in all lemmas so far, ignoring the cheirality
constraint (Hartley and Zisserman, 2003). We argue that if the optimal solution violates
the cheirality constraint, the most reasonable choice is to simply discard the result. In the
following, we provide the rationale for this choice.

Fig. 3.6 illustrates five scenarios where the optimal solution violates the cheirality con-
straint. In case (a), both rays have negative depths at the optimal intersection. Increasing
the allowed angular reprojection error, the first intersection with positive depths occurs when
the two corrected rays become parallel, resulting in a point at infinity. This point cannot be
triangulated, so it should be discarded.

In the remaining cases, the optimal intersection involves only one of the rays having a
negative depth. Following the same procedure, the first intersection with positive depths
occurs either at infinity (case (b)), at one of the camera centers (case (c)), along the ray
parallel to the translation (case (d)), or at a point somewhere else (case (e)).

In case (b), (c) and (d), the newly triangulated point has either infinite, zero or ambiguous
depth, so it is reasonable to discard it. In case (e), we found that reattempting the triangu-
lation with positive depths yields either a very large error, a point near the epipole or a low
parallax angle. Typically, these are the indicators of low accuracy or an outlier (Hartley and
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Figure 3.6: Five scenarios where the optimal solution violates the cheirality constraint, and the possible reat-
tempts for triangulation.

Sturm, 1997, Hartley and Zisserman, 2003), so a reasonable choice is to discard the match.
This procedure is outlined in Step 4–6 of Tab. 3.1.

3.9 Experimental Results

We evaluate the proposed methods (‘L1 ang’, ‘L2 ang’ and ‘L∞ ang’) in comparison to
the midpoint method, ‘Midpoint’ (Beardsley et al., 1994, Hartley and Sturm, 1997), Hart-
ley and Sturm’s L1 and L2 method, ‘L1 img’ and ‘L2 img’ (Hartley and Sturm, 1997),
Lindstrom’s L2 method with k iterations, ‘L2 img (k)’ (Lindstrom, 2010), and Nı́ster’s L∞

method, ‘L∞ img’ (Nı́ster, 2001). The evaluation was performed on both synthetic and real
datasets. We generated the synthetic datasets as follows: A set of 8× 4 point clouds of 2,500
points each are generated with a Gaussian radial distribution N (0, (d/4)2) where d is the
distance from the world origin. Each point cloud is centered at [0, 0, d]⊺ for d = 2n with
n = −1, 0, ...,+6, and their image projections are perturbed by Gaussian noiseN (0, σ2) for
σ = 0.5, 1, 2, 4, 8. The size and the focal length of the images are 1, 024× 1, 024 pixels and
512 pixel, respectively. We have three configurations for the camera poses: (1) “orbital” -
the cameras at [±0.5, 0, 0]⊺ pointing at the point cloud center, (2) “lateral” - the cameras at
[±0.5, 0, 0]⊺ pointing at [0, 0,∞]⊺, and (3) “forward” - the cameras at [0, 0,±0.5]⊺ pointing
at the point cloud center. The poses are slightly perturbed with uniform noise U(0, 0.01). For
real datasets, we used the Oxford Dinosaur, Model House and Corridor (Oxford Multiview
Datasets, n.d.), Notre Dame (Snavely et al., 2006) and Fountain (Enqvist et al., 2011, Olsson
et al., 2011) dataset. In total, the synthetic and real datasets provide over 5.5 million unique
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Input: Calib. matrix (K), relative pose (R, t), and a match (u0, u1) from two views (C0, C1).
Output: Triangulated 3D point (x′

1) in ref. frame C1.
1) f0 ← K–1u0, f1 ← K–1u1, m0 ← Rf0, m1 ← f1.
2) For L1 triangulation:

If ∥m̂0 × t∥ ≤ ∥m̂1 × t∥, use (3.14) to obtain m′
0 and m′

1. Otherwise, use (3.15).
For L2 triangulation:

Compute m′
0 and m′

1 from (3.27) and (3.28).
For L∞ triangulation:

Compute m′
0 and m′

1 from (3.32) and (3.33).
3) Rf ′0 ←m′

0 and f ′1 ←m′
1.

4) Check cheirality:
(i) Obtain λ0 and λ1 from (3.13).
(ii) Discard the point and terminate if either λ0 ≤ 0 or λ1 ≤ 0.

5) Check angular reprojection errors:
(i) θ0 ← ∠(Rf0,Rf ′0) and θ1 ← ∠(f1, f ′1).
(ii) Discard the point and terminate if max(θ0, θ1) > ϵ1 for some small ϵ1.

6) Check parallax:
(i) β ← ∠(Rf ′0, f

′
1)

(ii) Discard the point and terminate if β < ϵ2 for some small ϵ2.
7) Compute and return x′

1 from (3.13).

Table 3.1: Summary of the proposed optimal triangulation methods.

triangulation problems in a wide variety of geometric configurations.
Tab. 3.2 provides the percentage of the total matches (from both synthetic and real

datasets) for which each method yields the lowest error in given criterion. In 100 % of
the total triangulation problems, all three of our methods yield the lowest errors in their cor-
responding optimal criterion. We also see that minimizing sin2(θ0) + sin2(θ1) is very close
to minimizing θ20 + θ21, as discussed in Section 3.6. Since our L1 angular method is numeri-
cally stable, it sometimes finds better solutions than Hartley-Sturm’s closed-form L1 method
(Hartley and Sturm, 1997) even in the L1 image error criterion (d0 + d1).

In Fig. 3.8, histograms are given for the 3D reconstruction errors on the synthetic
datasets. It shows that 1) discarding low-parallax points (Step 6 of Tab. 3.1) helps to re-
move large 3D errors, and 2) all methods then exhibit similar 3D accuracy. Qualitatively, we
also found that the reconstructions of the real datasets look similar for all methods. Fig. 3.7
shows the reconstruction results using the proposed L1 method.

We compare the speed of each algorithm in Tab. 3.3. The midpoint method is the fastest,
as it directly computes the 3D point using (3.13) without correcting the feature rays or image
points. Among the optimal methods, our L1 and L∞ methods are significantly faster than the
rest, i.e., at least 1–2 orders of magnitude faster than the state-of-the-art (Lindstrom, 2010).
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(a) Dinosaur (b) Model House (c) Corridor (d) Notre Dame (e) Fountain

Figure 3.7: Top row: Real dataset images. Bottom row: Main segments of the median reconstruction results
using the proposed L1 method.

Midpoint L1 img L2 img L2 img (5) L∞ img L1 ang L2 ang L∞ ang

E
rr

or
C

ri
te

ri
on

θ0 + θ1 - - - - - 100 % - -
θ20 + θ21 - - 7e-5 % 5e-5 % - - 99.9999 % -
sin2(θ0) + sin2(θ1) - - - - - - 100 % -
max(θ0, θ1) - - - - - - - 100 %
d0 + d1 - 70.84% 0.002% 0.002% - 29.16 % - -
d20 + d21 - - 23.14 % 76.86 % - - - -
max(d0, d1) - - - - 100 % - - -

Table 3.2: Percentage of the total matches (from all synthetic and real datasets) for which each method yields
the lowest error in given criterion. “img/ang”: optimal in the image/angular errors.
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Figure 3.8: 3D triangulation errors before (top) and after (bottom) discarding the points with the lowest 5%
parallax.
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3.10 Conclusions

In this chapter, we derived optimal closed-form solutions to the L1, L2 and L∞ stereo tri-
angulation based on the angular reprojection error. The proposed triangulation methods
are extremely simple and fast, and they guarantee global optimality under respective cost
functions. We believe that our findings will be particularly useful for large-scale SfM and
real-time visual SLAM algorithms.

Midpoint L1 img L2 img L∞ img L2 img (2) L2 img (5) L1 ang L2 ang L∞ ang
Points/sec 42 M 65 K 92 K 270 K 1.4 M 520 K 29 M 670 K 14 M

Relative Speed 1.0 0.0016 0.0022 0.0064 0.033 0.013 0.71 0.016 0.33

Table 3.3: Speed of computing a 3D point. The relative speed is normalized by that of the midpoint method.
Note that this does not take into account Step 4–6 of Tab. 3.1. All algorithms were implemented in C++ and
run on a laptop CPU (Intel i7-4810MQ, 2.8 GHz).





Chapter 4

Triangulation: Why Optimize?

For decades, it has been widely accepted that the gold standard for two-view triangulation is
to minimize the cost based on reprojection errors. In this chapter, we challenge this idea. We
propose a novel alternative to the classic midpoint method that leads to significantly lower 2D
errors and parallax errors. It provides a numerically stable closed-form solution based solely
on a pair of backprojected rays. Since our solution is rotationally invariant, it can also be
applied for fisheye and omnidirectional cameras. We show that for small parallax angles, our
method outperforms the state-of-the-art in terms of combined 2D, 3D and parallax accuracy,
while achieving comparable speed.

4.1 Introduction

Locating the 3D point given its projections in multiple views is called triangulation. This
classic yet fundamental problem in computer vision has immediate relevance to many ap-
plications, including visual odometry (Forster et al., 2014), simultaneous localization and
mapping (SLAM) (Mur-Artal et al., 2015) and structure-from-motion (SfM) (Schönberger
and Frahm, 2016). As such, achieving fast and accurate triangulation has been a goal of
many research endeavors in the past decades.

For two views of known calibration and pose, the problem could be solved ideally if one
finds the intersection of two backprojected rays corresponding to the same point. However,
the two rays are most likely skew due to noisy measurements and inaccurate camera model.
Since it is not obvious how to estimate the 3D position of the point from two skew rays,
different methods have been proposed. Mainly, they can be classified into three types: (1)
midpoint methods (Beardsley et al., 1994, 1997, Yang et al., 2019) that find the (weighted)
midpoint of the common perpendicular between the two rays, (2) linear least squares meth-
ods (Hartley and Sturm, 1997), and (3) optimal methods that “minimally” correct the two
rays to make them intersect (Kanatani et al., 2008, Hartley and Sturm, 1997, Lee and Civera,
2019a). Note that all these three types of methods produce solutions that minimize some
cost function; the (weighted) midpoint minimizes the (weighted) sum of squared distances
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to each ray, linear least squares methods minimize the algebraic errors, and optimal methods
minimize a cost function based on either image reprojection errors (Kanatani et al., 2008,
Hartley and Sturm, 1997, Lindstrom, 2010) or angular reprojection errors (Oliensis, 2002,
Lee and Civera, 2019a). The most common cost functions are the L1 norm (sum of magni-
tude), L2 norm (sum of squares) and L∞ norm (maximum) of the reprojection errors.

In this chapter, we suggest a different approach. Instead of minimizing geometric or
algebraic errors, we find a midpoint between a certain pair of points on each ray. Like the
classic midpoint method, our method takes the two rays as input. Therefore, it is invariant to
changes of camera rotation and applicable for perspective, fisheye and omnidirectional cam-
eras. Unlike the classic method, however, the two points on each ray are not necessarily on
the common perpendicular. We will see that our midpoint method bears a striking similarity
to the classic method in the formulation, and yet it offers a significant performance gain in
2D and parallax accuracy. Compared to the optimal methods, our method yields much lower
3D errors at low parallax and similar 2D errors to those of L2 and L∞ optimal methods. This
motivates the question: In two-view triangulation, why optimize if there is a better way?

The main contributions of this chapter are the following:

• We propose a novel method belonging to a group called the generalized weighted mid-
point (GWM) method. We show that our method outperforms existing ones (including
the classic midpoint method and the state-of-the-art optimal methods) in terms of com-
bined 2D, 3D and parallax accuracy.

• Additionally, we propose a test of the adequacy (similar to the cheirality check) that
identifies unreliable results and a weighting scheme that enhances 2D accuracy.

• We perform an extensive evaluation and analysis of various methods, revealing an in-
tricate link between 3D accuracy and parallax estimation. This will provide an intuitive
explanation of why our midpoint method performs better than the others.

4.2 Related Work

One of the earliest works that addressed the two-view triangulation problem is (Longuet-
Higgins, 1981) where the depth of a 3D point is estimated using simple algebra. For ro-
bustness, later works mostly adopted geometric approaches, such as the midpoint method
(Beardsley et al., 1994, 1997) and the minimization of the epipolar distance (Harris, 1987,
Harris and Pike, 1988) or reprojection error (Hartley, 1994). Among those, the last approach
has become the de facto standard in computer vision (Hartley and Zisserman, 2003).

Optimal methods refer to those triangulation methods that minimize the cost based on
reprojection errors. Assuming that the image measurements are independently perturbed by
the noise in the same distribution of certain types, the optimal methods find the maximum
likelihood (ML) solution. For Gaussian and Laplacian distribution, the ML solution is to
minimize the L2 norm or L1 norm of the reprojection errors, respectively (Ke and Kanade,
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2003). This can be found in closed form by solving a polynomial of degree six or eight
(Hartley and Sturm, 1997). Alternatively, the L2 solution can be obtained using iterative
correction methods (Kanatani et al., 2008, Lindstrom, 2010). While these iterative methods
do not guarantee global optimality, they were shown to be faster and more stable. For a
uniform distribution, minimizing the L∞ norm leads to the ML estimate for the upper bound
of the noise (Hartley and Kahl, 2007), and the solution is obtained by solving a quartic
polynomial (Nı́ster, 2001). Unlike the L1 and L2 cost, the L∞ cost has a simple shape
with a single minimum, but it is relatively more sensitive to noise and outliers (Hartley and
Schaffalitzky, 2004).

These optimal methods assume that the image measurement errors follow certain distri-
butions. However, this assumption is neither justified nor likely (Hartley and Kahl, 2007).
An equally (if not more) justified alternative is to assume that the noise model applies to
the bearing measurements instead of the image. For fisheye or omnidirectional cameras, the
angular reprojection errors are more suitable than the image reprojection errors (Oliensis,
2002, Mičušı́k and Pajdla, 2006). Also, formulating the triangulation problem in terms of
angular errors leads to much simpler ML solutions (Oliensis, 2002, Lee and Civera, 2019a).

Although the existing optimal methods can provide relatively good 3D results in many
cases (Hartley and Sturm, 1997, Lee and Civera, 2019a), none of them are theoretically op-
timal in terms of 3D errors. In fact, the discrepancy between 2D optimality and 3D accuracy
has already been reported by Hartley and Sturm (Hartley and Sturm, 1997). They found
that in Euclidean reconstruction, the midpoint and the linear least squares method achieve
higher 3D accuracy than the L1 or L2 optimal methods, despite consistently (and sometimes
significantly) larger 2D errors. In this chapter, we provide additional insights on this matter.
Furthermore, we show that a simple modification to the midpoint method can substantially
reduce the 2D errors while maintaining 3D accuracy.

4.3 Preliminaries

Throughout the chapter, we use bold letters for vectors and matrices, and light letters for
scalars. The angle between two lines L0 and L1 is denoted by ∠ (L0, L1) ∈ [0, π/2].

Consider a 3D point observed by two cameras C0 and C1. We define x0 = [x0, y0, z0]
⊺

and x1 = [x1, y1, z1]
⊺ as the unknown 3D coordinates of the point in the camera reference

frame C0 and C1, respectively. Let R and t be the known rotation and translation between
the two cameras, such that x1 = Rx0 + t. Assuming that the camera calibration matrix K is
known, the normalized image coordinates f0 = [x0/z0, y0/z0, 1]

⊺ and f1 = [x1/z1, y1/z1, 1]
⊺

can be obtained by f0 = K−1u0 and f1 = K−1u1, where u0 = (u0, v0, 1)
⊺ and u1 =

(u1, v1, 1)
⊺ are the homogeneous pixel coordinates of the point observation in each frame.

In the ideal situation (Fig. 4.1a), the two backprojected rays intersect, satisfying the
epipolar constraint (Longuet-Higgins, 1981), i.e., f1 · (t×Rf0) = 0. Then, the intersection
is given by x1 = λ0Rf̂0 + t or x1 = λ1f̂1 for some scalar depth λ0 and λ1. However,
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Figure 4.1: (a) Epipolar geometry when the two backprojected rays intersect. All vectors are in the coordinate
system of C1. (b) 3D error (e3D) measures the Euclidean distance between the estimate (x′

1) and the true
position of the point (xtrue), while 2D error (d0, d1) measures the offset between the observation and the
reprojection of the estimated point in each frame. (c) After the triangulation, one can estimate the parallax (β′)
from the corrected rays.

this rarely happens due to inaccuracies in the image measurements and the camera model.
Inferring a 3D point from two skew rays requires a nontrivial method.

Once the estimate of the 3D point (x′
1) is obtained using some triangulation method,

its accuracy can be evaluated in several ways. One way is to compute the 3D error, i.e.,
e3D = ∥x′

1−xtrue∥. Another way is to compute the 2D error (aka the reprojection error), i.e.,

di = ∥K (fi − fi
′)∥ =

∥∥∥K(fi − ([0 0 1] x′
i)
−1

x′
i

)∥∥∥ for i = 0, 1, (4.1)

where x′
0 = R⊺ (x′

1 − t). These two errors are illustrated in Fig. 4.1b. Note that the 2D
error represents the deviation from the measurement, whereas the 3D error represents the
deviation from the ground truth. Also, unlike the 3D error, the 2D error of a 3D point can
be evaluated in different norms, e.g., L1 norm (d0 + d1), L2 norm

(√
d20 + d21

)
and L∞

norm (max(d0, d1)). Besides 2D and 3D accuracy, we can also evaluate the accuracy of the
resulting parallax angle (see Fig. 4.1c). The parallax error is defined as follows:

eβ = |βtrue − β′| = |∠ (xtrue,xtrue − t)− ∠ (x′
1,x

′
1 − t) |. (4.2)

We define the “raw parallax” as the angle between the original backprojected rays:

βraw = ∠ (Rf0, f1) . (4.3)

This gives a rough estimate of the parallax angle independently of the translation and the
triangulation method.
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4.4 Proposed Method

4.4.1 Generalized Weighted Midpoint (GWM) Method

A GWM method consists of three steps: (1) Given two backprojected rays corresponding to
the same point, estimate the depth along each ray (λ0, λ1) using some method. (2) Compute
the 3D point on each ray at depth λ0 and λ1, i.e., t + λ0Rf̂0 and λ1f̂1 in C1. (3) Obtain the
final estimate of the 3D point by computing their weighted average.

The classic midpoint method (Beardsley et al., 1994, 1997, Hartley and Sturm, 1997)
is one such type of method where the two points on each ray are the closest pair of points
with the equal weight. Fig. 4.2 shows another possible example of the generalized weighted
midpoint.

4.4.2 Alternative Midpoint Method

We propose an alternative midpoint method that belongs to the GWM method. First, consider
the case where the two backprojected rays happen to intersect (see Fig. 4.1a). In this case,
the most sensible solution is the point of intersection, and the corresponding depths along
the rays can be obtained using the sine rule:

λ0 =
sin (∠ (f1, t))

sin (∠ (Rf0, f1, ))
∥t∥ = ∥f̂1 × t∥

∥Rf̂0 × f̂1∥
, λ1 =

sin (∠ (Rf0, t))

sin (∠ (Rf0, f1, ))
∥t∥ = ∥Rf̂0 × t∥

∥Rf̂0 × f̂1∥
.

(4.4)
We use this formula to estimate the depths even when the two rays are skew. Computing the
3D points on each ray at depth λ0 and λ1, respectively, we get

t+ λ0Rf̂0 = t+
∥f1 × t∥
∥Rf0 × f1∥

Rf0 and λ1f̂1 =
∥Rf0 × t∥
∥Rf0 × f1∥

f1, (4.5)

Taking the midpoint between these two points leads to

x′
1 =

1

2

(
t+

∥f1 × t∥
∥Rf0 × f1∥

Rf0 +
∥Rf0 × t∥
∥Rf0 × f1∥

f1

)
. (4.6)

Note that letting p = Rf̂0 × f̂1, q = Rf̂0 × t and r = f̂1 × t allows us to write (4.4) as

λ0 =
∥r∥
∥p∥

, λ1 =
∥q∥
∥p∥

. (4.7)

Interestingly, these are in a similar form to the depths given by the classic midpoint method1:

λmid0 =
p̂ · r
∥p∥

, λmid1 =
p̂ · q
∥p∥

. (4.8)

1We provide the derivation in Appendix C.
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Figure 4.2: The classic midpoint and another example of the generalized weighted midpoint.

The difference is in the numerator; (4.7) has the magnitude of r and q, whereas (4.8) has
their projection onto p. As a result, we always get λ0 ≥ λmid0 and λ1 ≥ λmid1. In most
cases, this means that our midpoint will be located farther than the classic midpoint. Fig.
4.2 depicts one such example. When we estimate that a point is located farther away from
the cameras, it usually results in a lower estimate of the parallax angle, as will be shown in
Section 4.5.

4.4.3 Cheirality and Test of Adequacy

We say that the cheirality constraint (Hartley and Zisserman, 2003) is violated when a tri-
angulated point has a negative depth. This can happen for many reasons, such as spurious
data association or the noise in the image point near the epipole. Normally, it does not pose a
serious problem because we can easily check the cheirality for each point and discard the bad
ones. For the classic midpoint method, this can be done by checking the signs of the depths
given by (4.8). For our midpoint method, however, this is not possible because the depths
given by (4.7) are always positive. Fig 4.3a and 4.3b illustrate the difference between the
two methods. In our method, the depths alone cannot tell us whether or not the triangulation
result is reliable.

Therefore, we use a different method to test the adequacy; we discard the point corre-
spondence if changing the sign of at least one depth to negative leads to a smaller distance
between the two points on each ray, i.e.,

∥t+λ0Rf̂0−λ1f̂1∥2 ≥ min
(
∥t+λ0Rf̂0+λ1f̂1∥2,∥t−λ0Rf̂0−λ1f̂1∥2,∥t−λ0Rf̂0+λ1f̂1∥2

)
(4.9)

For the classic midpoint method, letting λ0 = |λmid0| and λ1 = |λmid1| gives effectively the
same result as the cheirality check. For example, (4.9) holds in Fig 4.3a because the two
points are closest when λ0 = −|λmid0| and λ1 = −|λmid1|.
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Figure 4.3: (a) A scenario where the classic midpoint method gives negative depths. The cheirality check
will identify and remove this point. (b) In the same situation, our midpoint method will give positive depths.
The triangulation result satisfies the cheirality constraint, but it is most likely inaccurate. (c) For unweighted
midpoint methods, the frame with a smaller depth tends to get a larger reprojection error. In this example,
λ1 < λ0 and d1 > d0.

4.4.4 Inverse Depth Weighted Midpoint

The unweighted midpoint given by (4.6) often entails disproportionate reprojection errors in
the two images. Fig. 4.3c shows an example. Notice that the ray with a smaller depth tends
to yield a larger reprojection error. To compensate this imbalance, we propose to use the
inverse depth (Civera et al., 2008b) as a weight:

x′
1 =

λ−1
0

(
t+ λ0Rf̂0

)
+ λ−1

1

(
λ1f̂1

)
λ−1
0 + λ−1

1

(4.7)
=

∥q∥
∥q∥+ ∥r∥

(
t+
∥r∥
∥p∥

(
Rf̂0 + f̂1

))
. (4.10)

4.5 Evaluation Results

We evaluate the following methods: Lee and Civera’s L1, L2 and L∞ optimal angular meth-
ods (‘L1 ang’, ‘L2 ang’, ‘L∞ ang’) (Lee and Civera, 2019a), Hartley and Sturm’s L1 and
L2 optimal methods (‘L1 img’, ‘L2 img’) and linear methods (‘DLT’, ‘LinLS’) (Hartley and
Sturm, 1997, Hartley and Zisserman, 2003), Lindstrom’s L2 method with five iterations (‘L2

img (5 it.)’) (Lindstrom, 2010), Nı́ster’s L∞ method (‘L∞ img’) (Nı́ster, 2001), the classic
midpoint method (‘Mid’) (Beardsley et al., 1994, 1997, Hartley and Sturm, 1997), and our
method without and with the weighting (‘Mid2’, ‘wMid2’). The evaluation was performed
on synthetic datasets generated as follows: A set of 8 × 8 point clouds of 5,000 points each
are generated with a Gaussian radial distribution N (0, (d/4)2) where d is the distance from
the world origin. Each point cloud is centered at [0, 0, d]⊺ for d = 2n with n = −1, 0, ...,+6,
and their image projections are perturbed by Gaussian noise N (0, σ2) for σ = 1, 2..., 8. The
size and the focal length of the images are 1, 0242 pixels and 512 pixel, respectively. We have
four configurations for the camera poses: (1) ‘orbital’ - two cameras at [±0.5, 0, 0]⊺ pointing
at the point cloud center, (2) ‘lateral’ - two cameras at [±0.5, 0, 0]⊺ pointing at [0, 0,∞]⊺, (3)
‘forward’ - two cameras at [0, 0,±0.5]⊺ pointing at the point cloud center, and (4) ‘diago-
nal’ - two cameras at ±[

√
3/6,
√
3/6,
√
3/6]⊺ pointing at [0, 0,∞]⊺. The poses are slightly
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Figure 4.4: Triangulation accuracy over different noise levels in the image measurements. 3D results (top
1st column): LinLS, Mid, Mid2 and wMid2 perform almost equally and all significantly better than the rest.
Among the optimal methods, L1 ang performs best. 2D results (top 2nd–4th column): LinLS and Mid per-
form worst across all norms. Mid2 performs much better than those two, and wMid2 performs consistently
better than Mid2. Expectedly, optimal methods perform best in their respective error criterion. However, the
differences among them are smaller in L1 norm than in the other two norms. Parallax results (bottom row):
LinLS and Mid perform worst, and the rest almost equally. Looking at the under- and overestimation of the
parallax separately, we notice that the low accuracy of LinLS and Mid is caused by their bias to overestimate
the parallax on average.

perturbed with uniform noise U(0, 0.01). In total, the datasets provide over a million unique
triangulation problems.

We aggregate the results in Fig. 4.4 and 4.5. Our observations agree with (Hartley and
Sturm, 1997) in that:

1. Generally, greater noise and lower parallax lead to larger 3D errors. All methods yield
almost equally low 3D errors for high-parallax points (¿ 4 deg).

2. 2D and 3D errors do not always present a strong correlation. For example, LinLS and
Mid perform best in 3D, but worst in 2D.

Additionally, we report the following findings:

1. It is difficult to tell which method is the best in terms of 2D accuracy. For example,
L1 methods yield the lowest 2D errors in L1 norm, but relatively larger errors in L2

and L∞ norm. It is not obvious which norm is more important. That said, some
methods can still perform consistently better than others; wMid2, L2 and L∞ methods
consistently outperform LinLS, Mid, Mid2 and DLT in all 2D error criteria.

2. As shown in Fig. 4.6, LinLS and Mid are clearly more biased to overestimate the small
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parallax angles (¡ 4 deg). This explains their relatively low 3D errors at low parallax.
Fig. 4.7 illustrates a simplified example of this effect.

3. Our methods (Mid2 and wMid2) achieve the best overall accuracy in 3D + parallax.

The last finding can be solely attributed to the low-parallax points, for which our methods
show similar 3D accuracy to that of Mid, but much better parallax accuracy. The latter can
be explained by the fact that Mid2 always yields larger depths than Mid (as discussed in
Section 4.4.2), which in effect lowers the estimated parallax angle on average (as shown in
Fig. 4.6). Since Mid tends to overestimate small parallax angles, this works to our advantage
at low parallax.

The first plot in Fig. 4.6 shows that Mid, LinLS and our two methods underestimate
small parallax angles slightly less than the rest. It is no coincidence that precisely these four
methods achieve the best 3D accuracy; Fig. 4.7 suggests that underestimating a small paral-
lax angle has a severe impact on 3D accuracy. At low parallax, it seems that our methods hit
the sweet spot by (1) underestimating less than the optimal methods and DLT (thus achiev-
ing lower 3D errors) and (2) overestimating less than Mid and LinLS (thus achieving lower
parallax errors).

We suspect that some of the large 2D errors of Mid and LinLS at low parallax are related
to their large parallax overestimation (see the second row of Fig. 4.5). Large reprojection
errors mean that the rays were corrected by a large amount, and pivoting two almost parallel
rays (i.e., rays that correspond to a low-parallax point) will most likely increase the angle
between them. This link between the 2D and the parallax error could partially explain why
our methods yield smaller 2D errors than Mid and LinLS for low-parallax points.

We also found that the 2D errors of wMid2 resemble those of L∞ methods (see the
bottom row of Fig. 4.5). Note that the L∞ optimal solutions yield the equal reprojection
errors in the two views (Nı́ster, 2001, Lee and Civera, 2019a). This suggests that our inverse
depth weighting (Section 4.4.4) not only reduces the overall 2D errors, but also balances the
reprojection errors in the two images.

Fig. 4.8 compares the speed of each method. We included the test of the adequacy (Sec-
tion 4.4.3) in both our methods. All methods were implemented in C++ using the Eigen
library (Eigen Library v3, n.d.), compiled using GCC (GNU Compiler Collection (GCC),
n.d.) with -O3 level optimization, and run on a laptop CPU (Intel i7-4810MQ, 2.8 GHz).
Although wMid2 is almost two times slower than Mid2 and three times than Mid, it is still
at least ten times faster than the state-of-the-art method (Lindstrom, 2010). Notice that even
though (4.7) and (4.8) are similar, Mid is still almost twice faster than Mid2. This happens
for two reasons: First, we avoid computing the square root in (4.8) by multiplying the nu-
merator and denominator by ∥p∥ and get λmid0 = p⊺r

p⊺p
and λmid1 = p⊺q

p⊺p
. Second, the test

of adequacy described in Section 4.4.3 takes longer than the standard cheirality check. Nev-
ertheless, given that the computational cost of triangulation is relatively small compared to
other operations (e.g., point matching, pose estimation and structure refinement) (Hartley
and Sturm, 1997), our methods provide an excellent trade-off between speed and accuracy.
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Figure 4.5: Triangulation accuracy over different parallax angles βraw (4.3). 3D results (top row): For parallax
under 2 deg, LinLS, Mid, Mid2 and wMid2 outperform the rest. For parallax between 2–4 deg, L1 ang and the
four aforementioned methods perform best. For parallax over 4 deg, all methods perform almost equally. 2D
results for small parallax (mid 1st–3rd column): LinLS and Mid perform significantly worse than the rest in
all norms. Aside from those two, L1 methods perform much worse than the rest in L2 and L∞ norm, yet best in
L1 norm. The remaining methods perform similarly. 2D results for large parallax (bottom 1st–3rd column):
In all norms, LinLS, Mid, Mid2 and DLT perform consistently worse than wMid2, L2 and L∞ methods. The
latter perform similarly and much better than L1 methods in L2 and L∞ norm, yet worse in L1 norm. Parallax
results (last column): For low-parallax points, LinLS and Mid perform worst (see Fig. 4.6 for more details).
For high-parallax points, all methods perform equally well.
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4.6 Discussions

4.6.1 On Optimality

A reasonable doubt is that the proposed (weighted) midpoint method may be in fact optimal
in some error criterion. If we consider algebraic errors, it is obvious that our midpoint
minimizes ∥x′

1 − g(R, t, f0, f1)∥ where g(·) is the vector-valued function given by the right-
hand side of (4.6) or (4.10). However, there are infinitely many other error functions for
which the global minimum is g(R, t, f0, f1), and it is hard to tell which one is geometrically
meaningful (at least, we could not find it or disprove its existence).

Another reasonable doubt is that, among the GWM methods, there could be a better
one than ours, since we have not proved the optimality of the proposed weighted midpoint.
A more fundamental question is then: What accuracy measure should we choose to define
the optimality, knowing that there is a discrepancy between different types of errors, e.g.,
image/angular reprojection errors in different norms, 3D and parallax errors? At least for our
method, it seems that the weighting affects mostly the 2D errors, so there might be a certain
weighting scheme that guarantees 2D optimality without compromising 3D and parallax
accuracy. A more elaborate error analysis and the comparison of different weightings within
the GWM framework remain for future work. For more discussion of the optimality in
geometric vision, we refer to (Hartley and Kahl, 2007) and Appendix 3 of (Hartley and
Zisserman, 2003).

4.6.2 On Practical Implications

In many SfM pipelines, two-view triangulation is used to initialize the 3D map points prior
to the bundle adjustment (Snavely et al., 2006, Schönberger and Frahm, 2016, Nousias et al.,
2019). Since the points with small parallax angles are associated with large 3D uncertainty,
they are usually discarded. This strategy is viable if there are enough correspondences with
large parallax angles. However, it is not ideal, as (1) low-parallax points can be useful for
camera orientation estimation (Civera et al., 2008a, Pirchheim et al., 2013) and (2) if the goal
itself is to reconstruct the scene with large depths compared to the baseline. For problems
such as reconstruction from small-baseline (or accidental) motions (Delon and Rougé, 2007,
Yu and Gallup, 2014), small parallax angles are quite common, so our method could be
relevant. Extending our method to multiple views for reconstructing low-parallax scenes
would be an interesting future direction.
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4.7 Conclusions

Triangulation from two views with known calibration and pose is an age-old problem in
computer vision. Existing methods formulate the problem as the minimization of some cost
function, most commonly reprojection errors. In this chapter, we asked ourselves if this is
really the best approach. To this end, we proposed a novel variant of the classic midpoint
method that does not minimize geometric or algebraic errors.

We found that all the existing methods we evaluated perform poorly at low parallax,
producing large errors in either 2D, 3D or parallax. On the other hand, our midpoint method
achieves very good overall accuracy. We also showed that incorporating the inverse depth
weighting can further reduce the 2D errors. Although our method is not theoretically optimal,
it provides, with speed and simplicity, a superior balance of 2D, 3D and parallax accuracy in
practice.





Chapter 5

Geometric Interpretations of the
Normalized Epipolar Error

In this chapter, we provide geometric interpretations of the normalized epipolar error. Most
notably, we show that it is directly related to the following quantities: (1) the shortest dis-
tance between the two backprojected rays, (2) the dihedral angle between the two bounding
epipolar planes, and (3) the L1-optimal angular reprojection error.

5.1 Introduction

Consider two cameras c0 and c1 observing the same 3D point p. If the internal calibration
and the relative pose of the two cameras are known, we can backproject the measured point
in each image and obtain the rays from each camera, pointing to p. Now, we define the
normalized epipolar error as follows:

ê :=
∣∣ f̂1 · ( t̂×Rf̂0

)∣∣ = ∣∣ t̂ · (Rf̂0 × f̂1
)∣∣, (5.1)

where f̂0 and f̂1 are the backprojected unit rays from c0 and c1, respectively, R is the rotation
matrix and t is the translation vector that together transform a point from the reference frame
c0 to c1, i.e., x1 = Rx0 + t and t̂ = t/∥t∥. The second equality in (5.1) follows from the
fact that the scalar triple product is invariant to a circular shift. In the literature, the error ê is
often expressed as follows:

ê =
∣∣ f̂ ⊤

1 Ef̂0
∣∣, (5.2)

where E = [ t̂ ]×R is the essential matrix and [·]× is the skew-symmetric operator.

If the image measurements, calibration and pose data are all perfectly accurate, this error
would be zero because Rf̂0, f̂1 and t̂ would be coplanar (see Fig. 5.1). This is called the
epipolar constraint (Longuet-Higgins, 1981). In practice, the raw data contain inaccuracies,
so they do not satisfy this constraint most of the time. For this reason, many existing works
in 3D vision try to solve geometric reconstruction problems by minimizing the cost based on
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Rf0 f1

t

λ0 λ1

p

Figure 5.1: A perfectly accurate epipolar geometry. The two backprojected rays intersect at the exact position
of the 3D point. The depths of each ray are denoted by λ0 and λ1. All vectors are expressed in the coordinate
system of c1.

this error (Briales et al., 2018, Garcia-Salguero et al., 2021, Kneip and Lynen, 2013, Lee and
Civera, 2021, Pagani and Stricker, 2011, Rodrı́guez et al., 2011, Zhao, 2022, Spetsakis and
Aloimonos, 1992) or use this error to identify outliers (Zhao, 2022, Lee and Civera, 2020c).

In the literature, the normalized epipolar error has mostly been treated as an algebraic
quantity that has no geometric meaning (Briales et al., 2018, Garcia-Salguero et al., 2021,
Kneip and Lynen, 2013, Rodrı́guez et al., 2011, Zhao, 2022, Yang et al., 2014). We believe
that this misconception stems from the fact that the “standard” epipolar error e is an algebraic
quantity (Hartley and Zisserman, 2003, Luong and Faugeras, 1996, Torr and Murray, 1997,
Zhang, 1998):

e :=
∣∣f1 · ( t̂×Rf0

)∣∣ = ∣∣f⊤1 Ef0∣∣, (5.3)

where f0 and f1 are the normalized image coordinates of the point in c0 and c1, respectively.
Notice that the only difference between (5.1) and (5.3) is the way the rays are normalized: In
(5.1), they are normalized by their lengths, whereas in (5.3), they are normalized by the last
element in the vector.

In (Pagani and Stricker, 2011), a geometric interpretation was given for the following
error:

ep :=

∣∣ f̂1 · ( t̂×Rf̂0
)∣∣

∥ t̂×Rf̂0∥
, (5.4)

which corresponds to the cosine of the angle between f̂1 and n = t̂ ×Rf̂0. This is equal to
the perpendicular distance between the point at f̂1 and the plane containing t̂ and Rf̂0.

In this chapter, we provide geometrically intuitive interpretations of (5.1) by relating it
to the following quantities:

1. The volume of the tetrahedron where f̂0, Rf̂0 and t̂ form the three edges meeting at
one vertex.

2. The shortest distance between the two backprojected rays l0 = t+s0Rf̂0 and l1 = s1f̂1.

3. The dihedral angle between the two bounding epipolar planes, i.e., one plane contain-
ing t and Rf0 and the other containing t and f1.

4. The L1-optimal angular reprojection error.



66 5. Geometric Interpretations of the Normalized Epipolar Error

Rf0

f1 c c0 1

Rf0f1

t

d

(a) (b)

0 1ϕ ϕc1
t

Figure 5.2: (a) The volume of this tetrahedron is proportional to the normalized epipolar error (5.1). (b) d is
the shortest distance between the two backprojected rays corresponding to the same point.

5.2 Geometric Interpretations of (5.1)

5.2.1 Relation to the volume of a tetrahedron

Consider the tetrahedron shown in Fig. 5.2a. One of its vertices is placed at c1 (i.e., the
position of camera c1, which is the origin in the reference frame of c1), and the other three
at t̂, Rf̂0 and f̂1. Then, using the well-known formula for the volume of a tetrahedron, its
volume is obtained by

V =
1

6

∣∣ t̂ · (Rf̂0 × f̂1
)∣∣ (5.1)

=
ê

6
. (5.5)

Therefore,
ê = 6V. (5.6)

The nice thing about this interpretation is that it allows for a simple visualization of the
error, as shown in Fig. 5.2a. As the degree of coplanarity increases among the three edges
(̂t, Rf̂0 and f̂1), the common vertex will be “pulled” towards the opposite side, flattening the
tetrahedron. When the three edges are coplanar, the tetrahedron becomes completely flat,
i.e., V = 0, and thus ê = 0.

5.2.2 Relation to the distance between the two rays

We can also relate the normalized epipolar error ê (5.1) to the shortest distance between the
two backprojected rays, i.e., d in Fig. 5.2b. To show this, we will first derive the formula for
the shortest distance between two skew lines. Consider two skew lines l0 = c0 + s0m0 and
l1 = c1+s1m1. The distance between them is given by the distance between the closest pair
of points on each line (r0 and r1), and they lie on the common perpendicular to both lines1.
Now, consider two parallel planes with the normal n = m0 ×m1: plane Π0 containing l0

and plane Π1 containing l1, as illustrated in Fig. 5.3a. Notice that d = ∥r0 − r1∥ is the same
as the distance between the planes, which is the same as ∥c1− a0∥ where a0 is the projected

1We can easily prove this by contradiction. We omit the proof.
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Figure 5.3: (a) The distance between the two skew lines is the same as the distance between the two parallel
planes as shown here. The normal of the two planes is given by n = m0 ×m1. (b) α is the dihedral angle
between the two bounding epipolar planes.

position of c1 in Π0. Since ∥c1 − a0∥ = |(c0 − c1) · n|/∥n∥, we get

d =
|(c0 − c1) · (m0 ×m1)|

∥m0 ×m1∥
. (5.7)

This means that d in Fig. 5.2b is given by

d =

∣∣t · (Rf̂0 × f̂1)
∣∣

∥Rf̂0 × f̂1∥
(5.1)
=

∥t∥ ê
∥Rf̂0 × f̂1∥

. (5.8)

Let β be the angle between Rf̂0 and f̂1 (also known as the raw parallax angle (Lee and Civera,
2019c)), i.e.,

β := ∠(Rf̂0, f̂1) ∈ [0, π/2]. (5.9)

Then, (5.8) can be written as

ê =
sin(β)

∥t∥
d. (5.10)

Therefore, we can interpret ê as the distance between the two backprojected rays, weighted
by sin(β)/∥t∥. For relative pose estimation between two views, we can assume ∥t∥ = 1

without loss of generality, so minimizing the cost based on (5.10) is equivalent to minimizing
the cost based on sin(β)d. We can interpret sin(β) as the factor that downweights the residual
d when the parallax angle is small. Note that d ≤ 1 and the equality holds if and only if Rf̂0

and f̂1 are both perpendicular to t̂. If the two rays intersect (at infinity), then d = 0 (or
β = 0), and thus ê = 0.

As a side note, it should be mentioned that d given by (5.8) is the distance between
the lines rather than the rays. Technically speaking, it is the shortest distance between line
l0 = t+ s0Rf̂0 for s0 ∈ R and line l1 = s1f̂1 for s1 ∈ R.

5.2.3 Relation to the angle between the two planes

In Fig. 5.2b, consider the following planes: one plane containing t and Rf̂0, and another
containing t and f̂1. Let n0 and n1 be their normal vectors. These two planes are drawn in
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Fig. 5.3b. We can think of them as the two bounding planes between which the epipolar
plane is usually found. This is the case for most two-view triangulation methods (e.g., mid-
point methods (Lee and Civera, 2019c) and optimal methods (Lee and Civera, 2019a)). The
dihedral angle between these two bounding planes is given by

α = ∠(n0,n1) = sin−1

(∥∥∥∥∥
(
Rf̂0 × t̂

)∥∥Rf̂0 × t̂
∥∥ ×

(
f̂1 × t̂

)∥∥f̂1 × t̂
∥∥
∥∥∥∥∥
)
. (5.11)

This can be rearranged to∥∥Rf̂0 × t̂
∥∥∥∥f̂1 × t̂

∥∥ sin(α) = ∥∥(Rf̂0 × t̂
)
×
(
f̂1 × t̂

)∥∥. (5.12)

For any 3D vector a, b, c, d, the vector quadruple product (a × b) × (c × d) is equal to
((a× b) · d) c− ((a× b) · c)d. Therefore, the right-hand side of (5.12) can be written as∥∥∥(Rf̂0 × t̂

)
×
(
f̂1 × t̂

)∥∥∥ =
∥∥∥((Rf̂0 × t̂) · t̂

)
︸ ︷︷ ︸

0

f̂1 −
(
(Rf̂0 × t̂ ) · f̂1

)
t̂
∥∥∥ (5.13)

=
∥∥∥((Rf̂0 × t̂ ) · f̂1

)
t̂
∥∥∥ =

∣∣(Rf̂0 × t̂ ) · f̂1
∣∣ (5.1)
= ê. (5.14)

Note that the third equality follows from the fact that t̂ is a unit vector. Substituting (5.14)
into (5.12) leads to

ê =
∥∥Rf̂0 × t̂

∥∥∥∥f̂1 × t̂
∥∥ sin(α) (5.15)

= sin(ϕ0) sin(ϕ1) sin(α), (5.16)

where

ϕ0 := ∠(Rf̂0, t̂ ) ∈ [0, π/2], (5.17)

ϕ1 := ∠( f̂1, t̂ ) ∈ [0, π/2]. (5.18)

These two angles are shown in Fig. 5.2b. From (5.16), we can interpret ê as the sine of
the dihedral angle between the two bounding epipolar planes, weighted by sin(ϕ0) sin(ϕ1).
Therefore, ê would be small if either of ϕ0, ϕ1 or α is very small. This makes sense because
the epipolar geometry degenerates as ϕ0 or ϕ1 approaches zero. Also, when α is small, the
two bounding epipolar planes are close to coplanarity, and so do the vector t̂, Rf̂0 and f̂1.

5.2.4 Relation to the angular reprojection error

The L1-optimal angular reprojection error (Lee and Civera, 2019a) is defined as follows:

θ∗L1 = min
f̂ ′0 ,̂f

′
1

(
∠(f̂ ′0, f̂0) + ∠(f̂ ′1, f̂1)

)
s.t. f̂ ′1 ·

(
t̂×Rf̂ ′0

)
= 0. (5.19)
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Figure 5.4: The angular reprojection errors (θ0, θ1) measure the angular difference between the backprojected
rays (Rf̂0, f̂1) and the corrected rays (Rf̂ ′0, f̂ ′1) that are made to intersect.

In other words, it is the minimum of θ0 + θ1 where θ0 and θ1 are the angles by which we
correct the backprojected rays to make them intersect. Fig. 5.4 illustrates these angles. In
(Lee and Civera, 2019a), it was shown that

sin(θ∗L1) = min

(∣∣Rf̂0 ·
(
f̂1 × t̂

)∣∣
∥Rf̂0 × t̂∥

,

∣∣Rf̂0 ·
(
f̂1 × t̂

)∣∣
∥f̂1 × t̂∥

)
. (5.20)

Rearranging this, we get∣∣ f̂1 · ( t̂×Rf̂0
)∣∣ = sin(θ∗L1)max

(
∥Rf̂0 × t̂∥, ∥f̂1 × t̂∥

)
. (5.21)

Using (5.1), (5.17), (5.18), this can be written as

ê = sin (max(ϕ0, ϕ1)) sin(θ
∗
L1). (5.22)

Therefore, we can interpret ê as the sine of theL1-optimal angular reprojection error, weighted
by sin (max(ϕ0, ϕ1)). It follows that ê would be small if either of θ∗L1 or max(ϕ0, ϕ1) is very
small. This makes sense because small θ∗L1 means that only a little correction is needed for
the two backprojected rays to intersect. Also, small max(ϕ0, ϕ1) means that the vector t̂, Rf̂0

and f̂1 are all close to parallelism, which brings the epipolar geometry close to degeneracy.
What may seem peculiar in (5.22) is the fact that max(ϕ0, ϕ1) does not reflect the degener-
acy when either ϕ0 or ϕ1 is zero. However, this is not an issue, because the term sin(θ∗L1)

is necessarily zero whenever degeneracy occurs. In the Appendix, we verify (5.22) using
simulation.

5.3 Verification

The contributions of this work are the derivations of (5.6), (5.10), (5.16) and (5.22). No
approximation is made in the derivations, so strictly speaking, experiments are redundant as
long as the mathematics are correct. Having said that, we understand that some readers may
have doubts about the derivations, and also, it is essential to verify the theoretical results
whenever possible (as a sanity check). In the case of (5.6), (5.10) and (5.16), however,
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Figure 5.5: Histograms of the normalized epipolar error ê before and after the L1-optimal correction based on
angular errors (Lee and Civera, 2019a). The corrected rays yield minuscule error, which implies that they now
intersect (within the numerical accuracy).
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Figure 5.6: The percentage of the simulation runs where the angular error θ∗L1 obtained from the L1-optimal
method (Lee and Civera, 2019a) is smaller than that of the perturbed point. In our experiment, θ∗L1 is always
smaller unless the triangulated point is perturbed by extremely small noise (< 10−12 unit) beyond the numerical
accuracy.

performing experiments is pointless because the only sensible method to compute the volume
V , the distance d and the angle α is to use the very same formulas used in the derivations.
For this reason, we only focus on the verification of (5.22) in this section.

In order to verify (5.22), we compare the values of ê computed using (5.1) and (5.22).
This is done in the following steps:

1. In simulation, we create two cameras and one point. The two cameras are placed at
position c0 and c1 where c0 is a random 3D vector of length 0.5 unit and c1 = −c0. This
ensures that ∥t∥ = ∥c0 − c1∥ = 1 unit. The image size is set to 640 × 480 pixel and the
focal length to 525 pixel. We place the point at [0, 0, D]⊤ where D follows the uniform
distribution U(1, 10). Then, we orient the cameras randomly until the point is visible in
both views. The image coordinates of the projected point are perturbed by Gaussian noise
N (0, σ2) with σ = 10 pix.

2. We correct the backprojected rays using the L1-optimal triangulation method described
in (Lee and Civera, 2019a) and obtain the angular error θ∗L1 using (5.19). To check if
this is locally optimal, we perturb the resulting 3D point by small random noise and
see if we achieve smaller error. We set the noise magnitude to 10m unit with m ∈
{−24,−21, · · · ,−6}, and for each magnitude, we perturb the point one hundred times
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Figure 5.7: Histogram of |êest − ê |, where ê and êest are the normalized epipolar errors computed using (5.1)
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Figure 5.8: Histogram of |êest − ê |/|ê |, where ê and êest are the normalized epipolar errors computed using
(5.1) and (5.22) respectively.

independently.

3. We compute ê using (5.22) and compare it to ê from (5.1).

We repeat this procedure 106 times and aggregate the results. All computations are done
in Matlab. Fig. 5.5 shows the histograms of the normalized epipolar error ê computed using
(5.1) before and after the L1-optimal ray correction (Lee and Civera, 2019a). Comparing
the two histograms, we see that the corrected rays do intersect. Fig. 5.6 presents the result
of the perturbation test. It shows that the angular error θ∗L1 of the corrected rays is (locally)
minimum within the numerical accuracy. Plugging θ∗L1 into (5.22), we obtain an estimate of
ê, i.e., êest. In Fig. 5.7, we plot the histogram of the absolute difference |êest− ê|. Notice that
it is as small as the normalized epipolar error of intersecting rays (see Fig. 5.5). Therefore,
we can safely conclude that êest = ê within the numerical accuracy. In Fig. 5.8, we provide,
for completeness, the histogram of the relative difference |êest − ê |/|ê|.
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5.4 Conclusions

In this chapter, we presented several geometric interpretations of the normalized epipolar
error ê defined in (5.1). Specifically, we revealed the direct relations between this error and
the following quantities:

1. The volume of the tetrahedron where f̂0, Rf̂0 and t̂ form the three edges meeting at
one vertex (see Fig. 5.2a). The relation is given by (5.6).

2. The shortest distance between the two backprojected rays l0 = t+s0Rf̂0 and l1 = s1f̂1

(see Fig. 5.2b). The relation is given by (5.10).

3. The dihedral angle between the two bounding epipolar planes, i.e., one plane contain-
ing t and Rf0 and the other containing t and f1 (see Fig. 5.3a). The relation is given
by (5.16).

4. The L1-optimal angular reprojection error defined in (5.19). The relation is given by
(5.22).





Chapter 6

Robust Uncertainty-Aware Multiview
Triangulation

In this chapter, we propose a robust and efficient method for multiview triangulation and
uncertainty estimation. Our contribution is threefold: First, we propose an outlier rejection
scheme using two-view RANSAC with the midpoint method. By prescreening the two-view
samples prior to triangulation, we achieve the state-of-the-art efficiency. Second, we com-
pare different local optimization methods for refining the initial solution and the inlier set.
With an iterative update of the inlier set, we show that the optimization provides significant
improvement in accuracy and robustness. Third, we model the uncertainty of a triangulated
point as a function of three factors: the number of cameras, the mean reprojection error
and the maximum parallax angle. Learning this model allows us to quickly interpolate the
uncertainty at test time. We validate our method through an extensive evaluation.

6.1 Introduction

Multiview triangulation refers to the problem of locating the 3D point given its projections
in multiple views of known calibration and pose. It plays a fundamental role in many appli-
cations of computer vision, e.g., structure-from-motion (Agarwal et al., 2011, Moulon et al.,
2013, Schönberger and Frahm, 2016), visual(-inertial) odometry (Forster, Zhang, Gassner,
Werlberger and Scaramuzza, 2017, Klein and Murray, 2007, Leutenegger et al., 2015) and
simultaneous localization and mapping (Herrera et al., 2014, Mur-Artal and Tardós, 2017,
Qin et al., 2018).

Under the assumption of perfect information (i.e., image measurements, calibration and
pose data without noise and outliers), triangulation simply amounts to intersecting the back-
projected rays corresponding to the same point. In practice, however, noise and outliers are
often inevitable. This makes the triangulation problem nontrivial. From a practical perspec-
tive, the following aspects should be taken into account when considering a triangulation
method:
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1. Is it applicable to multiple views? Some methods are developed specifically for two
or three views (e.g., two-view optimal methods (Hartley and Sturm, 1997, Kanatani et al.,
2008, Lee and Civera, 2019a, Lindstrom, 2010, Oliensis, 2002), two-view midpoint methods
(Beardsley et al., 1997, Hartley and Sturm, 1997, Lee and Civera, 2019c), three-view optimal
methods (Byröd et al., 2007, Hedborg et al., 2014, Kukelova et al., 2013, Stewénius et al.,
2005)). For more than two or three views, these methods are not directly applicable unless
they are incorporated in, for example, a RANSAC (Fischler and Bolles, 1981) framework.

2. Is it robust to outliers? Many existing multiview triangulation methods are sen-
sitive to outliers, e.g., the linear methods (Hartley and Sturm, 1997), the midpoint-based
methods (Ramalingam et al., 2006, Yang et al., 2019), the L2-optimal methods (Aholt et al.,
2012, Kahl et al., 2008, Kahl and Henrion, 2007, Lu and Hartley, 2007) and the L∞-optimal
methods (Agarwal et al., 2008, Dai et al., 2012, Hartley and Schaffalitzky, 2004, Kahl and
Hartley, 2008). To deal with outliers, various methods have been proposed, e.g., outlier
rejection using the L∞ norm (Li, 2007, Olsson et al., 2010, Sim and Hartley, 2006), k-th
median minimization (Ke and Kanade, 2007) and iteratively reweighted least squares (Aftab
and Hartley, 2015). We refer to (Kang et al., 2014) for a comprehensive review of the robust
triangulation methods.

3. Is it fast? While the aforementioned methods can handle a moderate number of out-
liers, they either fail or incur excessive computational cost at high outlier ratios (Schönberger
and Frahm, 2016). For this reason, RANSAC is often recommended as a preprocessing step
(Li, 2007, Olsson et al., 2010, Sim and Hartley, 2006). In (Schönberger and Frahm, 2016),
an efficient method using two-view RANSAC is proposed.

4. Does it estimate the uncertainty? To our knowledge, none of the aforementioned
works provide the uncertainty estimate for the triangulated point. Knowing this uncertainty
can be useful for point cloud denoising (Wolff et al., 2016), robust localization (Sattler et al.,
2011, Svärm et al., 2014) and mapping (Concha and Civera, 2015, Mur-Artal and Tardos,
2015), among others.

In this chapter, we propose a robust and efficient method for uncertainty-aware multiview
triangulation. Our contributions are summarized as follows:

1. In Section 6.3.1, we propose an outlier rejection scheme using two-view RANSAC
with the midpoint method. By reformulating the midpoint, we screen out the bad
samples even before computing the midpoint. This improves the efficiency when the
outlier ratio is high.

2. In Section 6.3.2, we revisit three existing local optimization methods, one of which is
the Gauss-Newton method. For this method, we present an efficient computation of
the Jacobian matrix. We closely evaluate the three methods with an iterative update of
the inlier set.

3. In Section 6.3.3, we model the uncertainty of a triangulated point as a function of
three factors: the number of (inlying) cameras, the mean reprojection error and the
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Algorithm 1: Proposed Multiview Triangulation
Input: V and ui, Ki, Ri, ti for all i ∈ V ,

η, δ2D, δepipolar, δlower, δupper, δupdate, δpair.
Output: xw

est, I, e2D, σ3D.
/* Initialization */

1 xw
est ← 0; I ← {}; e2D ←∞; σ3D ←∞;

2 f̂wi ← 0, cwi ← −R⊤
i ti, Pi ← [Ri | ti] for all i ∈ V ;

3 compute M1, · · · ,M5 using (6.2)–(6.6);
4 compute b1i, · · · ,b6i for all i ∈ V using (6.24)–(6.29);
5 compute a1i, · · · , a6i for all i ∈ V using (6.30)–(6.32);
6 compute Ai for all i ∈ V using (6.34);
/* (1) Two-view RANSAC (Sect.6.3.1) */

7 mmin ← n(n− 1)/2; Cmin ←∞;
8 while m < mmin do
9 m← m+ 1;

10 Pick a random pair of views j, k ∈ V;
11 Perform Alg. 2 for (j, k).
12 if bgood = false then continue;
13 xw

est ← xw
mid;

14 compute M6, M7, M8 using (6.7)–(6.9);
15 compute e2D, I, C using (6.10), (6.11) and (6.22);
16 if C ≥ Cmin then continue;
17 Cmin←C; xw∗

est← xw
est; I∗←I; M∗

6,7,8←M6,7,8;

18 ϵ← max(|I∗|, 2)/n; mmin ←
log (1− η)
log (1− ϵ2)

;

19 if Cmin =∞ then go to Line 23;
/* (2) Local optimization (Sect.6.3.2) */

20 xw
est ← xw∗

est; I ← I∗; M6,7,8 ←M∗
6,7,8;

21 Perform Alg. 3;
/* (3) Uncertainty estimation (Sect.6.3.3) */

22 Perform Alg. 4;
23 return xw

est, I, e2D, σ3D;

maximum parallax angle. We propose to learn this model from extensive simulations,
so that at test time, we can estimate the uncertainty by interpolation. The estimated
uncertainty can be used to control the 3D accuracy.

The proposed approach is detailed in Alg. 1. See Appendix D for the nomenclature.

6.2 Preliminaries and Notation

We use bold lowercase letters for vectors, bold uppercase letters for matrices, and light letters
for scalars. We denote the Hadamard product, division and square root by A ◦B, A⊘B and
A◦1/2, respectively. The angle between two vectors a and b is denoted by ∠(a,b) ∈ [0, π/2].
We denote the vectorization of an n×m matrix by vec(·) and its inverse by vec−1

n×m(·).
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Consider a 3D point xw = [xw, yw, zw]⊤ in the world reference frame and a perspective
camera ci observing this point. In the camera reference frame, the 3D point is given by
xi = [xi, yi, zi]

⊤ = Rix
w + ti = Pix̃

w, where Ri and ti are the rotation and translation
that relate the reference frame ci to the world, Pi = [Ri | ti] is the extrinsic matrix, and
x̃w = [xw, yw, zw, 1]⊤ is the homogeneous coordinates of xw. In the world frame, the camera
position is given by cwi = −R⊤

i ti. Let ũi =
[
u⊤
i , 1
]⊤

= [ui, vi, 1]
⊤ be the homogeneous

pixel coordinates of the point and Ki the camera calibration matrix. Then, the normalized
image coordinates fi = [xi/zi, yi/zi, 1]

⊤ are obtained by fi = K−1
i ũi.

Let V = {1, 2, · · · , n} be the set of all views in which the point is observed. The aim
of multiview triangulation is to find the best estimate of xw given that noisy ui, Ri, ti and
Ki are known for all i ∈ V . Once we have the estimate xw

est, the 3D error is given by
e3D = ∥xw

est − xw∥, and the 2D error (aka the reprojection error) is given by

e2D =
[
∥u1 − u′

1∥, ∥u2 − u′
2∥, · · · , ∥un − u′

n∥
]⊤
, (6.1)

where u′
i is the reprojection of xw

est in ci. To compute e2D compactly, we define the following
matrices:

M1 := [k113 − u1, · · · , kn13 − un] , (6.2)

M2 := [k123 − v1, · · · , kn23 − vn] , (6.3)

M3 :=
[(
k111(P1)

⊤
row1 + k112(P1)

⊤
row2

)
, · · · ,(

kn11(Pn)
⊤
row1 + kn12(Pn)

⊤
row2

)]
,

(6.4)

M4 :=
[(
k121(P1)

⊤
row1 + k122(P1)

⊤
row2

)
, · · · ,(

kn21(Pn)
⊤
row1 + kn22(Pn)

⊤
row2

)]
,

(6.5)

M5 :=
[
(P1)

⊤
row3, · · · , (Pn)

⊤
row3

]
, (6.6)

M6 := (x̃w
est)

⊤M5, (6.7)

M7 := M1 +
(
(x̃w

est)
⊤M3

)
⊘M6, (6.8)

M8 := M2 +
(
(x̃w

est)
⊤M4

)
⊘M6. (6.9)

where kijk is the element of Ki at the j-th row and k-th column. Then, e2D can be obtained
as follows:

e⊤2D = (M7 ◦M7 +M8 ◦M8)
◦1/2 . (6.10)

We provide the derivation in Appendix E. Note that M3, M4 and M5 are independent of the
point, and thus can be precomputed for efficiency.

We define the positive z-axis of the camera as the forward direction. This means that if
the i-th element of M6 is negative, the point is behind the camera ci, violating the cheirality
(Hartley and Zisserman, 2003). Hence, given the estimated point xw

est, the corresponding set
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of inliers is obtained by

I = {i ∈ V | (e2D)i < δ2D ∧ (M6)i > 0}, (6.11)

where (·)i indicates the i-th element, and δ2D is the inlier threshold. We denote the number
of elements of I by |I|. We define the maximum parallax angle of I as follows:

βmax :=max
{
∠
(
fwj , f

w
k

)
| j, k ∈ I

}
(6.12)

=cos−1
(
min

{∣∣∣̂fwj · f̂wk ∣∣∣ | j, k ∈ I}) , (6.13)

where f̂wj and f̂wk are the two corresponding unit rays from camera j and k expressed in the
world frame, i.e.,

f̂wj =R⊤
j f̂j, f̂

w
k =R⊤

k f̂k with fj=K–1
j ũj, fk=K–1

k ũk. (6.14)

6.3 Method

6.3.1 Fast Two-View RANSAC for Outlier Rejection

To obtain the initial solution and inlier set, we perform two-view RANSAC as in (Schönberger
and Frahm, 2016). Our method has two notable differences to (Schönberger and Frahm,
2016): First, instead of the DLT method (Hartley and Sturm, 1997), we use the midpoint
method (Beardsley et al., 1997, Hartley and Sturm, 1997), which is faster and as accurate
unless the parallax is very low (Hartley and Sturm, 1997, Lee and Civera, 2019c). Sec-
ond, we prescreen the samples before performing the two-view triangulation. Our method
consists of the following steps:

1. Check the normalized epipolar error.
Let camera j and k be the two-view sample. The normalized epipolar error (Lee and Civera,
2020a) of the sample is defined as

ejk :=
∣∣∣̂twjk · (f̂wj × f̂wk

)∣∣∣ , (6.15)

where t̂wjk is the unit vector of twjk = cwj − cwk and f̂wj , f̂wk are the corresponding rays in the
world frame given by (6.14). If f̂wj and f̂wk are both inliers, then ejk must be small (Longuet-
Higgins, 1981).

2. Check the parallax angle.
The raw parallax (Lee and Civera, 2019c) defined as βjk := ∠(f̂wj , f̂

w
k ) is a rough estimate

of the parallax angle if f̂wj and f̂wk are both inliers. If βjk is too small, the triangulation is
inaccurate (Lee and Civera, 2019c). If it is too large, the sample most likely contains an
outlier, because such a point is rarely matched in practice due to a severe viewpoint change.
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Algorithm 2: Midpoint Method with Early Termination

Input: uj , uk, Kj , Kk, Rj , Rk, Pj , Pk, cwj , cwk , f̂wj , f̂wk , δepipolar, δlower, δupper, δ2D.
Output: xw

mid, f̂wj , f̂wk , bgood.
1 bgood ← false; xw

mid ← 0;
2 if f̂wj = 0 then compute f̂wj using (6.14);
3 if f̂wk = 0 then compute f̂wk using (6.14);
4 twjk ← cwj − cwk ; t̂wjk ← twjk/

∥∥twjk∥∥;
/* Check the normalized epipolar error. */

5 compute ejk using (6.15);
6 if ejk > δepipolar then go to Line 19;
/* Check the parallax angle. */

7 compute pjk using (6.16);
8 if pjk < δlower ∨ pjk > δupper then go to Line 19;
/* Check additional degeneracy. */

9 compute qjk and rjk using (6.17);
10 if |qjk| > δupper ∨ |rjk| > δupper then go to Line 19;

/* Check the signs of anchor depths. */

11 compute µj and µk using (6.20);
12 if µj < 0 ∨ µk < 0 then go to Line 19;

/* Compute the midpoint. */

13 compute sjk, λj , λk and xw
mid using (6.19), (6.18), (6.21);

/* Check the cheirality. */

14 xj ← Pj

[
xw
mid

1

]
; xk ← Pk

[
xw
mid

1

]
;

15 if (xj)3 < 0 ∨ (xk)3 < 0 then go to Line 19;
/* Check the reprojection error. */

16 ej ←
[
uj

1

]
− Kjxj

(xj)3
; ek ←

[
uk

1

]
− Kkxk

(xk)3
;

17 if e⊤j ej > δ22D ∨ e⊤k ek > δ22D then go to Line 19;
18 bgood ← true;
19 return xw

mid, f̂wi , f̂wj , bgood;

We check βjk from its cosine:
pjk := f̂wj · f̂wk (6.16)

3. Check additional degeneracy.
Likewise, if ∠(f̂wj , t̂

w
jk) or ∠(f̂wk , t̂

w
jk) is too small, the epipolar geometry degenerates (see

Fig. 6.1). To avoid degeneracy, we also check these angles from their cosines:

qjk := f̂wj · t̂wjk, rjk := f̂wk · t̂wjk. (6.17)

4. Check the depths of the midpoint anchors.
Let λj and λk be the depths of the midpoint anchors (see Fig. 6.1). Using Lemma 7 in
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Figure 6.1: The midpoint of the two corresponding rays.

Appendix C, we can derive that

λj = sjkµj, λk = sjkµk. (6.18)

where

sjk :=
∥∥twjk∥∥ / (1− p2jk) , (6.19)

µj := pjkrjk − qjk, µk := −pjkqjk + rjk. (6.20)

Since sjk ≥ 0, we check the signs of µj and µk to ensure that λj and λk are both positive.

5. Evaluate the midpoint w.r.t. the two views.
Only when the two-view sample passes all of the aforementioned checks, we compute the
midpoint:

xw
mid = 0.5

(
cwj + λj f̂

w
j + cwk + λk f̂

w
k

)
. (6.21)

Then, we check the cheirality and reprojection errors in the two views. The entire procedure
is detailed in Alg. 2. Each midpoint from the two-view samples becomes a hypothesis for xw

and is scored based on its reprojection error and cheirality. Specifically, we use the approach
of (Torr and Zisserman, 1998) and find the hypothesis that minimizes the following cost:

C =
n∑

i=1

r2i with ri =

(e2D)i if i ∈ I,

δ2D otherwise.
(6.22)

Once we find a hypothesis with smaller cost, we update the inlier ratio based on its support
set I and recompute the required number of samples to be drawn (adaptive stopping criterion
(Torr et al., 1998, Raguram et al., 2013, Schönberger and Frahm, 2016)). This is done in Line
18 of Alg. 1.

6.3.2 Iterative Local Optimization

Once we have the initial triangulation result and the inlier set from the two-view RANSAC,
we perform local optimization for refinement. Our approach is similar to (Chum et al.,
2003), except that we perform the optimization only at the end of RANSAC. We compare
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three optimization methods:

• DLT and LinLS (Hartley and Sturm, 1997): These two linear methods minimize the
algebraic errors in closed form. For the formal descriptions, we refer to (Hartley and
Sturm, 1997). They were originally developed for two-view triangulation, but they
can be easily extended to multiple views. We construct the linear system with only the
inliers, solve it and update the inlier set. This is repeated until the inlier set converges.

• GN: This nonlinear method minimizes the geometric errors using the Gauss-Newton
algorithm. After each update of the solution, we update the inlier set.

The GNmethod requires the computation of the Jacobian matrix J in each iteration. In the
following, we present an efficient method for computing J. Recall that we are minimizing
e⊤2De2D, which we know from (6.1) is equal to r⊤r, where

r = [(uerror)1, (verror)1, · · · , (uerror)n, (verror)n]⊤ .

This means that we can obtain J by stacking

Ji =


∂(uerror)i
∂xwest

∂(uerror)i
∂ywest

∂(uerror)i
∂zwest

∂(verror)i
∂xwest

∂(verror)i
∂ywest

∂(verror)i
∂zwest

 (6.23)

for all i ∈ I. We now define the following vectors:

b1i := ri11 [0, ri32, ri33, ti3]
⊤− ri31 [0, ri12, ri13, ti1]⊤, (6.24)

b2i := ri21 [0, ri32, ri33, ti3]
⊤− ri31 [0, ri22, ri23, ti2]⊤, (6.25)

b3i := ri12 [ri31, 0, ri33, ti3]
⊤− ri32 [ri11, 0, ri13, ti1]⊤, (6.26)

b4i := ri22 [ri31, 0, ri33, ti3]
⊤− ri32 [ri21, 0, ri23, ti2]⊤, (6.27)

b5i := ri13 [ri31, ri32, 0, ti3]
⊤− ri33 [ri11, ri12, 0, ti1]⊤, (6.28)

b6i := ri23 [ri31, ri32, 0, ti3]
⊤− ri33 [ri21, ri22, 0, ti2]⊤, (6.29)

a1i := ki11b1i + ki12b2i, a2i := ki21b1i + ki22b2i, (6.30)

a3i := ki11b3i + ki12b4i, a4i := ki21b3i + ki22b4i, (6.31)

a5i := ki11b5i + ki12b6i, a6i := ki21b5i + ki22b6i, (6.32)

where rijk and kijk respectively indicate the elements of Ri and Ki at the j-th row and k-th
column, and tij indicate the j-th element of ti. Then, we can rewrite (6.23) as

Ji = ((Pi)row3x̃
w
est)

−2 vec−1
2×3

(
A⊤

i x̃
w
est

)
(6.33)

with Ai = [a1i a2i a3i a4i a5i a6i] . (6.34)
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We provide the derivation in Appendix F. Since Pi and Ai can be precomputed indepen-
dently of the point, the Jacobian can computed more efficiently. Alg. 3 summarizes the GN
method.

6.3.3 Practical Uncertainty Estimation

We model the uncertainty of the triangulated point xw
est as a function of three factors: the

number of inlying views (|I|), the mean reprojection error in those views (e2D) and the
maximum parallax angle (βmax) defined by (6.12).

To this end, we run a large number of simulations in various settings and aggregate the
3D errors for each different range of factors (see Fig. 6.2). We then store these data on a 3D
regular grid G that maps (|I|, e2D, βmax) to the uncertainty σ3D. At test time, we estimate the
uncertainty by performing trilinear interpolation on this grid.

We point out two things in our implementation: First, to reduce the small sample bias
in G, we perform monotone smoothing that enforces σ3D to increase with e2D and decreases
with |I| and βmax. The smoothing method is described and demonstrated in Appendix G.
Second, we limit the number of pairs we evaluate for computing βmax in (6.13). This curbs
the computational cost when I is very large. Alg. 4 summarizes the procedure.

6.4 Results

6.4.1 Uncertainty Estimation

To find out how the different factors impact the 3D accuracy of triangulation, we run a large
number of simulations in various settings configured by the following parameters:

• n: number of cameras observing the point.

• d: distance between the ground-truth point and the origin.

• σ: std. dev. of Gaussian noise in the image coordinates.

• nrun: number of independent simulation runs for each configuration (n, d, σ).

The parameter values are specified in Tab. 6.1. The simulations are generated as follows:
We create n cameras, n− 2 of those randomly located inside a sphere of unit diameter at the
origin. We place one of the two remaining cameras at a random point on the sphere’s surface
and the other at its antipode. This ensures that the geometric span of the cameras is equal
to one unit. The size and the focal length of the images are set to 640 × 480 and 525 pixel,
respectively, the same as those of (Sturm et al., 2012). Next, we create a point at [0, 0, d]⊤

and orient the cameras randomly until the point is visible in all images. Then, we add the
image noise of N (0, σ2) to perturb the image coordinates.
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Algorithm 3: GN with an iterative update of the inlier set
Input: xw

est, V , I, M1,2,··· ,8, δ2D, δupdate, Pi and Ai for all i ∈ V .
Output: xw

est, I, e2D.
1 nit ← 0; e2D ← 0;
2 while nit < 10 do
3 nit ← nit + 1; (e2D)prev ← e2D; Iprev ← I;

/* Obtain the residuals and Jacobian. */

4 obtain r by stacking
[
(M7)i
(M8)i

]
for all i ∈ I;

5 compute Ji using (6.33) for all i ∈ I;
6 obtain J by stacking Ji for all i ∈ I;

/* Update the solution. */

7 xw
est ← xw

est − J+r;
/* Update the inlier set. */

8 compute M6, M7, M8 using (6.7)–(6.9);
9 compute e2D and I using (6.10) and (6.11);

/* Check the convergence. */

10 e2D ← 1
|I|
∑

i∈I (e2D)i;
11 if I = Iprev ∧ |e2D − (e2D)prev| < δupdate then
12 break;

13 return xw
est, I, e2D;

For triangulation, we initialize the point using the DLT method and refine it using the GN
method. In this experiment, we assume that all points are always inliers, so we do not update
the inlier set during the optimization. Fig. 6.2 shows the 3D error distribution with respect
to different numbers of cameras (n), mean reprojection errors (e2D) and maximum parallax
angle (βmax). In general, we observe that the 3D accuracy improves with more cameras,
smaller e2D and larger βmax. However, this effect diminishes past a certain level. For example,
the difference between the 30 and 50 cameras is much smaller than the difference between
the 2 and 3. Also, when βmax is sufficiently large, the 3D accuracy is less sensitive to the
change in n, e2D and βmax.

Fig. 6.2 clearly indicates that we must take into account all these three factors when
estimating the 3D uncertainty of a triangulated point. Marginalizing any one of them would
reduce the accuracy. This observation agrees with our intuition, as each factor conveys im-
portant independent information about the given triangulation problem.

6.4.2 Triangulation Performance

We evaluate the performance of our method on synthetic data. The simulation is configured
in a similar way as in the previous section. The difference is that we set n = 100, d =

{3, 5, 7, 9}, σ = 3 pixel, nrun = 100 thousand, and we perturb some of the measurements by
more than 10 pixel, turning them into outliers. The outlier ratio is set to 10, 30, 50, 70 and
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Figure 6.2: RMS of the 3D errors for different numbers of cameras, maximum parallax angles and mean 2D
errors. Here, we only present the smoothed results up to 10 pixel error for the selected numbers of cameras.
Any cell value above one unit is considered highly inaccurate, and thus truncated. One unit corresponds to the
geometric span of the cameras.
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Figure 6.3: Triangulation Performance. From left to right, the columns correspond to the different point dis-
tances (3, 5, 7, 9 unit). One unit corresponds to the geometric span of the cameras. The mean 2D error is
computed with respect to all true inlying observations.
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Algorithm 4: Proposed 3D uncertainty estimation

Input: G, I, e2D, δpair, ui, f̂wi , Ki, Ri for all i ∈ V .
Output: σ3D.
/* Estimate the maximum parallax angle. */

1 pmin ←∞, δpair ← min (δpair, |I|(|I| − 1)/2); npair ← 0
2 while npair < δpair do
3 npair ← npair + 1;
4 Pick a random pair of views j, k ∈ I;
5 if f̂wj = 0 then compute f̂wj using (6.14);
6 if f̂wk = 0 then compute f̂wk using (6.14);

7 p←
∣∣∣̂fwj · f̂wk ∣∣∣;

8 if p < pmin then pmin ← p;

9 βmax ← cos−1(pmin);
/* Interpolate the uncertainty. */

10 nin ← min(|I|, 50); e2D ← min(e2D, 20 pix); βmax ← min(βmax, 20
◦);

11 Obtain σ3D by performing trilinear interpolation on the 3D grid G at (nin, e2D, βmax);
12 return σ3D;

n 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50.
d 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30.

σ (pix) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30.
nrun 10000 if n ≤ 5, 5000 if 6 < n ≤ 20, and 3000 if n > 20.

Table 6.1: Simulation setup for the 3D uncertainty estimation. n: number of cameras, d: distance between the
point and the origin, σ: std. dev. of Gaussian noise in the image coordinates, nrun: number of independent
simulation runs for each configuration (n, d, σ).

90 percent. Varying d and the outlier ratio results in 4 × 5 configurations, so in total, this
amounts to two million unique triangulation problems.

On this dataset, we compare our method against the state of the art ((Schönberger and
Frahm, 2016) by Schönberger and Frahm) with and without the local optimization (DLT,
LinLS and GN). In Alg. 1, we set η=0.99, δ2D=10 pix, δepipolar=0.01, δupdate=0.1 pix,
δlower=0, δupper= cos(4◦) and δpair=100. Fig. 6.3 shows the results. On average, ours
and (Schönberger and Frahm, 2016) perform similarly (but ours is faster, as will be shown
later). For both methods, the local optimization substantially improves the 2D and 3D accu-
racy. Thanks to the iterative update of the inlier set, we also see a significant gain in recall.
Among the optimization methods, DLT and GN show similar performance in all criteria,
while LinLS exhibits larger 3D error than the other two. We provide a closer comparison
between DLT and GN in the next section.

In general, when the point is far and the outlier ratio is high, the performance degrades
for all methods. At any fixed outlier ratio, we observe that the 3D error tends to grow with
the point distance. However, the same cannot be said for the 2D error. This is because given
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sufficient parallax, the 2D accuracy is mostly influenced by the image noise statistics, rather
than the geometric configurations.

We also evaluate the accuracy after pruning the most uncertain points using our method
(Sect. 6.4.1). In Fig. 6.4, we plot the error histograms of the points with different levels of
the estimated 3D uncertainty (σ3D). It shows that with a smaller threshold on σ3D, we get
to prune more points with larger 3D error. Fig. 6.5 shows the cumulative 3D error plots. It
illustrates that thresholding on σ3D gives us some control over the upper bound of the 3D
error. As a result, we are able to trade off the number points for 3D accuracy by varying the
threshold level. This is shown in Fig. 6.6.

To compare the timings, all methods are implemented in MATLAB and run on a lap-
top CPU (Intel i7-4810MQ, 2.8GHz). Tab. 6.2 provides the relative speed of our two-view
RANSAC compared to (Schönberger and Frahm, 2016). It shows that ours is faster, espe-
cially when the point is far and the outlier ratio is high. This demonstrates the advantage of
the early termination of two-view triangulation (Alg. 2). In Tab. 6.3, we present the timings
of the local optimization and uncertainty estimation. We found that DLT is slightly faster
than LinLS and almost twice faster than GN.

6.4.3 DLT vs. Gauss-Newton Method

To compare the accuracy of DLT and GN more closely, we perform additional simulations in
outlier-free scenarios. The simulation is set up in a similar way as in Section 6.4.1.

In terms of 3D accuracy, we found that the two methods perform almost equally most
of the time. The comparison is inconsistent only when the maximum parallax angle is very
small (less than 6 deg or so).

As for the 2D accuracy, the difference is sometimes noticeable. Fig. 6.7 shows the mean
and the maximum difference of 2D error. On average, GN offers less gain for more cameras,
smaller noise and lower parallax. This explains why we could not see the difference between
DLT and GN in Fig. 6.3. However, the bottom row of Fig. 6.7 reveals that GN sometimes
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Figure 6.4: Error histograms of the triangulated points with the mean 2D error < 5 pix and the estimated
uncertainty σ3D < δ3D.
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Figure 6.7: Top row: Mean decrease of 2D error in L1 norm by performing GN in addition to DLT, i.e.,
e2D DLT − e2D GN, for different configurations. The redder the color, the more accurate GN is than DLT. Bottom
row: Maximum decrease of 2D error, i.e., max(e2D DLT − e2D GN).
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d = 3 d = 5 d = 7 d = 9

OR = 10%
4.15, 4.15 4.43, 4.32 4.81, 4.40 5.90, 4.47
(×1.00) (×1.03) (×1.09) (×1.32)

OR = 30%
4.61, 4.39 4.80, 4.45 4.78, 4.08 7.33, 4.79
(×1.05) (×1.08) (×1.17) (×1.53)

OR = 50%
5.28, 4.56 5.64, 4.72 5.87, 4.38 10.4, 5.22
(×1.16) (×1.20) (×1.34) (×1.99)

OR = 70%
7.46, 5.09 8.06, 5.30 9.13, 4.93 19.9, 6.45
(×1.46) (×1.52) (×1.85) (×3.09)

OR = 90%
28.6, 7.64 31.8, 8.14 40.8, 8.86 72.6, 13.1
(×3.74) (×3.91) (×4.61) (×5.56)

Table 6.2: RANSAC time per point (ms). The two entries respectively correspond to (Schönberger and Frahm,
2016) and ours without local optimization. The relative speed of ours compared to (Schönberger and Frahm,
2016) is given in parentheses.

DLT LinLS GN Uncertainty Est.
OR = 10% 1.57 1.62 3.06 1.64
OR = 30% 1.18 1.27 2.39 1.44
OR = 50% 0.84 0.95 1.78 1.25
OR = 70% 0.57 0.64 1.17 1.04
OR = 90% 0.25 0.29 0.50 0.42

Table 6.3: Optimization and uncertainty estimation time per point (ms). The fastest optimization result is
shown in bold.

provides a significant gain over DLT even when the average difference is small.

6.4.4 Results on Real Data

We evaluate our method on three real datasets: Dinosaur (Oxford Multiview Datasets, n.d.),
Corridor (Oxford Multiview Datasets, n.d.) and Notre Dame (Snavely et al., 2006). We only
consider the points that are visible in three or more views. In our algorithm, we use the same
parameters as in Sect. 6.4.2 and discard the point that is visible in less than three views after
RANSAC. Fig. 6.8 shows the 3D reconstruction results.

6.5 Conclusions

In this chapter, we presented a robust and efficient method for multiview triangulation and
uncertainty estimation. We proposed several early termination criteria for two-view RANSAC
using the midpoint method, and showed that it improves the efficiency when the outlier ratio
is high. We also compared the three local optimization methods (DLT, LinLS and GN),
and found that DLT and GN are similar (but better than LinLS) in terms of 3D accuracy,
while GN is sometimes much more accurate than DLT in terms of 2D accuracy. Finally, we
proposed a novel method to estimate the uncertainty of a triangulated point based on the



6. Robust Uncertainty-Aware Multiview Triangulation 89

Notre Dame

Corridor

Dinosaur

Raw measurements
DLT + GN

Raw measurements
DLT + GN

Raw measurements
DLT + GN

30% outliers
DLT + GN

30% outliers
DLT + GN

30% outliers
DLT + GN

RANSAC + GN
30% outliers

RANSAC + GN
30% outliers

RANSAC + GN
30% outliers

Top 75% certain pts
30%  outliers

Top 75% certain pts
30%  outliers

Top 75% certain pts
30%  outliers

Figure 6.8: 1st column: Sample images. 2nd column: Reconstruction using the GN method (initialized by
the DLT method), assuming no outliers. 3rd column: Reconstruction using the same method on outlier-
contaminated measurements. We perturb 30% of the measurements with uniform noise between 10 and 100
pix. 4th column: Reconstruction using our method (Alg. 1) on the same contaminated measurements. We
observe that our RANSAC method is effective against the outliers. 5th column: From the previous result, we
prune the top 25% of the most uncertain points identified by our method (Sect. 6.3.3). We use the uncertainty
model we learned from the simulations in Sect. 6.4.1. Notice that some of the most inaccurate points are
removed.

number of (inlying) views, the mean reprojection error and the maximum parallax angle. We
showed that the estimated uncertainty can be used to control the 3D accuracy. An extensive
evaluation was performed on both synthetic and real data.





Chapter 7

Robust Single Rotation Averaging

In this chapter, we propose a novel method for single rotation averaging using the Weiszfeld
algorithm. Our contribution is threefold: First, we propose a robust initialization based on the
elementwise median of the input rotation matrices. Our initial solution is more accurate and
robust than the commonly used chordal L2-mean. Second, we propose an outlier rejection
scheme that can be incorporated in the Weiszfeld algorithm to improve the robustness of
L1 rotation averaging. Third, we propose a method for approximating the chordal L1-mean
using the Weiszfeld algorithm. An extensive evaluation shows that both our method and the
state of the art perform equally well with the proposed outlier rejection scheme, but ours is
2–4 times faster.

7.1 Introduction

consider the problem of single rotation averaging, i.e., averaging several estimates of a single
rotation to obtain the best estimate. This problem is relevant in many applications such as
structure from motion (SfM) (Hartley et al., 2011, Tron et al., 2016), rotation synchronization
(Lee and Civera, 2022), camera rig calibration (Dai et al., 2009), motion capture (Sharf et al.,
2010), satellite/spacecraft attitude determination (Lam and Crassidis, 2007, Markley et al.,
2007) and crystallography (Humbert et al., 1996, Morawiec, 1998).

A standard approach for single rotation averaging is to find the rotation that minimizes a
cost function based on the distance to the input rotations. We refer to (Hartley, Trumpf, Dai
and Li, 2013) for an extensive study of various distance functions. The current state-of-the-
art method is to minimize the sum of geodesic distances using the Weiszfeld algorithm on
SO(3) (Hartley et al., 2011).

In this chapter, we propose a novel method, also based on the Weiszfeld algorithm
(Weiszfeld, 1937, Weiszfeld and Plastria, 2009), that is faster and more robust than (Hartley
et al., 2011). Our contributions are as follows:

1. A robust initialization from the elementwise median of the input rotation matrices
(Section 7.3.1).
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2. An implicit outlier rejection scheme performed at each iteration of the Weiszfeld algo-
rithm (Section 7.3.2).

3. An approximation of the chordal median in SO(3) using the Weiszfeld algorithm (Sec-
tion 7.3.3).

We substantiate our claim through extensive evaluation on synthetic data (Section 7.4).

7.2 Preliminaries

We denote the vectorization of an n×m matrix by vec(·) and its inverse by vec−1
n×m(·). For

a 3D vector v, we define v∧ as the corresponding 3× 3 skew-symmetric matrix, and denote
the inverse operator by (·)∨, i.e., (v∧)∨ = v. The Euclidean, the L1 and the Frobenius norm
are respectively denoted by ∥·∥, ∥·∥1 and ∥·∥F . A rotation can be represented by a rotation
matrix R ∈ SO(3) or a rotation vector v = θv̂ where θ and v̂ are the angle and the unit axis
of the rotation, respectively. The two representations are related by Rodrigues formula, and
we denote the corresponding mapping between them by Exp(·) and Log(·) (Forster, Carlone,
Dellaert and Scaramuzza, 2017):

R = Exp(v) := I+
sin (∥v∥)
∥v∥

v∧ +
1− cos (∥v∥)
∥v∥2

(v∧)
2
, (7.1)

v = Log(R) :=
θ

2 sin(θ)

(
R−R⊤)∨ (7.2)

with θ = cos−1

(
tr(R)− 1

2

)
. (7.3)

The geodesic distance between two rotations d∠(R1,R2) is obtained by substituting R1R
⊤
2

into R in (7.3). In (Hartley, Trumpf, Dai and Li, 2013), it was shown that the chordal distance
is related to the geodesic distance by the following equation:

dchord(R1,R2) :=∥R1 −R2∥F (7.4)

=2
√
2 sin (d∠(R1,R2)/2) . (7.5)

We define projSO(3)(·) as the projection of the 3 × 3 matrix onto the special orthogonal
group SO(3), which gives the closest rotation in the Frobenius norm (Arun et al., 1987): For
M ∈ R3×3,

projSO(3)(M) := UWV⊤, (7.6)

where
UΣV⊤ = SVD (M) , (7.7)

W =

diag(1, 1,−1) if det
(
UV⊤) < 0

I3×3 otherwise
. (7.8)
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7.3 Method

7.3.1 Robust Initialization

In (Hartley et al., 2011), the chordal L2-mean of the rotations is taken as the starting point
of the Weiszfeld algorithm. For input rotations {Ri}Ni=1, it is given by projSO(3)

(∑N
i=1 Ri

)
(Hartley, Trumpf, Dai and Li, 2013). Although this initial solution can be obtained very fast,
it is often inaccurate and sensitive to outliers. To overcome this weakness, we propose to
initialize using the following matrix:

S0 = argmin
S ∈ R3×3

N∑
i=1

3∑
j=1

3∑
k=1

∣∣∣(Ri − S)jk

∣∣∣ , (7.9)

where the subscript jk denote the element at the j-th row and the k-th column of the matrix.
Note that

∑
j,k |Mjk| is called the elementwise L1 norm of the matrix M. See Fig. 7.1 for

the geometric interpretation of this distance metric. Since the nine entries of S are indepen-
dent, we can consider them separately in 1D space. Then, the entry of S0 at location (j, k)

minimizes the sum of absolute deviations from the entries of Ri’s at (j, k), meaning that it
is simply their median:

(S0)jk = median
(
{(Ri)jk}

N
i=1

)
for all j, k ∈ {1, 2, 3}. (7.10)

The initial rotation matrix is then be obtained by projecting S0 onto SO(3):

R0 = projSO(3) (S0) . (7.11)

7.3.2 Outlier Rejection in the Weiszfeld Algorithm

The geodesic L1-mean (i.e., median) of the rotations is defined as

Rgm = argmin
R∈SO(3)

N∑
i=1

d∠(Ri,R). (7.12)

In (Hartley et al., 2011), it was shown that this can be computed using the Weiszfeld algo-
rithm on SO(3) and that it is more robust to outliers than the L2-mean. However, a large
number of outliers is still critical to the accuracy. To further mitigate the influence of the out-
liers, we modify the Weiszfeld algorithm of (Hartley et al., 2011) such that the large residuals
are given zero weight at each iteration. Specifically, we disregard all the residuals larger than
max(dQ1, dmax) where dQ1 is the first quartile of the residuals at each iteration and dmax is
some threshold we set in order to avoid discarding inliers. The details are given in Algo-
rithm 5. A similar approach of disregarding large residuals was used in (Ferraz et al., 2014)
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Figure 7.1: The elementwise L1 norm of (R − S) is equal to
∑3

i=1∥ri − si∥1 where R = [r1, r2, r3] and
S = [s1, s2, s3]. This can be thought as the total length of the green lines.

for robust Perspective-n-Point (PnP) problem. Note that our approach contrasts (Aftab and
Hartley, 2015) where a smooth robust cost function is favored for theoretically guaranteed
convergence. In practice, our method is more robust to outliers (see Section 7.4.2).

7.3.3 Approximate Chordal L1-Mean

The chordal L1-mean of the rotations is defined as

Rcm = argmin
R∈SO(3)

N∑
i=1

dchord(Ri,R). (7.13)

In (Hartley, Trumpf, Dai and Li, 2013), a locally convergent algorithm on SO(3) is proposed
for this problem. In this chapter, we propose a different approach: Instead of iteratively up-
dating the estimate on SO(3), we first embed the rotations in a Euclidean space R9, find their
geometric median in R9 using the standard Weiszfeld algorithm (Weiszfeld, 1937, Weiszfeld
and Plastria, 2009) (which is globally convergent), and then project this median onto SO(3).
In other words, we approximate Rcm as

Rcm ≈ projSO(3) (Scm) (7.14)

with Scm = argmin
S ∈ R3×3

N∑
i=1

∥Ri − S∥F (7.15)

= vec−1
3×3

(
argmin
s ∈ R9

N∑
i=1

∥vec (Ri)− s∥

)
. (7.16)
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Since the optimization is performed using the Weiszfeld algorithm, we can also incorporate
the initialization and outlier rejection scheme in the previous sections. Algorithm 6 summa-
rizes our method.

We point out two things in the implementation: First, since we do not optimize on SO(3),
the initial estimate does not have to come from a rotation, and we omit (7.11). Second, the
threshold dmax must be scaled appropriately when comparing Algorithm 5 and 6. Assuming
that s ∈ R9 at each iteration does not vastly differ from an embedding of a rotation in R9,
we convert dmax from geodesic to chordal using (7.5), and vice versa. This is done in line 10
of Algorithm 6.

7.4 Results

7.4.1 Initialization

For evaluation, we generated a synthetic dataset where the inlier rotations follow a Gaussian
distribution with σ = 5◦, and the outliers have uniformly distributed angles ∈ [0, π] at
random directions. Fig. 7.2 compares the average accuracy of the proposed initial solution
(Section 7.3.1) and the chordal L2-mean (Hartley et al., 2011) over 1000 runs. It can be seen
that our solution is significantly better than the chordal L2-mean unless the outlier ratio is
extremely high (i.e., above 90%). On average, the L2 chordal method takes 0.37 µs and ours
0.83 µs per rotation. This time difference is insignificant compared to the optimization that
follows (see Table 7.1).

7.4.2 Comparison against (Hartley et al., 2011)

Using the same setup as in previous section, we compare Algorithm 5 and 6, with and without
the proposed outlier rejection scheme (Section 7.3.2). This time, we consider two different
inlier noise levels, σ = 5◦ and 15◦. The average accuracy of the evaluated methods1 is
compared in Fig. 7.3. With the outlier rejection, the geodesic L1-mean and our approximate
chordal L1-mean are almost equally accurate. Without the outlier rejection, the geodesic L1-
mean is more accurate than our approximate chordal L1-mean, but only for very high outlier
ratios (i.e, > 50%). Otherwise, there is no significant difference between the two.

The computation times are reported in Table 7.1. Our method is always faster than (Hart-
ley et al., 2011), and is 2–4 times faster with the outlier rejection. That said, the speed is
not a major advantage, since all methods can process several hundreds of rotations in less
than a millisecond. In most cases, averaging rotations will take much less time than other
operations, such as the computation of input rotations.

1We did not include the chordal L2-mean here, since it produced much larger errors than the rest and was
already reported in Fig. 7.2.



96 7. Robust Single Rotation Averaging

Algorithm 5: Geodesic median in SO(3) (Hartley et al., 2011) with outlier rejection
Input: List of rotation matrices {Ri}Ni=1

Output: Rgm

/* Initialize (Section 7.3.1). */

1 S0 ← 03×3;

2 (S0)jk ← median
(
{(Ri)jk}Ni=1

)
∀j, k = 1, 2, 3;

3 R0 ← projSO(3) (S0);
/* Run the Weiszfeld algorithm on SO(3) (Hartley et al., 2011) with

outlier rejection (Section 7.3.2). */

4 Rgm ← R0;
5 for it = 1, 2, · · · , 10 do
6 while Rgm ∈ {Ri}Ni=1 do
7 Rgm ← RperturbRgm; // Perturb slightly

8 vi ← Log
(
RiR

⊤
gm

)
∀i = 1, · · · , N ;

9 di ← ∥vi∥ ∀i = 1, · · · , N ;
10 dQ1 ← Q1 ({d1, · · · , dN}); // First quartile

11 dmax ←

{
1 if N ≤ 50

0.5 otherwise
12 dthr ← max (dQ1, dmax);

13 wi ←

{
1 if di ≤ dthr

0 otherwise
∀i = 1, · · · , N ;

14 ∆v←
∑N

i=1wivi/di∑N
i=1wi/di

;

15 Rgm ← Exp(∆v)Rgm;
16 if ∥∆v∥ < 0.001 then
17 break;

18 return Rgm

7.4.3 Ablation study

In another experiment, we ran our method (with outlier rejection) initialized with the chordal
L2-mean instead of the proposed solution in Section 7.3.1. To our surprise, we found that
there is almost no difference in the final accuracy. This suggests that combining the L1-mean
with the outlier rejection in Section 7.3.2 is already robust enough that a less accurate initial
solution can still lead to a similar result in the end.
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Algorithm 6: Approximate chordal median in SO(3) with outlier rejection
Input: List of rotation matrices {Ri}Ni=1

Output: Rcm

/* Initialize (Section 7.3.1). */

1 S0 ← 03×3;

2 (S0)jk ← median
(
{(Ri)jk}Ni=1

)
∀j, k = 1, 2, 3;

/* Run the Weiszfeld algorithm in 9D space with outlier rejection

(Section 7.3.2). */

3 scm ← vec(S0);
4 for it = 1, 2, · · · , 10 do
5 while scm ∈ {vec(Ri)}Ni=1 do
6 scm ← scm + U(0, 0.001); // Perturb

7 vi ← vec (Ri)− scm ∀i = 1, · · · , N ;
8 di ← ∥vi∥ ∀i = 1, · · · , N ;
9 dQ1 ← Q1 ({d1, · · · , dN}); // First quartile

10 dmax ←

{
2
√
2 sin(1/2) ≈ 1.356 if N ≤ 50

2
√
2 sin(0.5/2) ≈ 0.700 otherwise

11 dthr ← max (dQ1, dmax);

12 wi ←

{
1 if di ≤ dthr

0 otherwise
∀i = 1, · · · , N ;

13 scm,prev ← scm;

14 scm ←
∑N

i=1wivi/di∑N
i=1wi/di

;

15 if ∥scm − scm,prev∥ < 0.001 then
16 break;

17 Rcm = projSO(3)(vec
−1
3×3 (scm));

18 return Rcm

7.5 Real-world applications

In (Lee and Civera, 2022) and (Sun, 2022), our open-source implementation was adopted in
the pipeline for multiple rotation averaging (aka rotation synchronization) and point cloud
registration, respectively. At the time of this writing, these two works demonstrate state-of-
the-art results in respective domains. Interested readers are referred to these two works for
the practical applications of our algorithm on real data.
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Figure 7.2: Average rotation errors of different initialization methods: Chordal L2-mean (Hartley et al., 2011)
versus ours (Section 7.3.1).
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Figure 7.3: Average rotation errors of geodesic L1-mean (Hartley et al., 2011) versus ours (Section 7.3.3), with
and without the outlier rejection (Section 7.3.2).

w/o outlier rejection w/ outlier rejection
(Hartley et al., 2011) Ours (Hartley et al., 2011) Ours

(5◦, 0%) 8.69 4.38 (2.0×) 9.37 4.43 (2.1×)
(5◦, 25%) 10.5 4.47 (2.3×) 11.7 5.68 (2.1×)
(5◦, 50%) 15.2 6.21 (2.4×) 17.2 6.78 (2.5×)
(5◦, 75%) 24.9 15.2 (1.6×) 27.2 7.71 (3.5×)
(5◦, 95%) 32.1 10.3 (3.1×) 31.6 8.99 (3.5×)
(15◦, 0%) 10.7 6.00 (1.8×) 17.0 6.02 (2.8×)
(15◦, 25%) 15.0 5.98 (2.5×) 17.0 7.1 (2.4×)
(15◦, 50%) 19.6 7.66 (2.6×) 22.3 8.06 (2.8×)
(15◦, 75%) 24.9 11.1 (2.2×) 28.1 8.77 (3.2×)
(15◦, 95%) 29.1 10.2 (2.9×) 31.7 8.50 (3.7×)

Table 7.1: Median computation time (µs/rotation) under different inlier noise levels and outlier ratios. The
speedup compared to (Hartley et al., 2011) is given in parentheses. All algorithms were implemented in MAT-
LAB and run on a laptop CPU (Intel i7-4810MQ, 2.8 GHz).
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7.6 Conclusions

In this chapter, we proposed a novel alternative to the work of Hartley et al. (Hartley et al.,
2011) for robust single rotation averaging. While both our method and (Hartley et al., 2011)
use the Weiszfeld algorithm, there are three key differences:

1. We initialize the Weiszfeld algorithm using the elementwise median of the input rota-
tion matrices.

2. We implicitly disregard the outliers at each iteration of the Weiszfeld algorithm.

3. We approximate the chordal median on SO(3) instead of the geodesic median as in
(Hartley et al., 2011).

As a result, our method achieves better performance in terms of speed and robustness to
outliers. We also found that incorporating the proposed outlier rejection in the original im-
plementation of (Hartley et al., 2011) leads to similar performance, but at 2–4 times slower
speed than ours.





Chapter 8

HARA: A Hierarchical Approach for
Robust Rotation Averaging

In this chapter, we propose a novel hierarchical approach for multiple rotation averaging,
dubbed HARA. Our method incrementally initializes the rotation graph based on a hierarchy
of triplet support. The key idea is to build a spanning tree by prioritizing the edges with
many strong triplet supports and gradually adding those with weaker and fewer supports.
This reduces the risk of adding outliers in the spanning tree. As a result, we obtain a robust
initial solution that enables us to filter outliers prior to nonlinear optimization. With minimal
modification, our approach can also integrate the knowledge of the number of valid 2D-
2D correspondences. We perform extensive evaluations on both synthetic and real datasets,
demonstrating state-of-the-art results.

8.1 Introduction

We consider the problem of multiple rotation averaging in the presence of outliers, i.e., find-
ing multiple absolute rotations Ri given a partial set of noisy, outlier-contaminated con-
straints on relative rotations Rij = RiR

⊤
j (Hartley, Trumpf, Dai and Li, 2013). This problem

has direct application to structure-from-motion (SfM) (Martinec and Pajdla, 2007, Enqvist
et al., 2011, Arie-Nachimson et al., 2012, Moulon et al., 2013, Wilson and Snavely, 2014,
Cui et al., 2015, Cui and Tan, 2015, Ozyesil and Singer, 2015, Cui et al., 2017, Chen et al.,
2021, Zhu et al., 2018), multiple point cloud registration (Govindu and Pooja, 2014, Tang
and Feng, 2015, Arrigoni et al., 2016, 2018, Huang et al., 2019, Bhattacharya and Govindu,
2019, Gojcic et al., 2020, Moreira et al., 2021b) and simultaneous localization and mapping
(SLAM) (Carlone, Tron, Daniilidis and Dellaert, 2015, Bourmaud et al., 2014, Bourmaud,
2016, Bustos et al., 2019).

In most global SfM pipelines, multiple rotation averaging is the de facto standard for
computing the initial orientations of the cameras: After estimating the relative poses be-
tween image pairs (e.g., by matching feature descriptors such as SIFT (Lowe, 2004) and
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running the 5-point algorithm (Nistér, 2004) with RANSAC (Fischler and Bolles, 1981)),
one can solve the rotation averaging problem and obtain the absolute rotations with respect
to a common reference frame. These initial rotations are then used in subsequent operations
such as translation estimation (Wilson and Snavely, 2014, Cui et al., 2015), pose graph op-
timization (Carlone, Tron, Daniilidis and Dellaert, 2015, Moreira et al., 2021b), multiview
triangulation (Lee and Civera, 2019c, 2020c) and bundle adjustment (Triggs et al., 2000,
Hartley and Zisserman, 2003, Lee and Civera, 2021). As a result, all these tasks depend
critically on the solution produced by the rotation averaging algorithm.

For this reason, numerous research endeavors have been made in the past decade to de-
velop reliable and versatile rotation averaging methods. However, even without any outliers
in the input, solving a large-scale rotation averaging problem is nontrivial (Wilson et al.,
2016, Wilson and Bindel, 2020). The problem only gets worse when the input contains out-
liers, which is often the case in practice (Wilson and Snavely, 2014, Chatterjee and Govindu,
2018, Moreira et al., 2021b). These outliers, if not handled properly, can easily degrade the
estimation accuracy.

Commonly, rotation averaging is formulated as a nonlinear optimization problem and
solved iteratively starting from some initial guess of the absolute rotations (Hartley et al.,
2011, Chatterjee and Govindu, 2018, Shi and Lerman, 2020, Chen et al., 2021). If, however,
this initial guess is severely affected by outliers, it becomes extremely difficult to obtain an
accurate result later on. Therefore, a robust initialization is essential for reliable rotation
averaging in the presence of outliers.

In this chapter, we propose a novel method for robust multiple rotation averaging. Our
main contribution is a hierarchical initialization scheme that constructs a spanning tree of a
rotation graph by propagating most reliable constraints first and less reliable ones later. We
establish the hierarchy of reliability based on the number of consistent triplet constraints, as
well as their level of consistency. That is, we consider a constraint to be more reliable if it
is strongly supported by many other constraints and less reliable if it has weaker or fewer
supports. Optionally, we can also incorporate the number of valid 2D-2D correspondences
into the hierarchy. Experimental results show that our approach can significantly improve
the robustness of rotation averaging.

8.2 Related Work

Early works on motion averaging demonstrated various methods for estimating absolute ro-
tations from pairwise constraints (Govindu, 2001, Sharp et al., 2002, Fusiello et al., 2002,
Govindu, 2004, Martinec and Pajdla, 2007). In recent works, the focus has been on either (1)
achieving the global optimality in the absence of outliers, or (2) obtaining a robust solution
in the presence of outliers. This work belongs to the second group.
(1) Globally optimal methods in outlier-free scenarios:
In (Fredriksson and Olsson, 2012, Carlone, Rosen, Calafiore, Leonard and Dellaert, 2015),
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globally optimal methods using Lagrangian duality are proposed. In later works, more ad-
vanced optimization methods have been proposed to enhance the speed and scalability, while
guaranteeing the global optimality of the solution (Eriksson et al., 2018, 2021, Rosen et al.,
2019). For more recent works on optimal methods, we refer to (Dellaert et al., 2020a, Parra
et al., 2021, Moreira et al., 2021a).

(2) Robust methods in the presence of outliers:
Various methods have been proposed to handle outliers (see (Tron et al., 2016) for a survey).
First, there are methods that attempt to detect and remove outliers, e.g., (Govindu, 2006, Zach
et al., 2010, Crandall et al., 2011). Govindu (Govindu, 2006) uses a RANSAC-based method
by sampling random spanning trees. Zach et al. (Zach et al., 2010) employ a more tractable
approach based on Bayesian inference from sampled loop inconsistencies. In (Crandall et al.,
2011), Crandall et al. use discrete belief propagation on a Markov random field to obtain the
initial solution and remove edges with large errors.

On the other hand, some methods do not completely remove outliers, but instead suppress
large errors during optimization. For example, Hartley et al. (Hartley et al., 2011) apply sin-
gle rotation averaging under the L1 norm to update each absolute rotation in a distributed
manner. Wang and Singer (Wang and Singer, 2013) use semidefinite relaxation and an alter-
nating direction method to minimize a cost function based on the L1 norm. Chatterjee and
Govindu (Chatterjee and Govindu, 2013, 2018) apply the Lie-algebraic averaging (Govindu,
2004) using the iteratively reweighted least squares (IRLS) method with a robust loss func-
tion. In (Arrigoni et al., 2018), Arrigoni et al. demonstrate that the spectral decomposition
method in (Arie-Nachimson et al., 2012) can be robustified using the IRLS method. Shi
and Lerman (Shi and Lerman, 2020) proposed an alternative optimization method, called
message passing least squares, and demonstrated its advantages over the IRLS approach
(Chatterjee and Govindu, 2018).

Other robust methods directly model the presence of outliers in the optimization prob-
lem: Boumal et al. (Boumal et al., 2013) take into account the outliers in the noise model
and compute the maximum likelihood estimate via Riemannian trust-region optimization.
Arrigoni et al. (Arrigoni et al., 2014, 2018) intrinsically include the outliers in the cost
function and estimate the rotations via low-rank and sparse matrix decomposition.

Another popular approach is to exploit additional visual information (e.g., the number
of inlier feature matches or the similarity score) to identify inlier edges and obtain a robust
initial solution (Enqvist et al., 2011, Shen et al., 2016, Cui et al., 2018, Chen et al., 2021,
Gao et al., 2020, 2021).

Last but not least, learning-based approaches have been proposed in (Purkait et al., 2020,
Yang et al., 2021). Although these supervised methods may not always generalize well to
unfamiliar settings, they show impressive performance on data similar to the training data.
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8.3 Preliminaries and Notation

We denote the Euclidean and the Frobenius norm of a 3D vector v by ∥v∥ and ∥v∥F , re-
spectively. We represent a rotation with a rotation matrix R ∈ SO(3) or a rotation vector
u = θû where θ and û are the angle and the unit axis of the rotation, respectively. The two
representations are related by Rodrigues’ formula, and we denote the mapping between them
by Exp(·) and Log(·) (Solà et al., 2018):

R = Exp(u), u = Log(R). (8.1)

In the context of SfM, the absolute rotation and translation of camera i are denoted as Ri

and ti, respectively. Together, they transform a 3D point from the world frame to the camera
reference frame: xi = Rixw + ti. We denote with Rjk the relative rotation between Rj and
Rk, i.e., Rjk = RjR

⊤
k .

The angular distance between Rj and Rk is defined as the angle of the rotation RjR
⊤
k ,

i.e.,
d(Rj,Rk) = ∥Log

(
RjR

⊤
k

)
∥. (8.2)

The chordal distance is related to the angular distance by the following equation (Hartley,
Kahl, Olsson and Seo, 2013):

dchord(Rj,Rk) :=∥Rj −Rk∥F (8.3)

=2
√
2 sin (d(Rj,Rk)/2). (8.4)

If both Rj and Rk have a small angle, their relative rotation can be approximated using the
Baker-Campbell-Hausdorff (BCH) formula (Govindu, 2004):

RjR
⊤
k ≈ Exp(uj − uk). (8.5)

⇒ Log
(
RjR

⊤
k

)
≈ uj − uk. (8.6)

In the following, we list some important terminology:

• Nodes and edges: Multiple absolute rotations are related to each other in pairs, so the
underlying structure can be represented by a graph. In this context, the nodes represent the
unknown absolute rotations, and the edges represent the known pairwise constraints.

• Neighbors: When two nodes are connected by an edge, they are each other’s neighbors.

• Fixed nodes and family: Once a node is initialized with some absolute rotation, we call
it fixed. A family refers to the set of all fixed nodes. The goal of the initialization is to have
all nodes included in the family.

• Base node: One of the fixed nodes can be chosen as the base node at any time during the
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initialization. This is the node from which the yet-incomplete spanning tree will branch
out if a certain condition is met.

• Consistent triplet: Node i, j and k form a consistent triplet if and only if the input relative
rotations satisfy

dchord(R
in
ij,R

in
ikR

in
kj) < ϵ, (8.7)

where ϵ is called a loop threshold. A triplet that satisfies Eq. (8.7) under small ϵ is de-
scribed as “strong”, and one that does it under relatively large ϵ is described as “weak”. If
a triplet contains one or more outlier edges, it is most likely to be inconsistent and fail to
meet Eq. (8.7).

• Number of triplet supports: Suppose that a base node has several non-family neighbors,
including node i. The number of triplet supports of neighbor i refers to the number of
consistent triplets formed by the base node, node i and another neighbor of the base node.
A simple example is illustrated in Fig. 8.1.

8.4 Method

The proposed method consists of three steps:

1. Robust initialization of the absolute rotations by building a spanning tree in a hierarchi-
cal manner. If the number of inlier matches is known for all edges, we can optionally
incorporate it in the initialization.

2. Filtering the edges that do not conform to the initial solution to remove as many out-
liers as possible.

3. Iterative local refinement using nonlinear optimization.

To make the initialization step easier to understand, we first describe the simplified version
in Section 8.4.1 and then the full version in Section 8.4.2. We explain the edge filtering and
the local refinement in Section 8.4.3 and 8.4.4, respectively.

8.4.1 Hierarchical initialization (simplified version)

We initialize the absolute rotations by constructing a spanning tree of the graph. As we
expand the tree incrementally, we want to avoid as many outlier edges as possible, so we start
adding the most reliable edges first. In our method, there are two modes of tree expansion:
(1) based on the triplet support, or (2) via single rotation averaging.

First, we set a certain integer threshold s (called a support threshold) and check if the
base node has any non-family neighbors with s or more triplet supports. If so, we add these
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Unfixed node

Fixed node
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family = {1, 2, 3, 4}

Figure 8.1: In this example, the base node (4) has three non-family neighbors (5, 6 and 7). We check the triplet
consistency (Eq. (8.7)) without directly inferring the outlier edge: Node 5 has two triplet supports, i.e., (3, 4,
5) and (4, 5, 7), 6 has one support, i.e., (4, 6, 7), and 7 has three supports, i.e., (3, 4, 7), (4, 5, 7) and (4, 6, 7).

Inlier edge

Outlier edge

Unfixed node

Fixed node

1 2 3

6 7

4 5

Figure 8.2: Here, no matter which family member is chosen as the base node, we cannot form a consistent
triplet. In this case, we let every family member vote for their non-family neighbors and add the one with the
most votes (node 6) to the family. Among the candidate rotations propagated from node 1, 3 and 5, we choose
the one that is closest to their robust average (obtained using (Lee and Civera, 2020b)).

neighbors to the family and obtain their rotations (Rest
N ) by propagating from the base node

(Rest
B ), i.e.,

Rest
N ← Rin

NBR
est
B . (8.8)

For example, if s = 2 in Fig. 8.1, we would add node 5 and 7 in the family, but not 6. If
all non-family neighbors of the family have fewer than s triplet supports, we update s ←
s − 1 and, for the next base node, choose the family member that has the most non-family
neighbors with s or more supports. We repeat the same propagation process afterwards.

Another way to expand the tree is to add a node via single rotation averaging when all
non-family neighbors of the family have zero triplet support. In this case, we let every family
member vote for their non-family neighbors, and the one with the most votes is added to the
family. This node also becomes the next base. To determine its rotation, we first obtain the
candidate rotations by propagating from the family nodes that voted for it. Then, we average
these rotations using the robust single rotation averaging method in (Lee and Civera, 2020b).
Finally, the candidate rotation that is closest to the result is assigned to the node. Fig. 8.2
shows an example.

At each iteration, our initialization algorithm decides between the two aforementioned
modes of tree expansion. We first try expanding based on the triplet support by adapting
the support threshold s, and when s = 0, we expand the tree via voting and single rotation
averaging. Every time a node is added to the family, we reset s to the initial value. Alg. 7
summarizes the procedure and Fig. 8.3 shows a toy example.
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Algorithm 7: Hierarchical Initialization (simplified)
1 s← sinit, family← {}, newFamily← {};
2 Add the node with the most neighbors to family and newFamily, and set its rotation to

identity;
3 while not all nodes are in family do
4 while newFamily is not empty do
5 Choose a member of newFamily as the base node and remove it from newFamily;
6 Propagate away from the base node to its non-family neighbors using Eq. (8.8), and add

those with s or more triplet supports to family and newFamily;
7 if at least one node is added to newFamily then
8 s← sinit;

9 For the next base node, choose the family member that has the most non-family neighbors
with s or more supports;

10 if the base node has at least one non-family neighbor with s or more supports then
11 Add the base node to newFamily.
12 else
13 s← s− 1;

14 if s = 0 then
15 Let every family member vote for their non-family neighbors, add the one with the most

votes to family and newFamily, and set its rotation via single rotation averaging
(see Fig. 8.2);

16 s← sinit;
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Figure 8.3: [Top left] A toy example. We show the steps of our initialization algorithm with s = 2 and a fixed
loop threshold.

(i) First, we choose the node with the most neighbors (node 1) as the base node and set its rotation to
identity. This node is the first member of the family. By propagating away from this node using Eq. (8.8), its
neighbors get tentative rotations. For each neighbor, we count the number of triplet supports (i.e., the number
of other neighbors supporting it), and if it has s or more supports, we add it to the family. In this example,
node 3 is supported by two other neighbors (node 2 and 4), and it is the only one added to the family. Node 3
becomes the next base node, and we fix its rotation. Also, the edge (1, 3) turns into a spanning tree edge.

(ii) We repeat the same process by propagating away from the new base node (node 3). The only non-family
neighbor that has s or more supports is node 11, so we fix its rotation, add it to the family, and select it as the
next base node.

(iii) We propagate away from the new base node (node 11), but no neighbor has enough supports. In this
case, we update s ← s − 1 and check for each family member how many neighbors have s or more supports:
node 1 has two (node 2 and 4), node 3 has four (node 2, 4, 9, 10), and node 11 has two (node 9 and 10). Since
node 3 has the most, it becomes the next base node. Note that in the full version of the algorithm, we do this
counting as soon as the base node changes and store the results for reuse (more details in Section 8.4.2).

(iv) We propagate away from the new base node (node 3), and the non-family neighbors with s (= 1) supports
are node 2, 4, 9 and 10. These four nodes are added to the family, and their rotations are fixed.

(v) With node 1–4 and 9–11 in the family, none of their non-family neighbors has a single support. In this
case, each family member votes for their non-family neighbors, and the one with the most votes is added to
the family. This node (node 12) also becomes the next base node. To determine its rotation, we first average
the candidate rotations propagated from node 1, 3 and 11 using (Lee and Civera, 2020b). Then, the candidate
rotation that is closest to the result is assigned to node 12, and the corresponding edge becomes a spanning tree
edge. In this example, let us suppose that it is the edge (1, 12).

(vi) Every time a node is added to the family, we reset s to the initial value (s← 2). Afterwards, we repeat
the process of propagating away from the base node and adding the neighbors with s or more supports to the
family. In this example, node 12 has three non-family neighbors (node 13, 14, 15) and they all have s supports.
Therefore, all three of them are added to the family and their rotations are fixed.

(vii) With node 1–4 and 9–13 in the family, none of their non-family neighbors has s (= 2) supports. We
update s ← s − 1 and check again, but none has a single support. Now, as in Step (v), we let every family
member vote for their non-family neighbors, and add the one with the most votes. Repeating this procedure
adds node 5–8 to the family one by one. Finally, all nodes are in the family and their rotations are fixed. The
algorithm returns the estimated rotations of all nodes.
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8.4.2 Hierarchical initialization (full version)

The simplified algorithm described in the previous section constructs a spanning tree by
adding the most supported edges first. In the full version, we consider two more aspects: the
loop threshold ϵ in Eq. (8.7), and optionally, the number of valid 2D-2D correspondences.
We highlight the differences between the two versions in Alg. 8.

In the simplified version, the consistency of a triplet depends entirely on a single thresh-
old ϵ we set. In the full version, we set multiple thresholds (ϵ1, ϵ2, . . . , ϵm in ascending order)
and adaptively switch between them. Specifically, we start from the smallest (the strictest)
threshold and gradually move on to larger (less strict) thresholds. As a result, the following
hierarchy is established:

1. Neighbor nodes with many triplet supports under small ϵi are added to the family first.

2. Those with many supports under large ϵi are added next.

3. Those with few supports under small ϵi are added next.

4. Those with few supports under large ϵi are added last.

Another change from the simplified version is that we store the number of supported
neighbors each time we try propagating away from the base node. This data is stored in a
supported neighbors table (SN table), a 3D array whose dimensions correspond to the base
node index, the threshold index, and the number of triplet supports. We organize this table
such that the entry at position (x, y, z) corresponds to the number of non-family neighbors
of base node x that have z or more supports under the y-th threshold ϵy. Note that each time
we update the SN table for the current base node, we update it for all y = 1, 2, . . . ,m and
z = 1, 2, . . . , sinit. This is done in line 10 of Alg. 8.

The advantage of maintaining this table is that we can reuse it to promptly find the node
with the most number of supported neighbors for any given s and ϵ (line 13 of Alg. 8). This
operation is necessary when we have to choose the next base node after s is decremented.
Although the data in the SN table may sometimes be outdated (because some non-family
neighbors can turn into family members later), we can at least avoid having to evaluate the
neighbors of all family members repeatedly (i.e., line 9 of Alg. 7).

Our approach can also seamlessly integrate the knowledge of the number of valid 2D-2D
correspondences. This can be done with minimal modification of Alg. 8: Let d1, d2, . . . , dk
(in descending order) be some thresholds we set for the number of valid 2D-2D correspon-
dences. Then, we run the outer loop (line 6–23) while pretending that all edges whose valid
correspondences are fewer than d1 do not exist. When the number of total votes becomes
zero in line 22, we reset s, ϵ and the SN table to the initial state, switch the correspondence
threshold to the next one (d2) and continue. This process ensures that the edges with very
few valid correspondences are added last.
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Algorithm 8: Hierarchical Initialization (full version)
1 s← sinit, family← {}, newFamily← {};
2 Add the node with the most neighbors to family and newFamily, and set its rotation to

identity;
3 Determine the loop thresholds ϵ1, ϵ2, . . . , ϵm;
4 i← 1, ϵ← ϵi;
5 snTable← Zero 3D array of dimension n×m× s;

(n is #nodes, m is #loop thresholds, s is a support threshold)
6 while not all nodes are in family do
7 while newFamily is not empty do
8 Choose a member of newFamily as the base node and remove it from newFamily;
9 Propagate away from the base node to its non-family neighbors using Eq. (8.8) and add

those with s or more triplet supports to family and newFamily;
10 Update snTable for the base node;
11 if at least one node is added to newFamily then
12 s← sinit, i← 1, ϵ← ϵi;

13
In snTable, find the family member that has the most non-family neighbors with s or
more triplet supports under the current threshold ϵ. Choose it as the base node;

14 if the base node has at least one non-family neighbor with s or more supports then
15 Add the base node to newFamily.
16 else
17 if i < m then
18 i← i+1, ϵ← ϵi;
19 else
20 s← s−1, i← 1, ϵ← ϵi;

21 if s = 0 then
22 Let every family member vote for their non-family neighbors, add the one with the most

votes to family and newFamily, and set its rotation via single rotation averaging
(see Fig. 8.2);

23 s← sinit, i← 1, ϵ← ϵi;

Implementation details:

1. In line 5 of Alg. 7 and line 8 of Alg. 8, if newFamily has multiple members, we
choose the one with the most neighbors as the base node. This is because we want to add
well-connected nodes first to minimize drift.

2. In all of our experiments in this chapter, we fix sinit = 10, d1 = 5 and d2 = 0.

3. For good performance, the loop thresholds should reflect the noise level of the inlier
edges. To this end, we use a simple heuristic method to determine their values in line 3
of Alg. 8: For each edge (i, j), we sample at most 10 common neighbors of node i and j,
forming up to 10 triplets (i, j, k). We compute the loop errors (8.7) of all triplets from all
edges and collect only those below 1. Then, we set the loop thresholds ϵ1, ϵ2 and ϵ3 to the
10th, 20th and 30th percentile of the collected errors.
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8.4.3 Edge filtering

Having obtained an initial solution (Rest
i for i = 1, 2, . . . , n) from the spanning tree in Section

8.4.2, we next filter potential outlier edges in the full rotation graph before optimizing the
solution. This is done by checking whether or not each edge conforms to the initial solution.
Specifically, we consider edge (j, k) as an outlier and exclude it from the further operations
if the following condition is met:

dchord

(
Rin

jk,R
est
j Rest

k
⊤
)
> τ, (8.9)

where τ is some threshold (we set τ = 1 in this work).

While this filtering step often enhances the robustness for moderate outlier ratios (< 0.3),
we found that it sometimes worsens the accuracy for higher outlier ratios. Therefore, we skip
this step when we deem the outlier ratio to be too high. In practice, we assume that this is
the case when the median of the loop errors from all sampled triplets is larger than 1 (see the
implementation detail 3 of Section 8.4.2).

8.4.4 Local refinement

Given the initial solution and the filtered constraints (Rin
jk for (j, k) ∈ filtered edges), we

perform an iterative local refinement using the optimization method proposed in (Chatterjee
and Govindu, 2018). In the following, we briefly summarize this method.

The goal here is to find the optimal updates such that the updated solution fits the con-
straints better, i.e.,

Rin
jk =

(
Rest

j ∆Rj

)
(Rest

k ∆Rk)
⊤
. (8.10)

Rearranging this and taking the Log (8.1) of both sides gives

Log
(
Rest⊤

j Rin
jkR

est
k

)
= Log

(
∆Rj∆R⊤

k

)
. (8.11)

Assuming that the updates are small, we can use the approximation in Eq. (8.6) on the
right-hand side and obtain

Log
(
Rest⊤

j Rin
jkR

est
k

)
≈ ∆uj −∆uk, (8.12)

where ∆uj and ∆uk are the rotation vectors of ∆Rj and ∆Rk, respectively. Since the left-
hand side of Eq. (8.12) is known, stacking these equations for all filtered edges results in
a linear system of equations, which we solve using a linear algebra library. We update the
rotations, i.e., Rest

i ← Rest
i ∆Ri for all i, plug them back into Eq. (8.12) and repeat the same

process until convergence. In practice, we carry out the optimization using the IRLS method
with the ℓ 1

2
loss function, as in (Chatterjee and Govindu, 2018). Also, to reduce the total

number of arithmetic operations, all rotations (both absolute and relative) are parameterized
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as quaternions. For more details, we refer to the original work (Chatterjee and Govindu,
2018).

8.5 Results

We compare our method with the following methods: R-GoDec1 (Arrigoni et al., 2014,
2018), Eig-IRLS2 (Arrigoni et al., 2018), IRLS-ℓ 1

2

3 (Chatterjee and Govindu, 2018), MPLS4

(Shi and Lerman, 2020) and Hybrid RA5 (Chen et al., 2021). Since the implementation of
the view graph filtering (VGF) in Hybrid RA is not publicly available, we reproduced this
part by ourselves. Note that this part is only applicable if 2D-2D correspondences are given
for all edges. All methods are implemented in MATLAB, except Hybrid RA which is written
in C++. We run all methods on a laptop with Intel’s 4th Gen i7 CPU (2.8 GHz).

We evaluate the accuracy using two error metrics:

θ1 = min
Ralign

1

n

n∑
i=1

d
(
Rgt

i ,R
est
i Ralign

)
, (8.13)

θ2 = min
Ralign

√√√√ 1

n

n∑
i=1

d
(
Rgt

i ,R
est
i Ralign

)2
. (8.14)

They respectively represent the optimal mean and RMS error after aligning the estimated
rotations to the ground truth. The rotation Ralign in Eq. (8.13) and (8.14) can be obtained
by solving the single rotation averaging problem under the L1 and L2 norm, respectively
(Hartley et al., 2011, Hartley, Kahl, Olsson and Seo, 2013).

8.5.1 Synthetic data

For a controlled study of various factors, we run Monte Carlo simulations in multiple set-
tings: We generate n random rotations in a circular order and obtain the relative rotation of
p% of all possible pairs. The edges are established as follows: First, we connect all succes-
sive nodes (i.e. node 1&2, 2&3, ..., n&1). Then, we connect those separated by one node
(i.e. node 1&3, 2&4, ..., n−1&1, n&2), and afterwards, those separated by two nodes, three
nodes, and so forth. We continue this process until p% are connected in total. This leads to
all nodes being connected to their local neighbors in a sliding window fashion. Next, we turn
q% of the edges into outliers, i.e., random relative rotations. We exclude the edges between
successive nodes, so that every node gets at least two inlier edges. Finally, all edges are
perturbed by N (0, σ2) and their order is randomized. These edges are used as input to the

1http://www.diegm.uniud.it/fusiello/demo/gmf/
2The code was kindly provided by the authors of (Arrigoni et al., 2018).
3http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
4https://github.com/yunpeng-shi/MPLS
5https://github.com/AIBluefisher/GraphOptim

http://www.diegm.uniud.it/fusiello/demo/gmf/
http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
https://github.com/yunpeng-shi/MPLS
https://github.com/AIBluefisher/GraphOptim
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Figure 8.4: Simulation results (100 rotations): We plot the optimal mean errors, θ1 in Eq. (8.13). For dense
graphs (p = 50%), IRLS-ℓ 1

2
, MPLS and HARA perform similarly well. For sparse graphs (p = 20%), MPLS

and HARA are more robust to outliers than the rest, with MPLS being slightly better at high outlier ratios.

rotation averaging algorithms. The simulation is configured by setting {n, p, q, σ} to one
of the following values: n = {100, 200} rotations, p = {50, 20}%, q = {0, 5, 10, ..., 50}%,
σ = {5, 10} deg. For each setting, we generate 100 independent datasets.

Fig. 8.4 and 8.5 present the results for 100 and 200 rotations, respectively. We see that
MPLS and HARA are the two best performing methods, especially at high outlier ratios.

8.5.2 Real data

Without using the number of inlier feature matches:
We evaluate the performance on the following real-world datasets: 1DSfM datasets6 (Wil-
son and Snavely, 2014), ‘Notre Dame 715’ (ND2) dataset3 (Chatterjee and Govindu, 2018),
‘Acropolis’ (ACP), ‘Arts Quad’ (ARQ) and ‘San Francisco’ (SNF) datasets7 (Crandall et al.,
2011). As in (Chatterjee and Govindu, 2018), only those cameras whose ground truth is

6http://www.cs.cornell.edu/projects/1dsfm/
7http://vision.soic.indiana.edu/projects/disco/

http://www.cs.cornell.edu/projects/1dsfm/
http://vision.soic.indiana.edu/projects/disco/
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Figure 8.5: Simulation results (200 rotations): We plot the optimal mean errors, θ1 in Eq. (8.13). IRLS-ℓ 1
2

,
MPLS and HARA perform similarly well, except that for sparse graphs (p = 20%), IRLS-ℓ 1

2
is outperformed

by the other two at high outlier ratios.

available are used to evaluate the accuracy, even though those without the ground truth are
still included in the input for rotation averaging. Table 8.1 reports the results. It shows that
in most cases HARA achieves state-of-the-art accuracy at a comparable speed.

Using the number of inlier feature matches:
For this experiment, we only use the 1DSfM dataset6 (Wilson and Snavely, 2014), as the
other datasets do not provide the 2D-2D correspondences. The feature matches are only
available for those cameras with the ground truth, so we disregard the rest. To check the
validity of the correspondences, we put a threshold (0.01) on the sine of the L1-optimal
angular reprojection error (Lee and Civera, 2019a, 2020a). Table 8.2 presents the results. It
shows that HARA achieves state-of-the-art results, with or without incorporating the number
of inlier matches.
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8.5.3 Ablation study

We perform an ablation study to see how each component of HARA contributes to the final
accuracy. We compare three different variations of HARA against the baseline version:

1. HARA without the local refinement (Section 8.4.4),

2. HARA without the edge filtering (Section 8.4.3),

3. HARA without the triplet-based propagation (Alg. 8 line 7–21): That is, the initial
solution is obtained via a series of voting + single rotation averaging only.

Fig. 8.6 and Table 8.3 present the results on the synthetic and the real datasets, respectively.
These results clearly show that the best performance can be achieved by utilizing all the
components.

8.6 Limitations

The main limitation of our method is that it is sensitive to the parameters we set, especially
the loop thresholds. Currently, we determine their values using a simple heuristic based on
the sampled loop errors (Section 8.4.2). We noticed that, in some of the real datasets, a small
change in this heuristic introduces a non-negligible fluctuation in the initialization accuracy.
In future work, we plan to replace this heuristic with a more robust and reliable method.

8.7 Conclusions

We presented HARA, a hierarchical approach for robust multiple rotation averaging. For
robust initialization of the rotation graph, we incrementally build a spanning tree based on a
hierarchy of triplet support. That is, the edges supported by many strong triplets are added in
the tree sooner than those with fewer or weaker triplets. This approach significantly reduces
the influence of outliers on the initial solution, allowing us to filter outliers prior to nonlinear
optimization. Also, we showed that we can optionally integrate the knowledge of the number
of valid 2D-2D correspondences into our approach. An extensive evaluation demonstrates
that HARA achieves state-of-the-art results.
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Datasets R-GoDec Eig-IRLS IRLS-ℓ 1
2

MPLS∗ Hybrid RA HARA w/o
w/o VGF† #inlier matches

Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 627 49.5% 6.3 16.3 4s 3.9 12.2 21s 4.2 12.6 27s 3.7 12.1 29s 4.3 12.7 – 3.5 11.5 45s
ELS 247 66.8% 4.1 10.7 1s 3.3 11.5 3s 2.9 10.3 4s 2.8 10.9 7s 3.1 10.5 – 2.1 7.4 7s
GDM 742 17.5% 51.3 64.8 17s 65.8 74.2 29s 37.5 62.3 12s 40.7 68.7 74s 44.7 60.0 – 43.8 72.5 26s
MDR 394 30.7% 10.2 18.5 1s 10.9 22.4 5s 7.0 17.1 4s 5.2 14.7 5s 6.4 16.2 – 4.8 14.5 14s
MND 474 46.8% 6.2 18.4 3s 1.9 11.2 7s 1.5 7.4 10s 1.2 3.9 9s 1.5 6.9 – 1.1 2.1 20s
ND1 553 68.1% 5.2 15.5 6s 3.6 14.8 16s 3.5 14.6 28s 2.7 13.5 27s 3.5 14.7 – 1.6 6.3 55s
NYC 376 29.3% 6.4 9.9 6s 3.8 8.2 5s 3.0 7.0 3s 3.0 8.2 7s 3.2 7.4 – 2.9 7.7 10s
PDP 354 39.5% 11.4 22.0 2s 4.0 9.3 8s 4.1 8.1 4s 3.5 8.2 4s 5.3 10.4 – 3.4 7.4 9s
PIC 2508 10.2% 24.8 40.0 150s 81.0 91.2 687s 6.8 18.6 467s 4.6 14.6 295s 7.0 20.1 – 4.4 13.1 289s
ROF 1134 10.9% 12.6 19.5 61s 3.4 10.4 52s 3.1 10.2 12s 2.8 10.0 13s 3.1 9.2 – 2.7 8.5 31s
TOL 508 18.5% 6.4 13.1 8s 4.5 10.7 10s 3.9 9.0 2s 4.0 9.4 6s 4.4 10.5 – 4.3 10.0 13s
TFG 5433 4.6% 42.1 54.2 722s 59.4 67.1 833s 3.6 9.8 976s 4.5 10.8 1945s 15.1 17.8 – 3.5 10.7 925s
USQ 930 5.9% 12.0 23.7 27s 6.7 12.8 22s 9.3 22.2 10s 6.3 14.7 11s 9.3 21.7 – 6.0 12.3 9s
VNC 918 24.6% 16.1 36.9 25s 8.6 28.4 27s 8.3 27.5 28s 6.2 18.2 53s 8.4 27.2 – 6.1 18.1 47s
YKM 458 26.5% 6.1 11.3 7s 3.8 9.4 8s 3.5 8.4 3s 3.5 9.2 7s 3.5 8.4 – 3.0 6.9 16s
ND2 715 25.3% 2.7 10.0 10s 1.2 4.0 13s 1.1 3.5 13s 1.1 4.0 12s 1.1 3.5 – 1.3 5.5 23s
ACP 463 10.7% 0.8 1.2 6s 1.1 1.7 4s 1.2 1.7 1s 1.4 2.0 2s 1.2 1.7 – 1.2 1.7 7s
ARQ 5530 1.5% 29.7 56.5 1111s 70.1 79.7 4894s 4.0 7.1 173s 3.2 6.3 118s 3.9 6.9 – 3.6 6.8 137s
SNF 7866 0.3% Out of memory 77.3 87.3 3.8h 3.6 4.2 180s 4.4 5.5 154s 4.3 6.2 – 3.6 4.2 44s
θ1 (deg): Optimal mean error in Eq. (8.13), θ2 (deg): Optimal RMS error in Eq. (8.14), %edges = #edges/#possible pairs of views in %.

∗Due to the non-deterministic nature of MPLS (Shi and Lerman, 2020), we report the median of five independent runs.
†The computation times of Hybrid RA (Chen et al., 2021) are not included for comparison, since it is the only method implemented in C++.

Table 8.1: Results on the real datasets without the knowledge of the 2D-2D correspondences: For all datasets,
HARA gives either better or comparable results to the state of the art. Interestingly, for the SNF dataset, it
takes substantially less time than the rest. The results of MPLS (Shi and Lerman, 2020) are mostly competitive
with ours, except for the ELS, ND1, TFG and SNF datasets where HARA performs noticeably better. We
run Hybrid RA (Chen et al., 2021) without view graph filtering because this requires the number of valid
2D-2D correspondences. As a result, this method does not provide much gain in accuracy compared to IRLS-
ℓ 1

2
(Chatterjee and Govindu, 2018), even though it performs an additional global optimization prior to local

refinement. In fact, Hybrid RA performs much worse than IRLS-ℓ 1
2

on the TFG dataset.

Datasets IRLS-ℓ 1
2

MPLS∗ Hybrid RA Hybrid RA HARA w/o HARA with
w/o VGF† with VGF† #inlier matches #inlier matches

Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 577 58.4% 4.0 12.4 28s 3.7 12.0 24s 4.3 12.8 – 3.0 10.2 – 3.5 11.5 41s 3.4 11.0 40s
ELS 227 78.0% 2.8 10.1 2s 3.0 11.7 6s 3.0 9.9 – 2.1 7.1 – 2.1 7.2 8s 1.8 4.8 6s
GDM 677 20.9% 37.4 62.2 8s 40.7 68.6 81s 34.5 55.3 – 39.9 68.7 – 44.1 72.5 23s 44.3 72.8 16s
MDR 341 40.7% 6.7 16.7 4s 5.1 14.4 4s 6.3 15.8 – 4.4 13.1 – 4.8 14.5 13s 4.8 14.8 11s
MND 450 51.8% 1.5 7.4 6s 1.2 3.9 8s 1.5 6.9 – 1.1 2.2 – 1.1 2.1 21s 1.1 2.1 18s
ND1 553 68.1% 3.5 14.6 29s 2.8 13.6 30s 3.5 14.7 – 1.7 6.1 – 1.6 6.3 61s 1.5 5.9 44s
NYC 332 37.4% 3.1 7.1 3s 3.1 8.2 7s 3.4 7.8 – 3.0 7.1 – 2.9 7.8 8s 2.6 5.8 7s
PDP 338 43.3% 4.1 8.2 4s 3.5 8.2 4s 5.2 10.3 – 3.1 6.4 – 3.5 7.8 8s 3.3 6.6 7s
PIC 2152 13.4% 6.2 17.0 419 4.7 14.6 254s 6.3 18.6 – 4.3 12.1 – 4.1 11.3 269s 4.0 11.3 247s
ROF 1084 11.9% 3.1 10.2 16s 2.8 9.7 13s 3.1 9.4 – 2.5 6.7 – 2.7 8.7 30s 2.5 7.6 25s
TOL 472 21.4% 3.9 8.9 2s 4.0 9.4 4s 4.4 10.4 – 4.0 9.4 – 4.3 10.0 8s 4.0 8.9 11s
TFG 5058 5.3% 3.5 8.9 881s 5.3 11.1 1466s 4.0 9.8 – 5.3 11.8 – 3.5 10.1 948s 3.4 9.6 902s
USQ 789 7.9% 6.7 14.2 5s 6.2 12.9 7s 7.9 17.0 – 6.6 14.8 – 5.9 11.2 10s 5.8 10.8 9s
VNC 836 29.6% 8.4 27.5 32s 6.2 18.2 59s 8.4 27.1 – 6.3 18.0 – 6.2 18.1 54s 6.2 18.1 52s
YKM 437 29.1% 3.5 8.4 2s 3.6 9.4 4s 3.6 8.4 – 3.9 11.8 – 3.0 6.9 11s 3.4 11.2 12s
θ1 (deg): Optimal mean error in Eq. (8.13), θ2 (deg): Optimal RMS error in Eq. (8.14), %edges = #edges/#possible pairs of views in %.

∗Due to the non-deterministic nature of MPLS (Shi and Lerman, 2020), we report the median of five independent runs.
†The computation times of Hybrid RA (Chen et al., 2021) are not included for comparison, since it is the only method implemented in C++.

Table 8.2: Results on the real datasets with the knowledge of the number of valid 2D-2D correspondences: The
best performing methods are Hybrid RA (Chen et al., 2021) (with VGF) and HARA with and without using
#inlier feature matches. All three of these methods give competitive results, but on the TFG and USQ datasets,
HARA outperforms Hybrid RA by a noticeable margin.
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Figure 8.6: Ablation study on the synthetic dataset.

Datasets
HARA w/o local w/o edge w/o triplet-based

(baseline) refinement filtering propagation
Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 627 49.5% 3.5 11.5 41s 4.4 12.6 26s 4.1 12.4 51s 3.9 12.3 30s
ELS 247 66.8% 2.1 7.4 6s 2.6 7.8 5s 2.5 7.7 9s 3.0 11.6 4s
GDM 742 17.5% 43.8 72.5 21s 44.1 72.0 20s 37.7 62.4 33s 46.6 71.7 12s
MDR 394 30.7% 4.8 14.5 14s 6.8 15.2 13s 6.5 16.4 13s 7.7 20.2 5s
MND 474 46.8% 1.1 2.1 28s 1.6 2.8 26s 1.5 7.4 23s 1.4 7.5 11s
ND1 553 68.1% 1.6 6.3 48s 2.3 6.7 38s 3.2 12.4 55s 3.7 15.8 31s
NYC 376 29.3% 2.9 7.7 10s 3.3 8.0 9s 3.0 7.0 8s 3.3 8.6 6s
PDP 354 39.5% 3.4 7.4 7s 3.5 7.5 6s 4.0 8.0 10s 3.6 8.5 5s
PIC 2508 10.2% 4.4 13.1 279s 5.7 13.7 140s 5.5 14.5 437s 5.9 18.4 220s
ROF 1134 10.9% 2.7 8.5 31s 3.3 9.1 26s 3.0 8.6 30s 2.7 7.9 15s
TOL 508 18.5% 4.3 10.0 8s 4.6 10.3 8s 4.0 9.2 14s 4.7 11.6 4s
TFG 5433 4.6% 3.5 10.7 924s 5.5 11.6 325s 3.6 10.0 1049s 3.6 9.7 1014s
USQ 930 5.9% 6.0 12.3 8s 7.1 14.1 7s 7.3 14.7 11s 6.1 11.4 5s
VNC 918 24.6% 6.1 18.1 52s 6.6 18.6 40s 8.0 26.3 56s 8.2 28.3 32s
YKM 458 26.5% 3.0 6.9 17s 3.1 6.5 16s 3.5 8.4 14s 3.6 9.6 5s
ND2 715 25.3% 1.3 5.5 23s 1.7 5.5 19s 1.1 3.5 31s 1.3 5.3 17s
ACP 463 10.7% 1.2 1.7 6s 2.0 2.4 6s 1.2 1.7 4s 1.2 1.7 3s
ARQ 5530 1.5% 3.6 6.8 136s 5.1 8.1 104s 3.7 6.6 169s 4.4 11.2 98s
SNF 7866 0.3% 3.6 4.2 35s 4.8 6.7 32s 3.6 4.2 44s 3.6 4.2 17s

Table 8.3: Ablation study on the real datasets without the knowledge of the 2D-2D correspondences.





Chapter 9

L0+ Optimization: Application to
Multiple Rotation Averaging

9.1 Introduction

In the previous chapter, we used the L0.5 cost function proposed in (Chatterjee and Govindu,
2018) for the local refinement step of HARA. In this chapter, we propose to use a different
cost function, namely the smoothed L0+ function introduced in (Peng et al., 2022). Com-
pared to the commonly used Huber loss (Huber, 1964), L1 or L0.5 norm, this function places
smaller weights on large residuals, thereby further reducing the influence of outliers. Also,
unlike the truncated least squares (Blake and Zisserman, 1987) or Tukey’s biweight function
(Beaton and Tukey, 1974), it does not completely discard them. We show that by adopting
the smoothed L0+ function in the local refinement step of HARA, we can further improve
the results.

This chapter is organized as follows: In Section 9.2, we review the smoothed Lp cost
function proposed in (Peng et al., 2022). We provide the probabilistic interpretations of this
function in Section 9.3. In Section 9.4, we apply our method on HARA and evaluate its
rotation averaging accuracy on the real datasets. Finally, conclusions are given in Section
9.5.

9.2 The Smoothed L0+ Cost Function

(Peng et al., 2022) proposed the following family of robust cost functions parameterized by
two parameters, i.e., p and c (c > 0):

ρ(r) =


r2

2
if |r| < c

c2−p

(
|r|p

p
− cp

p
+
cp

2

)
otherwise

(9.1)
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Figure 9.1: Robust cost functions defined by (9.1) with different values of p (top) and their corresponding
weight functions (bottom). In this example, the parameter c in (9.1) is set to be 1.

The parameter c represents the threshold below which the function behaves as the L2 norm.
Above this threshold, the function behaves as the Lp norm: the smaller the parameter p,
the smaller the cost of large residuals. This behaviour is illustrated in Fig. 9.1. Note that
when p = 1, this function is called the Huber loss (Huber, 1964). The weight function
corresponding to (9.1) can be obtained as w(r) = dρ(r)/dr

r
(Zhang, 1997), which gives

w(r) =

{
1 if |r| < c

c2−p|r|p−2 otherwise.
(9.2)

Now, we are specifically interested in a special case of (9.1) when p→ 0+. Note that this
is not the same as setting p = 0, because doing so would turn the second part of (9.1) into a
constant term (if not ill-defined), leading to a truncated least squares function. In (Peng et al.,
2022), it was noted that when p→ 0+, the cost function (9.1) can be written as follows:

ρ(r) =


r2

2
if |r| < c

c2
(
ln |r| − ln c+

1

2

)
otherwise.

(9.3)
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Figure 9.2: [Left]: The PDF (up to scale) defined by (9.6) with c = 1. The inner part behaves like a Gaussian
density and the outer part behaves like a reciprocal function. [Right]: PDFs (up to scale) for which minimizing
the sum of (9.1) leads to the maximum likelihood estimate.

In the following, we provide the proof, which is omitted in the original work:

Proof. As p→ 0+, the second part of ρ(r) in (9.1) becomes

lim
p→0+

c2−p

(
|r|p

p
− cp

p
+
cp

2

)
=
c2

2
+ c2 lim

p→0+

|r|p − cp

p
.

Using L’Hôpital’s Rule, this can be written as

c2

2
+ c2 lim

p→0+

|r|p ln |r| − cp ln c
1

=
c2

2
+ c2(ln |r| − ln c) = c2

(
ln |r| − ln c+

1

2

)
.

■

The weight function corresponding to (9.3) is then given by

w(r) =

{
1 if |r| < c

c2|r|−2 otherwise.
(9.4)

By setting a single parameter c to some constant, we can readily adopt this function in a
standard IRLS scheme.

9.3 Probabilistic Interpretations of (9.3)

Using the smoothed L0+ cost function (9.3), the optimization problem can be formulated as
follows:

θ∗ = argmin
θ

∑
i

ρ(r(xi|θ)), (9.5)
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where θ is the set of parameters we want to estimate and r(xi,θ) corresponds the residual
from the i-th measurement xi given θ. The solution θ∗ then corresponds to the maximum
likelihood estimate of θ when the probability density function (PDF) for the residual takes
the following form:

f(r) =


k exp

(
−r

2

2

)
if |r| < c

k

(
c√
e

)c2 (
1

|r|

)c2

otherwise,

(9.6)

where k is the normalizing factor.

Proof. Let f(r(xi|θ)) be the probability density of the residual corresponding to the mea-
surement xi given the parameter θ. The likelihood function is given by

∏
i f(r(xi|θ)), and

finding θ that maximizes this function is equivalent to finding θ that minimizes the negative
log-likelihood, i.e.,

∑
i− ln f(r(xi|θ)). Now, if f(r) ∝ exp(−ρ(r)), this is equivalent to

minimizing
∑

i ρ(r(xi|θ)). In other words, the parameter θ that minimizes
∑

i ρ(r(xi|θ))
is the maximum likelihood estimate when the probability density takes the form f(r) ∝
exp(−ρ(r)) (Huber, 1964). Defining ρ(r) by (9.3), the corresponding PDF is given by

f(r) =


k exp

(
−r

2

2

)
if |r| < c

k exp

(
−c2

(
ln |r| − ln c+

1

2

))
otherwise.

Simplifying the second part of this function leads to (9.6). ■

This PDF in (9.6) behaves like a Gaussian density for small |r|, and like a reciprocal
function for large |r| (see the left panel of Fig. 9.2). Following a similar derivation to that of
(9.6), we can also derive the underlying PDFs associated with (9.1). For example, we obtain
a Gaussian density when p = 2 and the Huber density (Meyer, 2021) when p = 1. The
right panel of Fig. 9.2 compares the resulting probability densities for different values of p.
Notice that the L0+ function has heavier tails than the Gaussian and the Huber density.

Note that when we make a log-log plot of the PDF (9.6), a straight line of gradient −c2

should appear for large |r|. This is interesting for two reasons: First, we can use this fact
to determine for which optimization problem the L0+ cost function (9.3) is beneficial. If
a negatively sloped straight line appears in a log-log plot of a typical residual distribution,
then it would be more appropriate to model the PDF with (9.6) than with a uniform outlier
distribution, for example (see Fig. 9.3). In Section 9.4.1, we show that large-scale rotation
averaging is one of the problems that meet this criterion. Second, should such a straight line
do appear in the log-log plot, we can also deduce the value of c in (9.6) by fitting a line to
it. In Section 9.4.2, we show that setting the value of c this way and using it in the weight
function (9.4) leads to good optimization results.
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Figure 9.3: Log-log plot of three different PDFs (up to scale): (1) a Gaussian density, (2) a Gaussian density for
small |r| and a uniform density for large |r|, and (3) the one we use, i.e., (9.6). The third one is characterized
by a negatively sloped straight line for large |r|.

9.4 Application to Multiple Rotation Averaging

In the IRLS step of HARA (Lee and Civera, 2022), we replace the original reweighting
function with (9.4). In all our experiments, we set c = 1◦ unless otherwise stated. We
evaluate our method on the following real-world datasets: 1DSfM datasets1 (Wilson and
Snavely, 2014), ‘Notre Dame 715’ (ND2), ‘Acropolis’ (ACP), ‘Arts Quad’ (ARQ) and ‘San
Francisco’ (SNF) datasets2 (Crandall et al., 2011). As in (Chatterjee and Govindu, 2018, Lee
and Civera, 2022), we use all images in the connected graph for rotation averaging, but only
those with the ground truth data are used for evaluating the accuracy. We align the estimated
rotations to the ground truth and compute the optimal mean and RMS errors (Lee and Civera,
2022).

9.4.1 Error distribution

Before evaluating the rotation averaging results, we first analyze the error distribution of
the tested datasets. The errors are computed by comparing the relative rotation estimates
against the ground truth, both of which are provided in the datasets. Here, we only consider
the subset of errors corresponding to the filtered edges from HARA (Lee and Civera, 2022)
because only those edges are used for local optimization. Fig. 9.3 shows the distributions on
a log-log scale. In most of the graphs, a straight segment appears for large errors, which is in
accordance with the observation in (Chatterjee and Govindu, 2018). This suggests that our
PDF (9.6) is a better model than a commonly used uniform outlier distribution, as illustrated
previously in Fig. 9.3. Inferring the median value of c from the gradient of the fitted lines
(according to (9.6)), we get c ≈ 1.2 deg.

1http://www.cs.cornell.edu/projects/1dsfm/
2http://vision.soic.indiana.edu/projects/disco/

http://www.cs.cornell.edu/projects/1dsfm/
http://vision.soic.indiana.edu/projects/disco/
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Figure 9.4: Log-log plot of the distribution of errors in the relative rotation estimates (provided in the real
datasets in Section 9.4). In most graphs, a linear behavior is observed for large errors. We fit a line (in red) to
the points between 10 and 40 deg using the least-median-of-squares method (Rousseeuw, 1984). The number
in red is the value of c which we estimate as the square-root of the negative gradient (according to (9.6)).

9.4.2 Parameter study

Next, we investigate the influence of p in (9.1) while keeping c at 1 deg. This is done by
setting p = {−8,−7.5,−7, · · · ,−0.5, 0+, 0.5, 1} in the weight function (9.2) and using it
for the reweighting step instead of (9.4). In order to aggregate the results from multiple
datasets, we shift the errors for each dataset such that the minimum is zero. That is, from
the errors obtained from each p, we subtract the smallest one among them. In Fig. 9.5, we
show how different values of p affect the mean and the median of the shifted errors from 18
datasets, i.e. all but GDM in Tab. 9.1. We excluded GDM because its result was constantly
dictated by outliers and deemed unreliable. Fig. 9.5 clearly shows that the best overall result
is obtained when p→ 0+, which supports our choice of using (9.4).

In a similar manner, we also study the influence of the parameter c in (9.4). The result
is shown in Fig. 9.6. It suggests that good performance is achieved when c ≈ 1 deg. This
agrees with the value we estimated from the error distribution in Section 9.4.1.

9.4.3 Comparison to the state of the art

Table 9.1 presents the results of our method (HARA-L0+) and other recent works, namely
R-GoDec3 (Arrigoni et al., 2014, 2018), Eig-IRLS4 (Arrigoni et al., 2018), IRLS-L0.5

5 (Chat-
terjee and Govindu, 2018), MPLS6 (Shi and Lerman, 2020) and the original HARA7(Lee and

3http://www.diegm.uniud.it/fusiello/demo/gmf/
4The code was kindly provided by the authors of (Arrigoni et al., 2018).
5http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
6https://github.com/yunpeng-shi/MPLS
7https://github.com/sunghoon031/HARA

http://www.diegm.uniud.it/fusiello/demo/gmf/
http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
https://github.com/yunpeng-shi/MPLS
https://github.com/sunghoon031/HARA
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Figure 9.5: The influence of p in (9.2) on the shifted optimal mean errors θ1 (left) and RMS errors θ2 (right)
from the 18 datasets (i.e. all but GDM in Tab. 9.1). Here, we fixed the parameter c in (9.2) at 1 deg. The mean
and the median of both error metrics are minimum when p→ 0+.

Civera, 2022) (without using the number of inlier matches). It shows that in most datasets
HARA with our optimization achieves the highest accuracy at a comparable speed.

9.5 Conclusion

In this chapter, we proposed to use the smoothed L0+ function introduced in (Peng et al.,
2022) in the local refinement step of HARA (Lee and Civera, 2022). We presented the
mathematical proof that the L0+ part of the function is equivalent to A ln |x| + B for some
constants A > 0 and B. Also, we provided the probabilistic interpretations of this cost
function, outlining how we can use the log-log plot of the PDF to determine whether or not
this function is suitable for the problem at hand, and if so, how we can set the value of its
tuning parameter. Our evaluation on the real datasets demonstrates the effectiveness of the
proposed method for robust multiple rotation averaging.
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Figure 9.6: The influence of c in (9.4) on the shifted optimal mean errors θ1 (left) and RMS errors θ2 (right)
from the 18 datasets (i.e. all but GDM in Tab. 9.1). The errors are minimum around log2 c ≈ 0, that is, c ≈ 1
deg.

Datasets R-GoDec Eig-IRLS IRLS-L0.5 MPLS∗ HARA HARA-L0+

Name #views %edges θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time θ1 θ2 Time
ALM 627 49.5% 6.3 16.3 4s 3.9 12.2 21s 4.2 12.6 27s 3.7 12.1 29s 3.5 11.5 61s 3.1 11.0 62s
ELS 247 66.8% 4.1 10.7 1s 3.3 11.5 3s 2.9 10.3 4s 2.8 10.9 7s 2.1 7.4 9s 2.1 7.4 9s
GDM 742 17.5% 51.3 64.8 17s 65.8 74.2 29s 37.5 62.3 12s 40.7 68.7 74s 44.3 72.8 30s 44.3 73.1 30s
MDR 394 30.7% 10.2 18.5 1s 10.9 22.4 5s 7.0 17.1 4s 5.2 14.7 5s 4.8 14.5 16s 4.5 14.4 16s
MND 474 46.8% 6.2 18.4 3s 1.9 11.2 7s 1.5 7.4 10s 1.2 3.9 9s 1.1 2.1 27s 1.1 2.1 28s
ND1 553 68.1% 5.2 15.5 6s 3.6 14.8 16s 3.5 14.6 28s 2.7 13.5 27s 1.6 6.3 70s 1.5 6.2 71s
NYC 376 29.3% 6.4 9.9 6s 3.8 8.2 5s 3.0 7.0 3s 3.0 8.2 7s 2.9 7.7 10s 2.9 7.8 10s
PDP 354 39.5% 11.4 22.0 2s 4.0 9.3 8s 4.1 8.1 4s 3.5 8.2 4s 3.5 7.8 10s 3.4 7.9 10s
PIC 2508 10.2% 24.8 40.0 150s 81.0 91.2 687s 6.8 18.6 467s 4.6 14.6 295s 4.4 12.9 371s 4.2 12.9 356s
ROF 1134 10.9% 12.6 19.5 61s 3.4 10.4 52s 3.1 10.2 12s 2.8 10.0 13s 2.8 8.7 37s 2.7 8.6 39s
TOL 508 18.5% 6.4 13.1 8s 4.5 10.7 10s 3.9 9.0 2s 4.0 9.4 6s 4.3 10.0 11s 4.1 10.1 11s
TFG 5433 4.6% 42.1 54.2 722s 59.4 67.1 833s 3.6 9.8 976s 4.5 10.8 1945s 3.5 10.4 1210s 3.3 10.4 1215s
USQ 930 5.9% 12.0 23.7 27s 6.7 12.8 22s 9.3 22.2 10s 6.3 14.7 11s 6.0 12.3 12s 5.9 12.2 12s
VNC 918 24.6% 16.1 36.9 25s 8.6 28.4 27s 8.3 27.5 28s 6.2 18.2 53s 6.1 18.1 65s 6.1 18.1 89s
YKM 458 26.5% 6.1 11.3 7s 3.8 9.4 8s 3.5 8.4 3s 3.5 9.2 7s 3.0 6.8 14s 3.0 7.0 14s
ND2 715 25.3% 2.7 10.0 10s 1.2 4.0 13s 1.1 3.5 13s 1.1 4.0 12s 1.3 5.5 29s 1.3 5.5 29s
ACP 463 10.7% 0.8 1.2 6s 1.1 1.7 4s 1.2 1.7 1s 1.4 2.0 2s 1.2 1.7 4s 1.2 1.7 4s
ARQ 5530 1.5% 29.7 56.5 1111s 70.1 79.7 4894s 4.0 7.1 173s 3.2 6.3 118s 3.6 6.8 166s 3.4 6.6 168s
SNF 7866 0.3% Out of memory 77.3 87.3 3.8h 3.6 4.2 180s 4.4 5.5 154s 3.6 4.2 50s 2.9 3.5 51s

θ1 (deg): Optimal mean error, θ2 (deg): Optimal RMS error, %edges = #edges/#possible pairs of views in %.
∗Due to the non-deterministic nature of the algorithm, we take the median of five runs.

Blue: Best result, Underline: Better result between the original HARA and ours.

Table 9.1: Results on the real-world benchmark datasets: For all datasets, our optimization leads to either
better or comparable results to the original HARA (Lee and Civera, 2022). Especially, the improvement is
significant for the SNF dataset. All computational times are taken from (Lee and Civera, 2022), except for
HARA with/without our optimization. These last two methods were run on a laptop with Intel’s 4th Gen i7
CPU (2.8 GHz).





Chapter 10

Rotation-Only Bundle Adjustment

In this chapter, we propose a novel method for estimating the global rotations of the cameras
independently of their positions and the scene structure. When two calibrated cameras ob-
serve five or more of the same points, their relative rotation can be recovered independently
of the translation. We extend this idea to multiple views, thereby decoupling the rotation
estimation from the translation and structure estimation. Our approach provides several ben-
efits such as complete immunity to inaccurate translations and structure, and the accuracy
improvement when used with rotation averaging. We perform extensive evaluations on both
synthetic and real datasets, demonstrating consistent and significant gains in accuracy when
used with the state-of-the-art rotation averaging method.

10.1 Introduction

Bundle adjustment is the problem of reconstructing the camera poses (i.e., rotations and
translations) and the 3D scene structure from the image measurements. It plays a crucial
role in many areas of 3D vision, such as structure from motion (Hartley and Zisserman,
2003), visual odometry (Scaramuzza and Fraundorfer, 2011), and simultaneous localization
and mapping (Cadena et al., 2016). For this reason, significant research endeavors have been
devoted to this problem, which led to tremendous progress over the past two decades.

Bundle adjustment aims to obtain jointly optimal structure and camera poses by mini-
mizing the image reprojection errors (Triggs et al., 2000). Being a nonlinear optimization
problem, it requires a good initialization to ensure the convergence to the statistically optimal
solution (Hartley and Zisserman, 2003). A common strategy involves the following steps:
(1) Estimate the pairwise motions. (2) Estimate the global rotations through rotation aver-
aging (e.g., (Arrigoni et al., 2018, Chatterjee and Govindu, 2018)). (3) Estimate the global
translations (e.g., (Govindu, 2001, Wilson and Snavely, 2014)). (4) Triangulate the points
(e.g., (Kang et al., 2014, Lee and Civera, 2020c)).

In such a pipeline, it is important to make an accurate initial guess of the rotations, as
the subsequent steps directly depend on it. To this end, one could try to improve the rotation
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averaging method or its input (i.e., the relative pairwise motion estimates). Recent examples
of the former include (Arrigoni et al., 2018, Chatterjee and Govindu, 2018, Dellaert et al.,
2020b, Eriksson et al., 2021, Purkait et al., 2020) and the latter include (Brachmann and
Rother, 2019, Briales et al., 2018, Garcia-Salguero et al., 2021, Zhao, 2022).

These two types of approaches are certainly useful for initializing the rotations. How-
ever, relative pose estimation is limited to two views only, while rotation averaging does not
directly leverage the image measurements. That is, it treats all relative rotations equally even
if they were estimated from different numbers of points with different noise statistics and
distributions. To our knowledge, no previous work has addressed this limitation for rotation
estimation.

In this chapter, we present a novel method that, given the initial estimates of the rotations,
performs rotation-only optimization using the image measurements as direct input. Our work
is based on (Kneip and Lynen, 2013), where it was proposed to optimize the rotation between
two views independently of the translation. We extend this idea to multiple views. We call
our approach rotation-only bundle adjustment because it can be seen as the decoupling of the
rotation estimation from the translation and structure estimation in bundle adjustment. This
provides the following advantages:

• The rotations are estimated without requiring the knowledge of the translations and
structure. This greatly simplifies the optimization problem.

• The rotations are immune to inaccurate estimation of the translations and structure.

• Both pure and non-pure rotations are treated in a unified manner, as we do not need to
triangulate and discard the low-parallax points.

• It can be used after rotation averaging to improve the accuracy of the rotation estimates.

Table 10.1 summarizes the differences between our method and the related methods.
The chapter is organized as follows: In the next two sections, we review the related work

and the preliminaries. Section 10.4 reviews the two-view rotation-only method by Kneip
and Lynen (Kneip and Lynen, 2013). We describe our method in Section 10.5 and show the
experimental results in Section 10.6. Finally, Section 10.7 and 10.8 present discussions and
conclusions.

10.2 Related Work

Our work is related to several areas of study in 3D vision and robotics, namely structure from
motion, simultaneous localization and mapping, bundle adjustment, rotation averaging, and
relative pose estimation.

Structure from motion (SfM) is the problem of recovering the camera poses and the
3D scene from an unordered set of images. Large-scale systems may handle from hundreds
of thousands (Agarwal et al., 2011) to millions of images (Heinly et al., 2015, Zhu et al.,
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Independent of the translations Directly using the image Applicable
and the 3D scene structure? measurements as input? to n views?

Full bundle adjustment
(e.g., (Triggs et al.,
2000))

✗ ✓ ✓

Rotation averaging
(e.g., (Chatterjee and
Govindu, 2018))

✓ ✗ ✓

Direct rotation optimiza-
tion (Kneip and Lynen,
2013)

✓ ✓ ✗

Rotation-only bundle ad-
justment ✓ ✓ ✓
(proposed in this work)

Table 10.1: Comparison between the related methods. To the best of our knowledge, we are the first to propose
a multiview rotation-only optimization method using the image measurements as direct input. Our method can
be generalized to both pure and non-pure rotations.

2018). We refer to (Ozyesil et al., 2017, Schönberger and Frahm, 2016) for excellent reviews
of the SfM literature. The backbone of most SfM systems is bundle adjustment, the joint
optimization of the camera poses and the 3D structure. To obtain the optimal solution, it
requires good initial estimates of the poses and points (Hartley and Zisserman, 2003). In
many works (Arie-Nachimson et al., 2012, Cui et al., 2015, Cui and Tan, 2015, Enqvist
et al., 2011, Govindu, 2001, Martinec and Pajdla, 2007, Moulon et al., 2013, Wilson and
Snavely, 2014, Ozyesil and Singer, 2015), the initialization consists of the following steps:
(1) Estimate the relative poses between the camera pairs observing many points in common.
(2) Perform multiple rotation averaging. (3) Estimate the camera locations (and the 3D
points). In such a pipeline, one may use our method as Step 2.5 to refine the rotations.

Simultaneous localization and mapping (SLAM) is the problem of estimating the cam-
era motion and the 3D scene in real time. Like SfM, the modern SLAM systems rely on
bundle adjustment to jointly optimize the keyframe poses and the map points (Campos et al.,
2021, Engel et al., 2018, Lee and Civera, 2019b, Mur-Artal and Tardós, 2017). In (Chng
et al., 2020, Bustos et al., 2019), it was suggested that decoupling the rotation estimation
through rotation averaging improves the efficiency and the handling of pure rotations.

Bundle adjustment is mainly classified into geometric and photometric methods. The
former minimizes the reprojection errors (Agarwal et al., 2010, Hartley and Zisserman, 2003,
Lourakis and Argyros, 2009, Triggs et al., 2000), and the latter minimizes the photometric
errors (Alismail et al., 2017, Delaunoy and Pollefeys, 2014, Engel et al., 2018, Woodford
and Rosten, 2020). The bundle adjustment problems have been studied extensively for sev-
eral decades, which led to diverse techniques for improving the scalability (e.g., (Agarwal
et al., 2010, Konolige, 2010, Kümmerle et al., 2011, Lourakis and Argyros, 2009)) and the
accuracy (e.g., (Triggs et al., 2000, Zach, 2014, Zach and Bourmaud, 2018)). In (Hong and
Zach, 2018), an initialization-free approach was proposed. To our knowledge, however, no
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previous work has completely decoupled the rotation estimation in bundle adjustment.

Rotation averaging takes two forms: single rotation averaging that averages several
estimates of a single rotation to obtain the best estimate (Hartley et al., 2011, Lee and Civera,
2020b), and multiple rotation averaging that finds the multiple rotations Ri given several
noisy constraints on the relative rotations RiR

⊤
j (Arie-Nachimson et al., 2012, Arrigoni

et al., 2018, Chatterjee and Govindu, 2018, Dellaert et al., 2020a, Eriksson et al., 2021,
Hartley et al., 2011, Martinec and Pajdla, 2007). We refer to (Hartley, Trumpf, Dai and Li,
2013, Tron et al., 2016) for an excellent tutorial and survey on the topic. As discussed earlier,
multiple rotation averaging has wide application to SfM. This problem differs from bundle
adjustment in that (1) only rotations are estimated, and (2) the input is the relative rotation
estimates, not the image measurements. Since the states and the input are small compared to
bundle adjustment, the computation process is faster and simpler. However, the downside is
that it does not directly reflect the errors with respect to the image measurements. In contrast,
our optimization method directly uses the image measurements as input, while maintaining
only rotations in the state space. In this context, our method can be seen as the middle ground
between rotation averaging and bundle adjustment.

Relative pose estimation Given a set of five or more point matches between two cali-
brated views, their relative pose can be obtained using a minimal method (e.g., (Fathian et al.,
2018, Hongdong Li and Hartley, 2006, Kukelova et al., 2008, Nistér, 2004)) with RANSAC
(Brachmann and Rother, 2019, Fischler and Bolles, 1981, Raguram et al., 2013) or a non-
minimal method (e.g., (Briales et al., 2018, Hartley, 1997, Kneip and Lynen, 2013, Zhao,
2022)). In (Kneip and Lynen, 2013, Kneip et al., 2012), it was shown that the rotation can
be estimated independently of the translation. In this work, we extend the idea of (Kneip
and Lynen, 2013) to n ≥ 2 views by aggregating multiple two-view costs and minimizing it
through iterative nonlinear optimization.

10.3 Preliminaries and Notation

We use bold lowercase letters for vectors, bold uppercase letters for matrices, and light letters
for scalars. We denote the Hadamard product, division and square root by A ◦B, A⊘B

and A◦1/2, respectively. For a 3D vector v, we define v∧ as the corresponding 3 × 3 skew-
symmetric matrix, and denote the inverse operator by (·)∨, i.e., (v∧)∨ = v. A rotation matrix
R ∈ SO(3) can be represented by the corresponding rotation vector u = θû, where θ and
û represent the angle and the unit axis of the rotation, respectively. The two representations
are related by Rodrigues formula, and we denote the mapping between them by Exp(·) and
Log(·) (Forster, Carlone, Dellaert and Scaramuzza, 2017):

R = Exp(u) := I+
sin (∥u∥)
∥u∥

u∧ +
1− cos (∥u∥)
∥u∥2

(u∧)
2
, (10.1)
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u = Log(R) :=
θ

2 sin(θ)

(
R−R⊤)∨ (10.2)

with θ = arccos ((tr(R)− 1) /2) . (10.3)

We denote the 3D position of a point with index i in a world reference frame w as (xi)w =

[(xi)w, (yi)w, (zi)w]
⊤ and a perspective camera with index j as cj . In the reference frame of

cj , the position of xi is given by (xi)j = [(xi)j, (yi)j, (zi)j]
⊤ = Rj(xi)w + tj , where Rj and

tj are the rotation and translation that relate the local reference frame of cj to the world. The
projection of xi in the image plane of cj has the pixel coordinates[

(ui)j

(vi)j

]
=

[
1 0 0

0 1 0

]
Kj(fi)j,

where Kj is the camera calibration matrix of cj and (fi)j = [(xi)j/(zi)j, (yi)j/(zi)j, 1]
⊤ is

the normalized image coordinates of (xi)j .

Then, (fi)j can be obtained by (fi)j = K−1
j [(ui)j, (vi)j, 1]

⊤. We denote the rotation and
the translation between camera j and k as Rjk and tjk. The point xi in the reference frame
of cj and ck is related by (xi)j = Rjk(xi)k + tjk. This means that Rjk = RjR

⊤
k and

tjk = −RjR
⊤
k tk + tj .

10.4 Review of Two-view Rotation-Only Method

In this section, we review the two-view rotation-only optimization method proposed in
(Kneip and Lynen, 2013). Consider two views with known internal calibration, cj and ck,
observing m ≥ 5 common points with index i ∈ {1, 2, . . . ,m}. The normalized epipolar
error (Lee and Civera, 2020a) associated with each point i is defined as

(ei)(j,k) =
∣∣∣ t̂jk · (( f̂i)j ×Rjk

(
f̂i
)
k

)∣∣∣ , (10.4)

where
(
f̂i
)
j

and
(
f̂i
)
k

are the unit bearing vectors corresponding to the ith point in cj and
ck, respectively. The sum of squares of all these errors is then given by

m∑
i=1

(ei)
2
(j,k) = t̂⊤jkMjkt̂jk, (10.5)

where

Mjk=
m∑
i=1

((
f̂i
)
j
×Rjk

(
f̂i
)
k

)((
f̂i
)
j
×Rjk

(
f̂i
)
k

)⊤
. (10.6)

In (Kneip et al., 2012), it was shown that the 3 × 3 matrix Mjk can also be computed as
follows: denoting the entries of

(
f̂i
)
j

as [(fxi)j, (fyi)j, (fzi)j]
⊤, the following matrices are

defined:
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(Fxx)jk =
∑m

i=1(fxi)
2
j

(
f̂i
)
k

(
f̂i
)⊤
k
, (10.7)

(Fxy)jk =
∑m

i=1(fxi)j(fyi)j
(
f̂i
)
k

(
f̂i
)⊤
k
, (10.8)

(Fxz)jk =
∑m

i=1(fxi)j(fzi)j
(
f̂i
)
k

(
f̂i
)⊤
k
, (10.9)

(Fyy)jk =
∑m

i=1(fyi)
2
j

(
f̂i
)
k

(
f̂i
)⊤
k
, (10.10)

(Fyz)jk =
∑m

i=1(fyi)j(fzi)j
(
f̂i
)
k

(
f̂i
)⊤
k
. (10.11)

Let r1, r2, r3 be each row of Rjk, and mab be the element of Mjk at the ath row and bth
column. (Notice that we omitted the subscript jk here for simplicity). Then,

m11 = r3Fyyr
⊤
3 − 2r3Fyzr

⊤
2 + r2Fzzr

⊤
2 , (10.12)

m22 = r1Fzzr
⊤
1 − 2r1Fxzr

⊤
3 + r3Fxxr

⊤
3 , (10.13)

m33 = r2Fxxr
⊤
2 − 2r1Fxyr

⊤
2 + r1Fyyr

⊤
1 , (10.14)

m12 = r1Fyzr
⊤
3 − r1Fzzr

⊤
2 − r3Fxyr

⊤
3 + r3Fxzr

⊤
2 , (10.15)

m13 = r2Fxyr
⊤
3 − r2Fxzr

⊤
2 − r1Fyyr

⊤
3 + r1Fyzr

⊤
2 , (10.16)

m23 = r1Fxzr
⊤
2 − r1Fyzr

⊤
1 − r3Fxxr

⊤
2 + r3Fxyr

⊤
1 , (10.17)

and m21 = m12, m31 = m13, m32 = m23. This is a more efficient computation of Mjk

than (10.6), as (10.7)–(10.11) can be precomputed regardless of Rjk, reducing the number
of operations during the rotation optimization (Kneip and Lynen, 2013). Given the set of
corresponding unit bearing vectors, one can jointly optimize the relative rotation and trans-
lation by minimizing (10.5) with respect to Rjk and t̂jk. In (Kneip and Lynen, 2013), it was
shown that this problem can be transformed into a rotation-only form:

R∗
jk = argmin

Rjk

λM(Rjk), (10.18)

where λM(Rjk) is the smallest eigenvalue of Mjk (which is a function of Rjk). This eigen-
value can be obtained in closed form (Kneip and Lynen, 2013):

b1 = −m11 −m22 −m33, (10.19)

b2 = −m2
13 −m2

23 −m2
12 +m11m22 +m11m33 +m22m33, (10.20)

b3 = m22m
2
13 +m11m

2
23 +m33m

2
12 −m11m22m33 − 2m12m23m13, (10.21)

s = 2b31 − 9b1b2 + 27b3, (10.22)

t = 4(b21 − 3b2)
3, (10.23)

k =
(√

t/2
)1/3

cos
(
arccos

(
s/
√
t
)
/3
)
, (10.24)

λM(Rjk) = (−b1 − 2k) /3. (10.25)

To summarize, the rotation part of the optimal solution (R∗
jk, t̂

∗
jk) that minimizes (10.5) is

obtained by solving (10.18).
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10.5 Rotation-Only Bundle Adjustment

10.5.1 Cost function

We extend the idea of (Kneip and Lynen, 2013) for n views. Let E be the set of all edges,
i.e., camera pairs (j, k) observing a sufficient number of points in common (> 10 in our
implementation). Then, we formulate the optimization problem as follows:

{R∗
1, · · · ,R∗

n} = argmin
R1,··· ,Rn

C(R1, · · · ,Rn) (10.26)

with
C(R1, · · · ,Rn) =

∑
(j,k)∈E

√
λM(Rjk)︸ ︷︷ ︸

cjk

, (10.27)

where λM(Rjk) is the same cost function used in (10.18) for the two-view case and cjk =√
λM(Rjk) is our edge cost. We empirically found that this square rooting improves the

convergence rate (see Table 10.5), which we presume is due to the downweighted influence
of outliers. Alg. 9 summarizes the steps for computing the edge cost cjk.

10.5.2 Optimization

To solve (10.26) iteratively, we use Adam (Kingma and Ba, 2015), a first-order gradient-
based optimization algorithm for stochastic objective functions. Adam has been widely used
in deep learning, and we found that it also works well for our geometric optimization prob-
lem. Given the initial estimates of R1, · · · ,Rn, let s0 be the initial state vector formed by
stacking Log(R1), · · · ,Log(Rn) in one column. Let m0 = 03n×1, v0 = 03n×1, t = 0 and
ϵ = (10−8)13n×1. Then, using Adam, we repeat the following steps at each iteration t of our
optimization:

t← t+ 1, (10.28)

gt ← ∇sC(R1, · · · ,Rn), (10.29)

mt ← β1mt−1 + (1− β1)gt, (10.30)

vt ← β2vt−1 + (1− β2)(gt ◦ gt), (10.31)

m′
t ←mt/(1− βt

1), (10.32)

v′
t ← vt/(1− βt

2), (10.33)

st ← st−1 − αm′
t ⊘ (v′

t
◦1/2 + ϵ), (10.34)

ui ← [(st)3i−2, (st)3i−1, (st)3i]
⊤ for i = 1, · · · , n, (10.35)

Ri ← Exp(ui) for i = 1, · · · , n. (10.36)
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Algorithm 9: Computation of edge cost cjk
Input: Relative rotation Rjk, Precomputed matrices

(Fxx)jk, (Fxy)jk, (Fxz)jk, (Fyy)jk, (Fyz)jk.
Output: Edge cost cjk.

1 ri ← (Rjk)ith row for i = 1, 2, 3;
2 compute m11, · · · ,m23 using (10.12)–(10.17);
3 compute λM(Rjk) using (10.19)–(10.25);
4 cjk ←

√
λM(Rjk);

5 return cjk;

We detail the computation of the gradient (i.e., (10.29)) in the next section. For the hyper-
parameters β1 and β2, we use the default values given in (Kingma and Ba, 2015): β1 = 0.9

and β2 = 0.999. For the step size α, we use α = 0.01 at the beginning and switch to α =

0.001 permanently once the cost increases in five successive iterations. We empirically found
that this switching sometimes helps the convergence (see Table 10.5). Alg. 10 summarizes
our method.

10.5.3 Gradient computation

We compute the gradient gt in (10.29) numerically1. This can be done efficiently by slightly
perturbing each rotation parameter in st and summing the resulting changes of all the edge
costs cjk (10.27) as we traverse the edge set E . Since we need to run Alg. 9 seven times for
each edge (i.e., 1 from the unperturbed state, 3×2 from perturbing Rj and Rk), if there are nE

edges, this method will require 7nE computations of edge costs. To reduce the computation
time, we make the following approximation:

cjk
(
Rj(Rk)

⊤
x+∆x

)
− cjk(RjR

⊤
k ) ≈ cjk(RjR

⊤
k )− cjk

(
(Rj)x+∆xR

⊤
k

)
, (10.37)

where (Rj)x+∆x and (Rk)x+∆x respectively denote Rj and Rk after being perturbed (by the
same magnitude) in the x component of the rotation vector. That is, we assume that ∆cjk
due to (Rk)x+∆x is approximately equal to the negative of ∆cjk due to (Rj)x+∆x. We make
analogous approximations for the perturbations in the y and z component of the rotation
vector. By approximating the gradient of Rk using that of Rj , we reduce the number of edge
cost computations from 7nE to 4nE . Empirically, we found that this improves the efficiency
significantly at a relatively small loss of accuracy (see Table 10.6). Alg. 11 summarizes the
procedure for computing the gradient and the total cost.

1It is possible to compute it analytically. However, the closed-form expressions involve more operations
than the numerical method (see the supplementary material of (Kneip and Lynen, 2013)). We empirically found
that this takes approximately 1.8 times longer, while the numerical difference is negligible.
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Algorithm 10: Rotation-Only Bundle Adjustment
Input: Initial rotations R1, · · · ,Rn, Edges E ,

Matched unit bearing vectors
((

f̂i
)
j
,
(
f̂i
)
k

)
for all i ∈ 1, · · · ,m(j,k) for all (j, k) ∈ E ,
Number of iterations nit.

Output: Final rotations R1, · · · ,Rn.
/* Initialization: */

1 compute (Fxx)jk, · · · , (Fyz)jk for all (j, k) ∈ E using (10.7)–(10.11);
2 compute C using (10.27) and Alg. 9;
3 obtain s0 by stacking Log(R1), · · · ,Log(Rn) in one column;
4 β1← 0.9; β2← 0.999; α← 0.01; ϵ← (10−8)13n×1;
5 m0 ← 03n×1; v0 ← 03n×1; t← 0;
/* Optimization: */

6 while t < nit do
7 t← t+ 1;
8 compute C and gt using Alg. 11;
9 Perform (10.30)–(10.36);

10 if C increased in five successive iterations then
11 α← 0.001;

12 return R1, · · · ,Rn;
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Algorithm 11: Cost and gradient computation
Input: Current rotations R1, · · · ,Rn, Edges E ,

(Fxx)jk, (Fxy)jk, (Fxz)jk, (Fyy)jk, (Fyz)jk
for all (j, k) ∈ E

Output: Cost C, Gradient g.
1 C ← 0; g← 03n×1; δ ← 10−4;
2 δx ← [δ, 0, 0]⊤; δy ← [0, δ, 0]⊤; δz ← [0, 0, δ]⊤;
3 ui ← Log(Ri) for all i ∈ 1, · · · , n;
/* Perturb the rotations: */

4 (Ri)x+∆x ← Exp (ui + δx) for all i ∈ 1, · · · , n;
5 (Ri)y+∆y ← Exp (ui + δy) for all i ∈ 1, · · · , n;
6 (Ri)z+∆z ← Exp (ui + δz) for all i ∈ 1, · · · , n;
/* Sum the resulting changes of each cjk : */

7 for (j, k) ∈ E do
8 Rjk ← RjR

⊤
k ;

9 (Rjk)x+∆x ← (Rj)x+∆xR
⊤
k ;

10 (Rjk)y+∆y ← (Rj)y+∆yR
⊤
k ;

11 (Rjk)z+∆z ← (Rj)z+∆zR
⊤
k ;

12 obtain cjk using Alg. 9 with Rjk.
13 obtain (cjk)x+∆x using Alg. 9 with (Rjk)x+∆x.
14 obtain (cjk)y+∆y using Alg. 9 with (Rjk)y+∆y.
15 obtain (cjk)z+∆z using Alg. 9 with (Rjk)z+∆z.
16 ∆(cjk)x ← (cjk)x+∆x − cjk;
17 ∆(cjk)y ← (cjk)y+∆y − cjk;
18 ∆(cjk)z ← (cjk)z+∆z − cjk;
19 g3j−2 ← g3j−2 +∆(cjk)x;
20 g3j−1 ← g3j−1 +∆(cjk)y;
21 g3j ← g3j +∆(cjk)z;
22 g3k−2 ← g3k−2 −∆(cjk)x;
23 g3k−1 ← g3k−1 −∆(cjk)y;
24 g3k ← g3k −∆(cjk)z;
25 C ← C + cjk;

26 g← g/δ;
27 return C and g;
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10.6 Results

10.6.1 Evaluation method

We compare our method (henceforth ROBA) against the state-of-the-art rotation averaging
method by Chatterjee and Govindu (Chatterjee and Govindu, 2018) (henceforth RA). Both
methods are implemented in MATLAB and run on a laptop CPU (Intel i7-4710MQ, 2.8GHz).
For RA, we use the code publicly shared by the authors of (Chatterjee and Govindu, 2018)2

with the L 1
2

loss function, as recommended in (Chatterjee and Govindu, 2018). We use the
output of RA as input to ROBA, so that we can compare RA versus RA + ROBA.

In Alg. 10, the bottleneck is the gradient computation (line 8), where the predominant
part is the computation of the edge costs using Alg. 9. To speed up this part, we implement
Alg. 9 in a C++ MEX function. We set the number of iterations (nit) to 100 in Alg. 10.
Note that, in practice, it would be sensible to adopt some stopping criteria to detect the
convergence (e.g., based on the relative change of the total cost or the angular change in the
rotations). In our experiment, however, we aim to investigate the convergence behavior of
ROBA, so we are agnostic about this heuristics.

Finally, we draw attention to the error metrics for evaluating the rotation estimates
(R1, · · · ,Rn). Since they do not share the same reference frame as the ground-truth rota-
tions (Rgt

1 , · · · ,Rgt
n ), we must first align them with the ground truth to evaluate the accuracy.

Commonly, this is done by rotating them with one of the following rotations:

RL1 = argmin
RL1

n∑
j=1

d
(
RL1,R

⊤
j R

gt
j

)
, (10.38)

RL2 = argmin
RL2

n∑
j=1

d
(
RL2,R

⊤
j R

gt
j

)2
, (10.39)

where d(·, ·) denotes the geodesic distance between the two rotations, i.e., d(R1,R2) =

arccos((tr(R1R
⊤
2 ) − 1)/2). Note that (10.38) and (10.39) are single rotation averaging

problems, and they can be solved using iterative algorithms (Hartley et al., 2011, Hartley,
Trumpf, Dai and Li, 2013). Afterwards, we rotate the estimates as follows3:

Rj ← RjRL1, or Rj ← RjRL2. (10.40)

Since RL1 minimizes the sum of absolute distances and RL2 minimizes the sum of squares,
we call the first method L1 alignment and the second L2 alignment. In our evaluation, we
report the mean and median angular errors using these two alignment methods.

2http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
3We must use right multiplication here in order to make sure that (R12)after = (R1RL1)(R2RL1)

⊤ =
R1R

⊤
2 = (R12)before.

http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
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Baseline n = 100, ncov = 50, σ = 1px, dmin = 2, dmax = 5,
setting Views are uniformly spaced by 1 unit on a circle.

Variations

More points (ncov = 100), Fewer views (n = 30),
More views (n = 300), Closer points (dmax = 3),
Farther points (dmax=10), Less noise (σ=0.5px),
More noise (σ = 2px), Planar scene (dmin = 5).
Pure rotations (all views are placed at the origin),
Pure rotations + Planar scene (dmin = 5),
Mixed rotations (20 groups of views are uniform-
ly spaced by 1 unit on a circle. A group consists of
five views at the same location).

Table 10.2: Simulation settings.

10.6.2 Synthetic data

To study how different factors affect our method, we run Monte Carlo simulations in con-
trolled settings: we uniformly distribute n cameras on a circle on the xy-plane such that the
neighbors are 1 unit apart. After aligning their optical axes with the z-axis, we perturb the
rotations by random angles θ ∼ U(0, 20◦). We set the image size to 640× 480 pixels and the
focal length to 525 pixels, the same as those in (Sturm et al., 2012). We create 3D points at
random distances d ∼ U(dmin, dmax) from the xy-plane, ensuring that every neighboring view
observes at least ncov points in common. We perturb the image coordinates of the points by
N (0, σ2). For every pair of views observing ncov or more points in common, we estimate the
relative pose and the inlying points. If there are at least 10 inliers, we add the pair as an edge
in E . Table 10.2 specifies the configuration parameters we set for our simulations. For each
parameter setting, we generate 100 different datasets, each with randomly sampled camera
rotations, 3D points and 2D measurements.

To obtain the relative rotation estimates, we use the following method: first, we obtain
100 pose samples around the ground-truth relative pose. We do this by perturbing the rotation
and the translation by two arbitrary angles (< 20 deg). Then, we evaluate the L1-optimal
angular reprojection errors (Lee and Civera, 2019a)4 for each pose and choose the one that
yields the most inliers. This method is similar to the standard method of using a minimal
solver (e.g., five-point algorithm (Nistér, 2004)) in RANSAC (Fischler and Bolles, 1981),
except that our samples are simulated, not estimated. We use this method because our focus
is on the optimization of the rotations and we are agnostic about the relative pose estimation
method.

Fig. 10.1 and Table 10.3 present the results in each setting. Notice that ROBA improves
the results of RA in all scenarios considered. In Fig. 10.2, we show the evolution of our cost
function (10.27) and the rotation error in the baseline setting.

4This can be computed using (10.4) and their relation derived in (Lee and Civera, 2020a). We do not
consider cheirality (Hartley and Zisserman, 2003), because otherwise we would end up discarding many inlying
low-parallax points that appear in pure rotations.
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Figure 10.1: Results on the synthetic data (see Table 10.2 for the settings). We compare RA (Chatterjee and
Govindu, 2018) and ROBA (initialized by RA) in terms of the mean angular error after the L1 alignment (see
Appendix H for the other error metrics). It shows that ROBA improves the results of RA in all scenarios
considered. In particular, the relative error reduction is large for fewer views, farther points and pure rotations,
all of which lead to a denser view-graph (see Table 10.3).
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Figure 10.2: Evolution of the cost function (left) and the mean angular errors after the L1 alignment (right)
in the baseline setting. Here, we only show the interquartile range. Notice that while our cost (10.27) seems
to plateau after 30–40 iterations, the actual rotation errors continue to decrease. This is discussed in Section
10.7.2.

10.6.3 Real data
We also perform an evaluation on the real-world datasets publicly shared by the authors of
(Wilson and Snavely, 2014)5, which include:

• internal camera calibration and radial distortion data,

• SIFT (Lowe, 2004) feature tracks and their image coordinates,

• estimated relative rotations,

• reconstruction made with Bundler (Snavely et al., 2006), consisting of the camera
poses and a sparse set of 3D points.6

5http://www.cs.cornell.edu/projects/1dsfm/
6The pose estimates are not available for some of the cameras. Also, some of the SIFT features are not

associated with the available 3D points.

http://www.cs.cornell.edu/projects/1dsfm/
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Settings %E eE ẽE RA
RA

%better+ ROBA
Baseline 6.0% 2.21 1.39 2.31 1.26 100%
More points 7.2% 2.51 1.52 1.78 1.05 100%
Fewer views 21% 2.23 1.38 1.08 0.33 100%
More views 2.0% 2.24 1.40 4.35 3.73 100%
Closer points 4.0% 2.57 1.65 5.74 3.99 100%
Farther points 10% 1.97 1.22 0.69 0.36 100%
Less noise 6.0% 2.25 1.40 2.30 1.17 100%
More noise 5.9% 2.23 1.38 2.31 1.48 100%
Planar scene 7.4% 2.61 1.56 1.74 0.80 100%
Pure rotations 100% 0.89 0.74 0.045 0.026 100%
Pure + Planar 100% 0.89 0.74 0.045 0.027 100%
Mixed rotations 37% 3.13 1.66 0.17 0.069 100%
%E , %better: proportion of existing edges and improved results,

eE , ẽE : mean and median angular errors (in deg) of
the relative rotations from all edges.

Table 10.3: Median results of the 100 simulations in each setting. The 5th and 6th columns give the median
errors shown in Fig. 10.1. Overall, the denser the view-graph, the more accurate both methods are. ROBA
improves upon RA in 1200 out of 1200 simulations.

As in (Lee and Civera, 2020b), we use the provided reconstruction model as the ground truth
in our experiment. We undistort all image measurements when we process the input. Addi-
tionally, some preprocessing is required for these datasets because (1) they do not provide the
SIFT IDs of the reconstructed 3D points, and (2) some edges (i.e., camera pairs for which the
estimated relative rotations are given) lack covisible 3D points because some of the tracks
were disregarded during the reconstruction process (e.g., outliers and low-parallax points).

We address the first issue by projecting each 3D point in its associated images and finding
the track that yields the smallest mean reprojection error. Since most reconstructed points
have small reprojection errors (<1–2 pixels), this can associate the points quite accurately,
which we verified qualitatively. We address the second issue by removing all edges with
less than 10 covisible 3D points. As a result, some cameras get disconnected from the main
view-graph. In our experiment, we disregard all such cameras, as well as those without the
available ground truth.

Table 10.4 presents the results. It shows that ROBA offers a consistent and significant
gain in accuracy. In Fig. 10.3, we plot the evolution of the relative errors aggregated from
all datasets. Table 10.5 and 10.6 present the ablation study results.
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Datasets RA RA + ROBA (100 iter) Computation time (s)
Name (n, nE ,%E) mn1 md1 mn2 md2 mn1 md1 mn2 md2 RA Init Opti Total

ALM (577, 96653, 58%) 4.08 1.11 4.74 2.17 2.35 0.42 3.20 1.47 16 35 216 267
ELS (227, 18709, 73%) 2.10 0.50 2.37 0.93 1.06 0.10 1.48 0.57 1 5 42 48
GDM (677, 33662, 15%) 6.05 2.78 6.14 3.12 2.43 1.13 2.44 1.15 3 8 76 87
MDR (341, 23228, 40%) 6.20 1.27 7.23 2.88 4.42 0.61 5.71 2.50 2 7 52 61
MND (480, 51172, 45%) 1.46 0.51 1.59 0.72 0.82 0.26 1.01 0.50 4 24 114 142
NTD (553, 96672, 63%) 2.08 0.64 2.31 0.88 1.27 0.30 1.47 0.57 14 60 217 291
NYC (332, 18787, 34%) 2.87 1.32 2.99 1.40 1.03 0.20 1.20 0.45 1 6 42 49
PDP (338, 24121, 42%) 3.86 0.91 4.67 2.48 2.18 0.33 2.92 1.64 1 6 54 61
PIC (2151, 275895, 12%) 4.14 2.28 4.18 2.38 1.58 0.29 1.75 0.49 220 62 617 899
ROF (1083, 68379, 12%) 2.94 1.52 2.99 1.56 2.18 0.27 2.28 0.61 6 26 154 186
TOL (472, 23379, 21%) 3.83 2.33 3.85 2.38 1.15 0.16 1.20 0.24 1 10 53 64
TFG (5057, 663755, 5%) 3.40 2.34 3.42 2.28 2.76 2.09 2.78 1.79 553 153 1488 2194
USQ (787, 23639, 8%) 5.59 4.03 5.60 4.06 3.26 0.90 3.46 1.26 1 7 54 62
VNC (836, 98999, 28%) 6.12 1.33 7.96 4.06 4.96 0.25 7.31 3.47 15 53 221 289
YKM (437, 27039, 28%) 3.67 1.60 3.72 1.61 1.66 0.19 1.74 0.28 1 12 61 74
n: # connected views with known ground truth, nE : # edges with at least 10 covisible 3D points, %E = nE/nC2 in %,

mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
Init: Initialization (line 1–5 of Alg. 10), Opti: Optimization (line 6–11 of Alg. 10).

Table 10.4: Results on the real data (Wilson and Snavely, 2014). For all datasets, ROBA improves the results
of RA (Chatterjee and Govindu, 2018). This is shown across all error criteria, and often, the relative error
reduction is significant. See Appendix I for the evolution of the total cost (10.27) and the errors.
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Figure 10.3: Relative errors with respect to the initial values for the real-world datasets (Wilson and Snavely,
2014). Here, we use the mean angular errors after the L1 alignment (see Appendix I for the other metrics). For
more than half of the datasets, the error decreases to less than 60% of the initial value after 50 iterations. After
100 iterations, we observe error reductions up to 70%.
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Baseline
Without Without√
in (10.27) switching α

Datasets mn1 mn2 mn1 mn2 mn1 mn2

ALM 2.35 3.20 2.48 3.35 2.35 3.20
ELS 1.06 1.48 0.95 1.32 0.94 1.27
GDM 2.43 2.44 2.73 2.77 2.45 2.47
MDR 4.42 5.71 4.82 6.02 4.42 5.71
MND 0.82 1.01 0.94 1.11 0.82 1.01
NTD 1.27 1.47 1.47 1.75 1.28 1.41
NYC 1.03 1.20 1.23 1.44 1.03 1.20
PDP 2.18 2.92 2.57 3.38 2.18 2.92
PIC 1.58 1.75 2.43 2.73 1.62 1.72
ROF 2.18 2.28 2.92 3.09 3.53 3.83
TOL 1.15 1.20 1.98 2.04 1.10 1.14
TFG 2.76 2.78 3.07 3.11 3.53 3.59
USQ 3.26 3.46 4.32 4.41 3.08 3.21
VNC 4.96 7.31 5.70 7.93 5.09 7.48
YKM 1.66 1.74 1.85 1.93 1.59 1.66

Baseline: RA + ROBA (100 iterations),
mn1/2: mean angular error (deg) after L1/L2 alignment

Table 10.5: Ablation study I: Undoing the square-rooting in (10.27) (line 4 of Alg. 9) worsens the accuracy for
all datasets except ELS. Also, disabling the change of the step size α (line 11 of Alg. 10) significantly worsens
the accuracy for ROF and TFG.

Baseline
Without

approximating g
Datasets mn1 mn2 Opti mn1 mn2 Opti

ALM 2.35 3.20 216 2.23 3.09 389
ELS 1.06 1.48 42 0.97 1.32 76
GDM 2.43 2.44 76 2.36 2.40 135
MDR 4.42 5.71 52 4.21 5.41 93
MND 0.82 1.01 114 0.76 0.97 207
NTD 1.27 1.47 217 1.14 1.33 384
NYC 1.03 1.20 42 1.00 1.21 75
PDP 2.18 2.92 54 1.99 2.67 96
PIC 1.58 1.75 617 1.43 1.61 1103
ROF 2.18 2.28 154 1.17 1.29 274
TOL 1.15 1.20 53 1.10 1.13 94
TFG 2.76 2.78 1488 2.54 2.55 2664
USQ 3.26 3.46 54 2.68 2.95 95
VNC 4.96 7.31 221 4.39 7.03 395
YKM 1.66 1.74 61 1.56 1.64 109

Baseline: RA + ROBA (100 iterations),
mn1/2: mean angular error (deg) after L1/L2 alignment
Opti: Optimization time (in s) (line 6–11 of Alg. 10).

Table 10.6: Ablation study II: In Alg. 11, computing g without using the approximation (10.37) improves the
accuracy slightly. Exceptions are ROF and USQ where we observe large gains. In all cases, however, this
significantly increases the optimization time.
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10.7 Discussions

10.7.1 On error metrics

As shown in Table 10.4, the different alignment methods in (10.40) result in different er-
ror values. For example, the mean errors are always lower with the L1 alignment because
it yields the theoretically minimal mean error among all possible alignments. Also, the L1

alignment often gives very small median errors because using both median and the L1 align-
ment significantly diminishes the influence of large errors. This was also reported in (Chat-
terjee and Govindu, 2018). In Section 10.6, we used the mean error after the L1 alignment
as our primary metric due to its moderate sensitivity to large errors.

10.7.2 On convergence

Most of the time, ROBA converges after 30–40 iterations, but it is subject to local minima.
Generally, the better the initial rotations, the better the final result. Since rotation averaging
depends entirely on the relative rotation estimates, these input rotations must be accurate
enough to achieve good results. Empirically, we found that it is much better to have noisier
input with fewer outliers than the other way around. We also observed that sometimes a rela-
tively small change in the total cost (10.27) induces a non-negligible change in the rotational
accuracy (see Fig. 10.3 and Appendix I). This is somewhat in line with the observation in
(Briales et al., 2018) for the two-view case.

10.7.3 On robustness to outliers

In this work, we did not consider outliers in the input, i.e., the image measurements and
the initial rotation estimates. We assumed that the outliers in the former have already been
dealt with by a robust pose estimator and the latter by robust rotation averaging. Taking into
account also the outliers in our optimization is left for future work.

10.7.4 On speed and scalability

As discussed in Section 10.6.1, we fixed the number of iterations at 100. In some of the
datasets, we observe that ROBA converges in much fewer iterations (see Appendix I), so
implementing the stopping criteria would reduce the runtime. We also note that our code
was not highly optimized. Possibly, one could increase the speed by vectorizing line 2 in Al.
9 using SIMD instructions.

As can be seen from Table 10.4, the complexity of ROBA is linear in the number of
edges. To enhance the scalability, one could partition the view-graph and perform the local
and the global optimization in parallel, as in (Cui et al., 2017, Zhu et al., 2018). This is left
for future work.
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10.8 Conclusions

In this chapter, we presented rotation-only bundle adjustment, a novel method for estimat-
ing the global rotations of multiple views independently of the translations and the scene
structure. We formulate the optimization problem by extending the two-view rotation-only
method of (Kneip and Lynen, 2013) and solve it using the Adam optimizer (Kingma and Ba,
2015). As we decouple the rotation estimation from the translation and structure estimation,
it is completely immune to their inaccuracies. Our evaluation shows that (1) our method
is robust to challenging configurations such as pure rotations and planar scenes, and (2) it
consistently and significantly improves the accuracy when used after rotation averaging.





Chapter 11

RODIAN: Robustified Median

In this chapter, we propose a robust method for averaging numbers contaminated by a large
proportion of outliers. Our method, dubbed RODIAN, is inspired by the key idea of MIN-
PRAN (Stewart, 1995): We assume that the outliers are uniformly distributed within the
range of the data and we search for the region that is least likely to contain outliers only. The
median of the data within this region is then taken as RODIAN. Our approach can accurately
estimate the true mean of data with more than 50% outliers and runs in time O(n log n).
Unlike other robust techniques, it is completely deterministic and does not rely on a known
inlier error bound. Our extensive evaluation shows that RODIAN is much more robust than
the median and the least-median-of-squares. This result also holds in the case of non-uniform
outlier distributions.

11.1 Introduction

Averaging means finding the most representative value of a given set of data points. For
one-dimensional numbers, it can be the arithmetic mean, the median or other measures of
central tendency. All these measures have different properties, one of which is the robust-
ness to outliers. This is an important property to consider because outliers can severely
degrade the averaging accuracy if not handled properly. Robust averaging is a useful tech-
nique in a wide variety of domains, including pattern recognition (Hauberg et al., 2014, Li
et al., 2009, Lewis et al., 1999), image processing (Vaish et al., 2006, Chaudhury and Singer,
2012, Khatoonabadi and Bajic, 2013), 3D computer vision (Gesto Diaz et al., 2015, Lee
and Civera, 2020b, Cui and Tan, 2015), biomedical engineering (Leonowicz et al., 2005,
Leski, 2002, Kotowski et al., 2019), economics/econometrics (Bryan et al., 1997, Mykland
and Zhang, 2016, Dias Curto, 2021), information science (Angelov and Yager, 2013, Garcin
et al., 2009, Beliakov et al., 2016), environmental studies (Zhang and Zhang, 1996, Merchant
et al., 2018), geochemistry (Rock et al., 1987, Rock, 1988), forensic science (Illes and Boué,
2013), psychology (S. Courvoisier and Renaud, 2010) and database research (Hellerstein,
2008).
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1 8.6 × 10−4 4.3 × 10−4 4.2 × 10−3 8.5 × 10−5

RODIAN

True mean of inliers

Figure 11.1: Top: 100 numbers used as input for a toy example. 80% of the numbers are outliers, uniformly
distributed between 0 and 100. The inliers follow N (70, 52). Middle: We build multiple histograms with a
varying number of bins (1–5 in this example). For each histogram, we find the highest bin and evaluate the
probability of this occurring purely by chance, assuming that the outliers are uniformly distributed. These prob-
abilities of randomness are given above each histogram. We find the bin that produces the smallest probability
(shown in red). Bottom: RODIAN is the median of the numbers in this bin.

If the given data set contains a small number of outliers, it may be sufficient to use the
median, as, contrary to the mean, it is robust up to a certain outlier ratio (Davis and Jr., n.d.).
The median can be considered as a specific case of the alpha-trimmed mean with α = 0.5.
The alpha-trimmed mean (Bednar and Watt, 1984) of n numbers is defined as the arithmetic
mean after truncating the largest α

2
n and the smallest α

2
n elements. This method assumes that

the outliers are likely to be located at the high and low ends of the sorted data. As a result, it
fails when a large number of outliers are located mostly on one side of the long tails.

To handle such cases, a more elaborate method should be used. One popular example is
the maximum likelihood-type estimator (M-estimator) (Huber, 1981). Paired with iteratively
reweighted least squares (IRLS) (Holland and Welsch, 1977), it can effectively downweight
the influence of outliers. However, M-estimators, such as the Huber function, often require
a control parameter to be carefully tuned to the inlier error distribution. Also, their robust-
ness strongly depends on the initial seed, and accurate initialization in the presence of many
outliers is already a non-trivial problem in and of itself.

Another popular robust estimation method is RANSAC (Fischler and Bolles, 1981). It
involves random sampling, but it can be made deterministic for the 1D averaging problem if
we simply pick every number as a sample once. While this method can handle a very large
number of outliers, it incurs a computational cost of O(n2) and requires the prior knowledge
of the inlier error bound.

The least-median-of-squares (LMedS) (Rousseeuw, 1984), on the other hand, does not
require any prior knowledge. For the 1D averaging problem, the LMedS can be obtained by
finding the data point that yields the smallest median deviation from the rest. This would
involve O(n2 log n) computations. Like the median, the LMedS has a breakdown point of
50%.

Another method that does not rely on a known inlier error bound is MINPRAN (Stewart,
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1995). This method is more robust than the LMedS, as it can handle more than 50% outliers.
However, it is slower than the LMedS and has a random nature.

In this chapter, we propose RODIAN, a novel robust measure of central tendency. Our
method is inspired by the core idea of MINPRAN (Stewart, 1995): We assume that the
outliers follow a uniform distribution and find the median in the bounded region that is least
likely to contain outliers only. Unlike MINPRAN, however, our method is deterministic and
runs in time O(n log n).1 Also, unlike RANSAC (Fischler and Bolles, 1981) and Huber-like
cost functions (Huber, 1981), no parameter tuning is needed to account for different inlier
distributions. Our experiments show that RODIAN can handle more than 50% outliers,
outperforming the median and the LMedS (Rousseeuw, 1984) in terms of robustness.

11.2 Method

11.2.1 Main Idea

Suppose that we are given a set of numbers. Each number is either an inlier or an outlier,
but we do not know which is which. Assuming that the inliers are scattered around a certain
number µ, how can we estimate µ from this noisy, outlier-contaminated data? Our approach
is to find the most densely populated region in the data and take the median value in that
region. Now the question is how to determine this region.

One simple heuristic approach is to build a histogram and find the tallest bin. Then, the
edges of this bin correspond to the upper and lower bounds of the densest region. This is a
reasonable approach, but there is one problem: The histogram can be constructed in many
different ways. If we constrain the lower edge of the first bin to be the minimum value
and the upper edge of the last bin to be the maximum value, then we can obtain multiple
histograms by varying the number of bins. So, which histogram is the right one to use?

Our answer to this question is that we choose the histogram with the bin that is least
likely to have occurred by chance. For any histogram, each of its bins have its associated
probability of randomness. For example, if all bins have the exact same height, we can
deduce that the numbers are uniformly distributed, and thus random in this sense. By the
same token, if one of the bins is significantly taller than the others, then it is unlikely that it
occurred due to the randomness. In other words, this very tall bin has a low probability of
randomness.

Essentially, what we propose is to build multiple histograms with the different numbers of
bins, evaluate the probability of randomness associated with the tallest bin of each histogram,
and choose the one that yields the smallest probability of randomness. This is because the
minimum probability of randomness implies the maximum probability of containing mostly
inliers. This process is illustrated in Fig. 11.1.

1This is made possible because, unlike MINPRAN, we do not use random sampling and we fix the number
of inlier bounds we evaluate (by fixing the number of histograms, as will be explained in Section 11.2).
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The remaining question is how exactly we compute this probability of randomness. Ba-
sically, we adopt a similar idea proposed by Stewart (Stewart, 1995) and compute the proba-
bility in a binomial distribution, assuming that the random outliers are uniformly distributed
across the entire range. Note that if a trial has a probability of success p, the probability of
obtaining k successes from n trials is given by

P (k) =

(
n

k

)
pk(1− p)n−k. (11.1)

In our problem, p is the probability of a random outlier falling inside the tallest bin, k is the
frequency of this bin, and n is the size of the data. Since an outlier can fall inside any other
bins with an equal probability, we have p = 1/b where b is the number of bins. Therefore,
the probability of randomness associated with the bin containing k numbers is given by

P (k) =

(
n

k

)(
1

b

)k (
1− 1

b

)n−k

. (11.2)

In summary, we vary b, find k by building a histogram, compute P (k), and repeat this process
until we find the value of b that leads to the smallest P (k). In the next section, we discuss
several strategies we came up with to improve the efficiency of the algorithm.

We note that, in contrast to our approach, MINPRAN (Stewart, 1995) uses the probability
that at least k data points fall within the inlier region, which is technically different from
(11.2). Empirically, we found that using this probability instead of (11.2) leads to similar
results, but at a slower speed.

11.2.2 Implementation Details

1. How many histograms do we consider?:
According to the pigeonhole principle, if we set the number of bins to n − 1, at least one
bin will contain more than one number. Therefore, one could find the theoretically optimal
number of bins, b∗, by varying b from 1 to n − 1, searching for the minimum P (k) in Eq.
(11.2). However, in our experiment described in Section 11.3, we found that setting b > 20

hardly makes any difference in the final accuracy. We also empirically found that there is
no need to try all integers between 1 and 20, as similar results could be obtained faster with
b ∈ {2, 3, 4, 5, 7, 9, 11, 14, 17, 20}.

2. How to accelerate the histogram building process:
Building multiple histograms one by one can take a long time. For efficiency, we precompute
a table that matches the bin edges and the bin indices of all the histograms. This process is
explained Fig. 11.2. In order to reuse this table on any data, it must be agnostic of the input.
To this end, we normalize the input data such that its range becomes [0, 1]. This way, all
edges get predetermined values between 0 and 1.
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11.2.3 Summary

1. Precompute a table, as described in Fig. 11.2, with A = 0, B = 0.5, C = 1, etc. For
the number of bins, we use b ∈ {2, 3, 4, 5, 7, 9, 11, 14, 17, 20}.

2. Sort and normalize the input such that its range is between 0 and 1, i.e.,

xi ←
xi − xmin

xmax − xmin
for i = 1, 2, · · · , n. (11.3)

3. For each data point, use the precomputed table to find the corresponding bin index in
each histogram.

4. For each histogram, find the frequency of the tallest bin and the associated probability
of randomness (Eq. (11.2)).

5. Find the histogram that leads to the smallest probability.

6. In that histogram, find the median of the numbers that fall inside the tallest bin.

7. Unnormalize this median. The final value is RODIAN.

In Step 4, we discard a histogram if multiple bins have the same maximum frequency. If, by
any chance, all histograms are discarded, we simply take the median of the original input.

Time analysis: The time complexity of Step 2 and 6 is O(n log n). The other steps run
in either O(1) or O(n). Hence, the total time complexity is O(n log n).

11.3 Results

We compare RODIAN with three other methods:

1. Median,

2. Least-median-of-squares (LMedS) (Rousseeuw, 1984), estimated as the data point
with the smallest median (squared) distance to the rest, i.e.,

LMedS = argmin
xi

med
j

(xi − xj)2 , (11.4)

3. Median of the tallest bin of a fixed histogram, obtained in the following way: (i) Build
a histogram with a fixed number of bins, (ii) Collect all the numbers that fall inside the
tallest bin, (iii) Compute their median.

We present the results on synthetic data with two different outlier distributions: a uniform
distribution (Fig. 11.3) and a mixture of a uniform and a Gaussian distribution (Fig. 11.4). In
both cases, RODIAN outperforms the rest in terms of robustness. Especially, Fig. 11.4 shows
that even though we assumed a uniform outlier distribution in our derivation of RODIAN, it
can still handle non-uniform outliers relatively well if σoutlier is larger than σinlier.
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2 bins

3 bins

4 bins

Combined

A B C

A CD E

A B CF G

A F D B E G C
# 

bi
ns

2      1       1       1       2       2       2 
3      1       1       2       2       3       3
4      1       2       2       3       3       4

A-F F-D D-B B-E E-G G-C

(a)

(b)

Figure 11.2: This example illustrates the process of precomputing the tabular data for building histograms:
(a) Suppose that we want to build three histograms with 2, 3 and 4 bins. We collect the bin edges of all
histograms (without duplicates) and sort them in a single array, i.e., [A,F,D,B,E,G,C]. (b) We assign the
corresponding bin index to each region bounded by two successive edges in the combined array. For example,
a number between edge F and D would fall inside the 1st bin in the 2-bin and 3-bin histogram, and 2nd bin in
the 4-bin histogram. These indices are given in the F-D column. By checking which region a number falls in,
we can immediately find the corresponding bin index in each histogram.

Table 11.1 compares the accuracy of RODIAN and the fixed-histogram approach for low
to moderate outlier ratios. It again demonstrates the advantage of using RODIAN over a
fixed histogram. In Fig. 11.5, we plot the mean computation times of the median, LMedS
and RODIAN. We observe that RODIAN is much more scalable than the LMedS.
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Figure 11.3: Mean error comparison under a uniform outlier distribution: The evaluation is carried out with
100 numbers (top row) and 300 numbers (bottom row). The numbers are generated such that the inliers follow
N (µ, σ2) where 0 < µ < 100 and σ ∈ {2, 4, 8, 16}, and the outliers follow U(0, 100). If any number is
outside a range [0, 100], it is removed and regenerated until all numbers are within this range. Each data point
in the graph represents the mean error of 1000 independent runs. It shows that, across different inlier noise
levels, RODIAN is the most robust to outliers. When the inlier noise is small, the breakdown point of RODIAN
is well over 80% (see the first column). Also, RODIAN is generally more accurate than the fixed-histogram
approach.
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Figure 11.4: Mean error comparison under a uniform + Gaussian outlier distribution: The evaluation is
carried out with 100 numbers. The numbers are generated using the same procedure described in Fig. 11.3,
except that half of the outliers now follow N (µoutlier, σ

2
outlier), 0 < µoutlier < 100. We observe that RODIAN

has a higher breakdown point than the median and the LMedS. When the outlier ratio is very high, the fixed-
histogram approach with 20 bins produces smaller errors than RODIAN. However, they both are well beyond
the breakdown point there and comparisons are meaningless, as errors are driven by outliers.
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Figure 11.5: Median computation times (ms) of 1000 runs: The time complexity of the median, LMedS and
RODIAN is O(n log n), O(n2 log n) and O(n log n), respectively. The median is always the fastest, and
RODIAN is faster than the LMedS when #data ⪆ 200. All methods are implemented in MATLAB and run on
a laptop with an Intel’s 4th Gen i7 CPU (2.8 GHz).

Outliers 5 bins 10 bins 20 bins 30 bins 50 bins RODIAN

U
ni

fo
rm

a

0% 0.54 0.64 0.69 0.74 0.80 0.42
10% 0.36 0.50 0.69 0.61 0.61 0.26
20% 0.39 0.51 0.69 0.63 0.62 0.28
30% 0.43 0.54 0.70 0.64 0.63 0.30
40% 0.48 0.57 0.71 0.67 0.66 0.32
50% 0.56 0.61 0.72 0.68 0.68 0.36

G
au

ss
ia

nb

0% 0.54 0.63 0.69 0.73 0.79 0.42
10% 0.46 0.64 0.63 0.64 0.68 0.28
20% 0.47 0.64 0.65 0.66 0.69 0.30
30% 0.47 0.65 0.68 0.67 0.72 0.33
40% 0.50 0.71 0.77 0.77 0.85 0.38
50% 4.36 2.33 2.29 1.93 2.49 1.34

Table 11.1: Using fixed histogram vs. RODIAN: We generate 100 numbers within a range [0, 100] and average
them using either a fixed histogram or RODIAN. This is repeated 10000 times. RODIAN produces the smallest
mean error.
aInliers follow N (µ, 22) with 0 < µ < 100.
bInliers and outliers follow N (µ1, 2

2) and N (µ2, 4
2) with 0 < µ1, µ2 < 100. (Note: This dataset is different

from that of Fig. 11.4.)
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11.4 Limitation

The main limitation of RODIAN is that its accuracy slightly drops when there are too few
outliers (see Table 11.1). This happens because the densest region of the inlier distribution
is not always well aligned with the location of the true mean. While this is certainly not a
favorable property, the average error increase is relatively small (around 10% of the standard
deviation of the inliers in Table 11.1). We believe that this is a tolerable level in outlier-prone
situations, which is the main domain we target in this work.

One potential solution is to detect when the data is outlier-free and switch to a traditional
median. If the type of the inlier distribution is known (e.g., Gaussian), one can use a statistical
test to check if the whole data follow the inlier distribution (e.g., normality test (Thode, 2002,
Shapiro and Wilk, 1965)). In this work, however, we aim to make our method generalizable
to any types of inlier distribution as long as it is unimodal. Discerning outlier-free data in
such a general scenario is left for future work.

11.5 Conclusion

In this chapter, we presented RODIAN, a novel method for averaging outlier-contaminated
numbers. It consists of two main steps: (1) determine a bounded region in the range that
would contain mostly inliers, and (2) find the median within that region. The key idea of
the first step is to assume a uniform outlier distribution and search for the region that is least
likely to have occurred due to outliers. Unlike MINPRAN (Stewart, 1995), where a similar
idea was used, our method is deterministic and runs in time O(n log n). Unlike RANSAC
(Fischler and Bolles, 1981) and Huber-like loss functions (Huber, 1981), we do not need to
tune a control parameter to adapt to different inlier error distributions. Finally, unlike the
median and the LMedS (Rousseeuw, 1984), RODIAN can handle more than 50% outliers.
An extensive evaluation demonstrates its excellent robustness, versatility and scalability.





Chapter 12

What’s Wrong With the Absolute
Trajectory Error?

One of the main limitations of the commonly used Absolute Trajectory Error (ATE) is that
it is highly sensitive to outliers. As a result, in the presence of just a few outliers, it often
fails to reflect the varying accuracy as the inlier trajectory error or the number of outliers
varies. In this chapter, we propose an alternative error metric for evaluating the accuracy of
the reconstructed camera trajectory. Our metric, named Discernible Trajectory Error (DTE),
is computed in four steps: (1) Shift the ground-truth and estimated trajectories such that
both of their geometric medians are located at the origin. (2) Rotate the estimated trajectory
such that it minimizes the sum of geodesic distances between the corresponding camera
orientations. (3) Scale the estimated trajectory such that the median distance of the cameras
to their geometric median is the same as that of the ground truth. (4) Compute the distances
between the corresponding cameras, and obtain the DTE by taking the average of the mean
and root-mean-square (RMS) distance. This metric is an attractive alternative to the ATE, in
that it is capable of discerning the varying trajectory accuracy as the inlier trajectory error
or the number of outliers varies. Using the similar idea, we also propose a novel rotation
error metric, named Discernible Rotation Error (DRE), which has similar advantages to the
DTE. Furthermore, we propose a simple yet effective method for calibrating the camera-
to-marker rotation, which is needed for the computation of our metrics. Our methods are
verified through extensive simulations.

12.1 Introduction

Reconstructing a set of camera poses from images (and other sensors) is an important prob-
lem in computer vision and robotics. It has direct application to autonomous navigation,
photogrammetry, and AR/VR. For this reason, significant research endeavors have been de-
voted to improving the performance of reconstruction algorithms. Active research areas
include odometry (Engel et al., 2018, Leutenegger et al., 2015, Zhang and Singh, 2014),
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simultaneous localization and mapping (SLAM) (Lee and Civera, 2019b, Campos et al.,
2021, Teed and Deng, 2021), visual localization (Sattler et al., 2018, Lynen et al., 2020, Toft
et al., 2022) and structure-from-motion (Agarwal et al., 2011, Schönberger and Frahm, 2016,
Moulon et al., 2013).

In pursuit of developing better reconstruction algorithms, it is also very important to ask
what error metric should be used to evaluate the accuracy of the results. If the ground-truth
data for the camera poses is given, the current de facto standard in the robotics community
is the Absolute Trajectory Error (ATE). An early work that analyzed this metric is (Sturm
et al., 2012). Since the ATE is a single number metric that could be intuitively understood
and easily used for comparison, it has quickly become a popular choice of metric for the the
evaluation of camera localization systems.

The basic idea of the ATE is to translate, rotate, and optionally, scale the estimated trajec-
tory (i.e., 3D positions of the cameras), such that it is as closely aligned to the ground-truth
trajectory as possible. This is done by minimizing the root mean square (RMS) of the dis-
tances between the corresponding cameras in each trajectory, typically using Horn’s (Horn,
1987) and Arun’s (Arun et al., 1987) methods. The ATE is then given by the optimal RMS
value.

Note that the trajectory alignment relies on the optimization under the L2 norm. This
means that the ATE is inevitably sensitive to outliers. This, in and of itself, is not really a
problem, because we want the error metric to clearly indicate whether or not any localization
failure has occurred throughout the trajectory. That said, the actual problem is that, with
just a few outliers, it quickly starts losing its sensitivity to the inlier trajectory error and the
number of outliers. In other words, the ATE reacts much less sharply to the changes in these
two factors when the estimation contains just a few percent of outliers.

For benchmarking, this is certainly not a desirable property as an error metric. For ex-
ample, suppose we are comparing several localization methods on the same dataset and all
of the methods happen to produce grossly erroneous estimates at the same set of locations
in the trajectory. In this case, it would be a loss if we cannot know which methods are more
accurate within the “good” part of the trajectory. Also, if some of the methods fail more
times than others, we would want to know in which of them this happens. Such information
is even more relevant when developing one’s own system. Suppose that a baseline algorithm
fails to reconstruct some of the camera poses because the dataset involves difficult scenarios.
Suppose we make certain changes in the algorithm that enhance its overall accuracy, but we
are still unable to save it from failing. In this case, we would want the error metric to reflect
the overall increase in accuracy, even if there is no change in robustness. In this regard, ATE
may not be the most suitable choice of metric.

In this chapter, we propose a novel alternative to the ATE that addresses this problem.
Our metric, called Discernible Trajectory Error (DTE), is computed using robust trajectory
alignment based on the idea of median. We show that, unlike the ATE, the DTE can reliably
discern the varying accuracy as the inlier trajectory error or the number of outliers varies.
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Also, we extend this idea to rotations and propose a novel rotation error metric called Dis-
cernible Rotation Error (DRE), which has similar advantages to the DTE. Furthermore, we
propose a simple method for calibrating the camera-to-marker rotation, which needs to be
known for the computation of our metrics.

12.2 Related Work

An early work by Sturm et al. (Sturm et al., 2012) provides a discussion comparing the ATE
and the relative error. The relative error can be useful for odometry systems (Küemmerle
et al., 2009, Burgard et al., 2009, Geiger et al., 2012), but it cannot be used for evaluating
the reconstruction from unordered image collections. Zhang and Scaramuzza (Zhang and
Scaramuzza, 2018a) analyze the properties of the ATE and the relative errors for visual(-
inertial) systems. They point out that the ATE decreases when more cameras are used for its
computation. In (Zhang and Scaramuzza, 2018b), the same authors propose a continuous-
time approach for trajectory evaluation, tackling the potential issue of imperfect temporal
association between the ground truth and the estimation.

To our knowledge, in the field of quantitative trajectory evaluation, no previous study has
addressed the sensitivity issue caused by outliers (as described in Section 12.1).

12.3 Notation

When a variable v involves physical measurements, we denote it by ṽ. If a rotation matrix R

has the angle θ and the unit axis of rotation v̂, then R = Exp(θv̂) where Exp(·) is the map-
ping defined by Rodrigues’ formula (Forster, Zhang, Gassner, Werlberger and Scaramuzza,
2017). The geodesic (or angular) distance between two rotation matrices Rj and Rk is de-
fined as the angle of the rotation RjR

⊤
k and is denoted by d(Rj,Rk). Let pi be a 3D point in

the reference frame i. When this point is viewed in another reference frame j, its coordinates
are given by pj = sjiRjipi + tji, where sji ∈ R, Rji ∈ SO(3) and tji ∈ R3 are respec-
tively the relative scale, the rotation matrix and the translation vector that relate the reference
frame i and j. In the reference frame j, the position of the reference frame i is defined as
the position of its origin, which is given by sjiRji0 + tji = tji. Likewise, the position of
the reference frame j in frame i is given by tij . We define the orientation of the reference
frame i with respect to frame j as follows: Imagine three arrows fixed to the reference frame
i, each pointing in the positive x, y and z direction of frame i. Let xj , yj and zj be the
vectors representing these arrows viewed in the reference frame j, i.e., xj = sjiRji[1, 0, 0]

⊤,
yj = sjiRji[0, 1, 0]

⊤ and zj = sjiRji[0, 0, 1]
⊤. Then, the orientation of the reference frame i

with respect to frame j is defined by [x̂j, ŷj, ẑj] = RjiI3×3 = Rji. Likewise, the orientation
of the reference frame j with respect to i is given by Rij . For clarity, we summarize the
notations in Tab. 12.1.
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Interpretation based on the Interpretation based on the view
transformation of a 3D point from another reference frame

Rij The rotation that, together with the translation tij ,
transforms a 3D point from the reference frame j
to i: xi = Rijxj + tij .

The orientation of the reference frame j with respect
to frame i. In other words, the three columns of Rij

correspond to the directions of the standard basis of
frame j viewed in frame i.

tij The translation that, together with the rotation Rij ,
transforms a 3D point from the reference frame j
to i: xi = Rijxj + tij .

The position of the reference frame j in frame i.
More specifically, it is the position of the origin of
frame j viewed in frame i.

Table 12.1: Different interpretations of Rij and tij .

Camera 
reference frame

Estimation world
reference frame

Ground-truth world
reference frame

Markers 
reference frame

Figure 12.1: Reference frames that are relevant for describing the camera pose.

12.4 Preliminaries: ATE

Suppose that we have measured the 3D positions of n cameras in the ground-truth world ref-
erence frame, i.e., t̃gc,i for i = 1, 2, · · · , n. Also, suppose that we have used some computer
vision algorithm and obtained the up-to-scale1 positions of those cameras in the estimation
world reference frame, i.e., tec,i for i = 1, 2, · · · , n. Now, the ATE between those two sets
of camera positions is defined as follows (Sturm et al., 2012):

ATE = min
sge,Rge,tge

√√√√ 1

n

n∑
i=1

∥t̃gc,i − (sgeRgetec,i + tge)∥2. (12.1)

Essentially, this is the minimum RMS of the distances between the ground-truth trajectory
and the estimated trajectory after aligning the latter to the former using SIM(3) transforma-
tion.

Since it is impossible to measure t̃gc directly, we use reflective markers (or other mea-
suring tools) instead to track the position of the cameras. As a result, the reference frame
defined by the markers may not be exactly the same as the camera reference frame (see Fig.
12.1). These two reference frames are related by the following transformation of a 3D point:
pm = smcRmcpc + tmc. Combining this with the transformation between the markers and

1In this work, we assume that the positions are estimated up to scale. For applications where the positions
are estimated at an absolute scale, one can simply fix the relative scale to 1 in the remainder of the paper.
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the ground-truth world reference frame, we get

pg = Rgmpm + tgm (12.2)

= smc RgmRmc︸ ︷︷ ︸
Rgc

pc +Rgmtmc + tgm︸ ︷︷ ︸
tgc

. (12.3)

This means that t̃gc,i in (12.1) can be obtained as follows:

t̃gc,i = R̃gm,itmc + t̃gm,i (12.4)

In practice, if tmc is unknown, we often assume that it is zero, as the markers are usually
placed near the camera2.

In (Horn, 1987) and (Arun et al., 1987), the closed-form optimal solution for (12.1) was
derived. We refer to the original works for the derivations. In the following, we summarize
the steps needed to obtain the solution:

1. Compute the centroids of the two trajectories (i.e., the ground truth, t̃gc,i, and the
estimation, tec,i for all i):

tgc =

∑n
i=1 t̃gc,i
n

, tec =

∑n
i=1 tec,i
n

, (12.5)

Let G and E be the 3×n matrices that have t̃gc,i− tgc and tec,i− tec as their columns,
respectively.

2. Compute the singular value decomposition of EG⊤:

UΣV⊤ = SVD
(
EG⊤) . (12.6)

Then, the optimal rotation Rge is given by

R∗
ge = V

1 0 0

0 1 0

0 0 sign
(
det
(
VU⊤))

U⊤. (12.7)

3. The optimal relative scale sge is given by

s∗ge =

∑n
i=1 G

⊤
i R

∗
geEi∑n

i=1 E
⊤
i Ei

, (12.8)

2It would be problematic to assume that tmc is zero when it is non-negligible. Here is a simple example:
Imagine we have a long rod. We attach the camera at one end, A, and the markers at the other end, B. Now,
suppose that we move A in a circle while keeping B at the center of the circle. Replacing t̃gc,i with t̃gm,i in
(12.1), we get ATE = 0 because t̃gm,i = 0, and thus, sge = 0 and tge = 0. This does not happen if we use
(12.4) without assuming that tmc = 0.
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where Gi and Ei denote the ith column of each matrix.

4. The optimal translation tge is given by

t∗ge = tgc − s∗geR∗
getec. (12.9)

The ATE is then obtained by plugging these results into (12.1). Note that all of these steps
is vulnerable to potential outliers in the estimated trajectory. In the next section, we propose
an alternative error metric that can better handle outliers.

12.5 Discernible Trajectory Error (DTE)

The key idea behind our method is to robustify each step in aligning the two trajectories. The
proposed steps are as follows:

1. Compute the geometric medians of the two trajectories (i.e., the ground truth, t̃gc,i, and
the estimation, tec,i for all i):

t∗gc = argmin
t

n∑
i=1

∥t̃gc,i − t∥, (12.10)

t∗ec = argmin
t

n∑
i=1

∥tec,i − t∥. (12.11)

These can be found efficiently using the Weiszfeld algorithm (Weiszfeld, 1937, Weiszfeld
and Plastria, 2009).

2. Find the optimal rotation Rge that rotates the estimated trajectory such that it mini-
mizes the sum of geodesic distances between the corresponding camera orientations
in each trajectory:

R∗
ge = argmin

Ralign

n∑
i=1

d
(
R̃gc,i,RalignRec,i

)
. (12.12)

Since the geodesic distance is invariant to rotation, we can rearrange this equation into
the following form:

R∗
ge = argmin

Ralign

n∑
i=1

d
(
R̃gc,iR

⊤
ec,i,Ralign

)
. (12.13)

This is the single rotation averaging problem on SO(3) under the L1 norm, and R∗
ge

corresponds to the geodesic median of the rotations R̃gc,iR
⊤
ec,i for all i. We solve this

using the method proposed in (Hartley et al., 2011). Note that the ground-truth camera
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orientations R̃gc,i are obtained as follows:

R̃gc,i = R̃gm,iR̃mc, (12.14)

where R̃mc is the rotation between the camera and the markers reference frame. For
now, we assume that this is already known (see Section 12.7 for its calibration).

3. Compute the relative scale sge as follows:

sge =
med

i
∥t̃gc,i − t∗gc∥

med
i
∥tec,i − t∗ec∥

. (12.15)

Note that the numerator and the denominator correspond to the median absolute devi-
ations (MAD) (Hampel, 1974) to the geometric median of the ground-truth and esti-
mated camera positions, respectively.

4. Compute the translation tge as follows:

tge = t∗gc − sgeR∗
get

∗
ec. (12.16)

5. The DTE is then defined by

DTE =
ϵmean + ϵrms

2
, (12.17)

where

ϵmean =
1

n

n∑
i=1

∥t̃gc,i −
(
sgeR

∗
getec,i + tge

)
∥, (12.18)

ϵrms =

√√√√ 1

n

n∑
i=1

∥t̃gc,i −
(
sgeR∗

getec,i + tge
)
∥2. (12.19)

That is, the DTE is the average of the mean and the RMS trajectory error after aligning
the estimated trajectory using the transformation obtained from the previous steps.

In the following, we provide the rationale behind our approach: First, we use the geo-
metric median of the trajectory instead of the centroid when computing the translation. This
is because the geometric median is significantly more robust to outliers than the centroid
(Lopuhaa and Rousseeuw, 1991). As a result, our translation (12.16) is more robust than that
used for the ATE (12.9).

Second, we obtain the rotation by aligning the camera orientations using the geodesic
median in SO(3). For the same reason as previously stated, this is more robust than (12.7)
which assigns equal weights to both inliers and outliers.
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Third, we compute the scale using the MAD, instead of the variance (as in (12.8)) or
the standard deviation (as in the symmetrical scale proposed in (Horn, 1987)). The inherent
robustness of the MAD (Hampel, 1974) makes our scale estimate (12.15) more reliable than
(12.8) which is highly sensitive to outliers.

Finally, instead of simply taking the mean or the RMS error after alignment, we take their
average in (12.17). This way, the DTE behaves favorably in terms of sensitivity to the inlier
trajectory accuracy and the number of outliers. We elaborate on this behavior in Section
12.8.2.

12.6 Discernible Rotation Error (DRE)

We can apply the similar principle when evaluating the accuracy of the rotations separately:
We define the Discernible Rotation Error (DRE) as the average of the mean and RMS rotation
error after aligning the camera orientations using the same rotation R∗

ge defined in (12.12).
Like the DTE, the DRE is capable of discerning the varying accuracy as the inlier orientation
error or the number of outliers varies. The experimental results are provided in Section
12.8.3.

12.7 Calibration of Camera-to-Marker Rotation

So far, we have assumed that the camera-to-marker rotation R̃mc in (12.14) is known. In this
section, we propose a simple method for calibrating this rotation. The idea is to optimize
two rotations simultaneously by solving the following problem:

argmin
Ralign, R̃mc

n∑
i=1

d
(
R̃gm,iR̃mcR

⊤
ec,i,Ralign

)
. (12.20)

Notice that this is a simple extension of (12.13) which now involves another unknown vari-
able, R̃mc. Assuming that the estimated rotations Rec,i are reasonably accurate and that the
camera orientations are not in any degenerate configurations (which will be discussed later),
solving this problem will lead to an accurate estimate of R̃mc (and Ralign if needed).

Our strategy for solving (12.20) is as follows:

1. Set Rest = I3×3 and θmax = 360◦.

2. Set θ = kθmax where k is a random number between 0 and 1. Also, set v̂ to a random
unit vector.

3. Update R̃mc ← Exp(θv̂)Rest.

4. Since R̃mc is now fixed, (12.20) becomes the single rotation averaging problem on
SO(3) under the L1 norm. Solve it using the method proposed in (Hartley et al.,
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2011).

5. Repeat Step 2–4 one thousand times. Whenever (12.20) yields a smaller cost than the
smallest value ever obtained so far, update Rest ← R̃mc.

6. Repeat Step 2–5 four more times. For each further iteration, update θmax to 30◦, 10◦,
3◦ and 1◦, respectively. Return the final R̃mc in the end.

Essentially, we update the estimate of R̃mc by searching for a better rotation within the ball
of a certain radius around the current estimate. In the outer loop, the radius of the ball
is decreased at each iteration, and in the inner loop, the search is done by simple random
sampling within the ball.

A word of caution: The calibration method described above assumes that the estimated
rotations Rec,i are accurate. Indeed, our experiment shows that their overall accuracy directly
affects the calibration result (see Section 12.8.4). That said, since our method is based on
the robust rotation averaging algorithm (Hartley et al., 2011), the calibration error will be
well within a tolerable limit as long as the estimation is reasonably accurate. For example,
the calibration error is mostly less than 1◦ when the average estimation error is less than 10◦.
To prevent a potential calibration failure in the first place, one may consider performing the
calibration procedure in a separate session using, for example, a checkerboard pattern.

Another important aspect that must be taken into account during calibration is that certain
camera orientations can lead to degeneracy. Specifically, this happens when all cameras have
the same fixed orientation, or when they all rotate around same axis. The proof is given in
Appendix J.

12.8 Results

12.8.1 Comparison between ATE and DTE

We compare the ATE and the DTE in simulation: We generate 100 cameras with random
rotations and positions inside a 1× 1× 1 cube centered at the origin. Then, we corrupt this
ground truth to obtain the estimated trajectory. First, we perturb the camera positions with
Gaussian noiseN (0, σ2) where σ = 0, 0.01, 0.02, . . . , 0.1 unit. Their rotations are perturbed
by Gaussian noise with σ = 5◦. Next, we turn some of the cameras into outliers by assigning
to them random rotations and positions inside a 10×10×10 cube centered at the origin. We
vary the number of outliers between 0 and 10 in our experiment.

Next, we rotate the entire trajectory by a random rotation, scale it by a random number,
and shift it by a random translation vector. The resulting trajectory is taken as our estimation.
Note that here we assume that R̃mc in (12.14) is the identity matrix and that this is known in
advance through calibration. We compute the DTE and the ATE by comparing the estimated
trajectory with the ground truth. This procedure gives us errors in 121 settings because we
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Figure 12.2: Each of the colored blocks represents the normalized ATE and DTE obtained with the given
number of outliers and noise level in camera positions. In the presence of outliers, the DTE shows a more
pronounced gradation than the ATE. This means that it is better at capturing the varying trajectory accuracy as
the number of outliers and the noise level varies.
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Figure 12.3: [Left] The errors corresponding to each column of Fig. 12.2, showing the effect of a varying
number of outliers. We shift each column values such that the error in the outlier-free case is 0. As the number
of outliers increases, the ATE curves flatten, which signals a decreasing level of sensitivity. In contrast, the
DTE maintains a relatively high level of sensitivity. [Right] The errors corresponding to each row of Fig. 12.2,
showing the effect of a varying noise level in camera positions. We shift each row values such that the error in
the zero-noise case is 0. As the number of outliers increases, the slope of the ATE curve drastically decreases,
and with just three outliers, it becomes almost insensitive to the noise level. In contrast, the DTE can still
maintain a moderate level of sensitivity, even with 10 outliers.

have 11 different numbers of outliers and 11 different noise levels in camera positions. We
repeat this 1000 times with independently generated ground-truth trajectories.

In order to aggregate the results from these 1000 runs, we normalize the 121 ATEs and
121 DTEs from each run by dividing them by the maximum ATE and DTE, respectively.
This gives us, per run, 121 errors up to the magnitude of 1, which can be averaged over the
1000 runs.

Fig. 12.2 shows the results. We observe that the ATE quickly becomes insensitive to the
number of outliers and the noise level as the outlier ratio increases. On the other hand, the
DTE can discern the effect of a varying number of outliers and noise level relatively well
across the whole domain of settings. This contrast in their sensitivity is more clearly shown
in Fig. 12.3, where we plot the error values of each row and column of Fig. 12.2 separately.
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Figure 12.4: Each of the colored blocks represents the normalized mean and RMS trajectory errors obtained
with the given number of outliers and noise level in camera positions. The mean error shows a high level of
sensitivity to both the number of outliers and the noise level, whereas the RMS error is sensitive to the number
of outliers, but not so much to the noise level.

12.8.2 Why take the average of the mean and the RMS?

In this section, we explain why we take the average of the mean and RMS error in (12.17).
Fig. 12.4 shows the results if we choose either only the mean or only the RMS. In the left
panel, we observe that the mean error is sensitive both to the number of outliers and the noise
level. This is not a problem per se, but it is when the error reacts similarly to the change in
the number of outliers and the change in the noise level. For many robotics applications,
the estimator’s robustness is generally considered more critical than its overall accuracy.
Therefore, we want the error metric to be substantially more sensitive to a camera tracking
failure than to a slight loss in accuracy. For the RMS error, on the other hand, this is not an
issue (see the right panel of Fig. 12.4), but it is rather insensitive to the inlier noise level. To
overcome the respective weaknesses of the mean and the RMS error, we combine the two
together. This way, the mean error provides the sensitivity to the noise level, while the RMS
error accentuates the effect of outliers.

We point out that (12.17) can be seen as an instance of a more general form involving
variable weights, i.e.,

1

1 + α
ϵmean +

α

1 + α
ϵrms, (12.21)

where α ≥ 0 is the relative weight of ϵrms compared to ϵmean. The greater the value of
α, the stronger the influence of outliers. While the appropriate value for α was 1 in our
experiment, it is also possible to choose a different value for other applications, depending
on the noise/outlier sensitivity.

12.8.3 Evaluation of the DRE

We compare the DRE and the following error metrics:

• Median-1 (Chatterjee and Govindu, 2018), Mean-1 (Lee and Civera, 2021), RMS-1:
These are respectively the median, mean and RMS rotation error after aligning the
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Figure 12.5: Each of the colored blocks represents the rotation error obtained with the given number of outliers
and noise level in camera orientations. Compared to the RMS errors, the median and mean errors have relatively
low sensitivity to the number of outliers and relatively high sensitivity to the noise level. The DRE is sufficiently
sensitive to the noise level, but more to the number of outliers, which is a desirable property.

orientations by minimizing the geodesic distances under the L1 norm.

• Median-2 (Chatterjee and Govindu, 2018), Mean-2 (Lee and Civera, 2021), RMS-2
(Lee and Civera, 2022): These are the counterparts of the previous three, obtained
using the alignment under the L2 norm.

Note that the DRE is basically the average of Mean-1 and RMS-1 errors. To compare these
error metrics in a controlled manner, we generate 100 random ground-truth orientations and
obtain the estimated orientations by (1) rotating the ground truth by some random rotation,
(2) perturbing them with Gaussian noise, and (3) turning some of them into outliers by setting
them to random orientations. We vary the noise level up to 10◦ and the outlier ratio up to
10%. For each configuration, we run 1000 independent simulations. The average results are
shown in Fig. 12.5. From this figure, we can see that the DRE has similar advantages to the
DTE.

12.8.4 Evaluation of our calibration method

To evaluate our calibration method in Section 12.7, we use a similar setup in simulation:
First, we generate 100 random ground-truth orientations, R̃gm,i, and two random rotations,
Ralign and R̃mc. Next, we generate the estimated orientations, Rec,i, by setting them to
R⊤

alignR̃gm,iR̃mc. Finally, we perturb these orientations with Gaussian noise and turn some
of them into outliers by setting them to random orientations. We vary the noise level up to
10◦ and the outlier ratio up to 20%. For each setting, we generate 100 independent datasets.
Then, using the ground-truth and estimated orientations as input, we solve (12.20) and obtain
the estimates of Ralign and R̃mc.
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Figure 12.6: [Top] Calibration errors under a varying noise level in the estimated camera orientations. We fix
the number of outliers to be 5 out of 100. The median error increases somewhat linearly to the noise level.
[Bottom] Calibration errors under a varying number of outliers in the estimated camera orientations. We fix
the noise level to be 5◦. The effect of outliers is relatively small when the outlier ratio is moderate (i.e., at least
up to 20%).

Fig. 12.6 presents the results. It shows that the median calibration error is less than 0.5◦

when the estimation is reasonably accurate (i.e., within 10◦ margin). Also, our method seems
to be robust to a moderate amount of outliers, probably due to the inherent robustness of the
L1 optimization.

Additionally, to check if our estimates converged to a near-optimal solution, we compare
them to the solution we would have got if we had used the ground truth as the initial seed.
We obtain this solution using the same method described in Section 12.7, with the difference
that we set Rest to true R̃mc and θmax to 1◦ in Step 1 and skip Step 6. The result is shown in
Fig. 12.7. We see that the angular differences between our estimates and the ground-truth-
initialized ones are never above 0.04◦. This demonstrates that our calibration algorithm has
a reliable convergence behavior.

12.9 Discussion

Possibly the biggest limitation of the DTE is that it requires the knowledge of the camera-
to-marker rotation R̃mc when obtaining the ground-truth camera orientations using (12.14).
Although our calibration method in Section 12.7 works quite well under a reasonable amount
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Figure 12.7: The angular difference between our calibration results and the results we get when we use the
ground truth as the initial seed: [Left] We vary the noise level in the camera orientations, while fixing the
number of outliers to be 10 out of 100. [Right] We vary the number of outliers, while fixing the noise level in
the camera orientations to be 5 deg.

of noise and outliers, the fact that it requires an additional data inquisition step may be con-
sidered bothersome, especially when compared to the relatively simple process of computing
the ATE. Worse yet, if the ground-truth data had already been collected and if it does not con-
tain the markers’ orientations at all, then it would be simply impossible to compute the DTE.

That said, it would be an overstatement to say that this limitation alone is a major de-
terrent to the wide adoption of the DTE. First, there are cases where the ground-truth cam-
era orientations R̃gc,i in (12.13) are directly available. Examples include synthetic datasets
(e.g., ICL-NUIM (Handa et al., 2014), TartanAir (Wang et al., 2020)) and real-world datasets
where pseudo ground truth data is obtained by a structure-from-motion system3 (e.g., 1DSfM
(Wilson and Snavely, 2014), MVS (Zhou et al., 2018)). Second, some of the most popular
public datasets do provide the information about the relative rotation between the camera
and the markers (or some sort of trackers with the same role). Examples include the TUM
RGB-D (Sturm et al., 2012), KITTI (Geiger et al., 2013) and EuRoC MAV (Burri et al.,
2016) dataset. Lastly, even if a public dataset provides only the markers’ orientations with-
out their relation to the camera’s, it is still possible to estimate the camera-to-marker rotation
using our calibration method in Section 12.7 as long as the cameras are sufficiently rotated
with a varying axis direction and the estimated trajectory is reasonably accurate. To ensure
sufficient estimation accuracy, one could check if the ATE is small enough. If it is too large,
then an accurate part of the trajectory can be extracted manually and used for calibration.

3We refer to (Brachmann et al., 2021) for an excellent discussion of this approach in visual relocalization.
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12.10 Conclusion

In this chapter, we proposed DTE, a novel metric for evaluating the trajectory estimation
accuracy. Unlike the ATE whose sensitivity quickly deteriorates in the presence of a few
outliers, the DTE can robustly capture the varying accuracy as the inlier trajectory error or
the number of outliers varies. This is made possible by aligning the estimated trajectory to
the ground truth using a robust method. The key difference from the ATE is that we com-
pute each of the translation, rotation and scale involved in the trajectory transformation using
the geometric, geodesic and arithmetic median, respectively. Also, instead of simply taking
the mean or the RMS trajectory error as in the ATE, we take the average of the mean and
the RMS. This helps the DTE behave favorably in terms of sensitivity to the inlier trajec-
tory error, as well as the number of outliers. We also proposed the DRE, a rotation-only
metric that is based on the similar idea and has similar advantages to the DTE. Lastly, we
proposed a simple yet effective method for calibrating the camera-to-marker rotation, which
is necessary for the computation of our metrics. In our calibration method, we showed that
degeneracy occurs when the relative camera rotations have the same axis of rotation (up to
a sign). We evaluated our metrics and the calibration method through extensive simulations,
demonstrating the effectiveness of our approach.





Chapter 13

Conclusions

13.1 Summary of Contributions

In this thesis, we studied two aspects that continue to be relevant in many problems of mul-
tiple view geometry: the error criteria and the robustness to outliers. First, we reviewed the
error criteria and cost functions that are commonly used in some of the multiview geometry
problems and asked ours ‘Why do we optimize what we optimize?’ Specifically, we discussed
their implications in practice and proposed novel methods that either combine them or re-
place them with better alternatives. Second, we proposed multiple novel ideas in order to
better handle outliers in geometric reconstruction and achieve state-of-the-art accuracy and
robustness in challenging scenarios with high outlier ratio.

The problems we studied in this thesis are monocular SLAM, two-view and multiview
triangulation, single and multiple rotation averaging, rotation-only bundle adjustment, num-
ber averaging, and quantitative trajectory evaluation.

For monocular SLAM, we proposed LCSD-SLAM, a novel hybrid method that has the
robustness of direct visual odometry and the map-reusing capability of feature-based SLAM
(Chapter 2). The proposed system consists of two loosely-coupled modules running in par-
allel: One module uses a direct method of (Engel et al., 2018) to track the current camera
pose with respect to a local semi-dense map. The other module uses a feature-based method
of (Mur-Artal et al., 2015) to build a globally consistent sparse feature-based map. Our eval-
uation on two public datasets showed that LCSD-SLAM outperforms the state-of-the-art in
terms of tracking accuracy and robustness.

For two-view triangulation, our contributions are two-fold. First, in Chapter 3, we de-
rived the exact closed-form solutions that guarantee global optimality of angular reprojection
errors under the L1 and L∞ norms. These methods are generalizable to any types of cen-
tral camera and significantly more efficient than the existing optimal methods. Second, in
Chapter 4, we proposed a novel variant of the midpoint method that does not involve the
optimization of geometric errors. Although this method is not theoretically optimal, it out-
performs existing methods in terms of overall 2D and 3D accuracy at low parallax.
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In Chapter 6, we proposed an efficient and robust multiview triangulation method. Our
method incorporates an outlier rejection scheme using two-view RANSAC with the mid-
point method. By prescreening the two-view samples prior to triangulation, we improve the
efficiency when the outlier ratio is high. We also compared three different local optimiza-
tion methods (DLT, LinLS and Gauss-Newton) and found that the Gauss-Newton method
is the most accurate in terms of combined 2D and 3D accuracy. Furthermore, we proposed
a novel method for modeling the uncertainty of the triangulated point and showed that this
uncertainty can be used to control the 3D accuracy of the scene reconstruction.

For single rotation averaging, we proposed a fast and robust method using the Weiszfeld
algorithm (Chapter 7). Specifically, we first obtain a robust initial solution by computing the
elementwise median of the input rotation matrices, and then perform the Weiszfeld algorithm
in combination with an outlier rejection scheme. To improve the efficiency, we compute the
approximation of the chordal L1-mean on SO(3) instead of computing the geodesic L1-
mean. Our evaluation showed that our method outperforms (Hartley et al., 2011) in terms of
speed and robustness.

For multiple rotation averaging, we proposed HARA, a novel hierarchical approach
based on a robust incremental initialization of the rotation graph (Chapter 8). The key idea
is to build a spanning tree by first propagating the edges with many strong triplet supports
and later those with gradually weaker and fewer supports. This reduces the risk of adding
outliers in the initial solution, which then enables us to filter outliers prior to nonlinear opti-
mization. Additionally, we showed that using the smoothed L0+ function (Peng et al., 2022)
in the IRLS step of HARA further improves the results on the real datasets.

In Chapter 10, we proposed ROBA, a novel rotation-only method that optimizes the
global rotations of multiple cameras directly using the image measurements and indepen-
dently of the translations and the scene structure. This is made possible by extending the
two-view rotation-only method of (Kneip and Lynen, 2013) and minimizing the aggregated
cost using the Adam optimizer (Kingma and Ba, 2015). Our evaluation on both synthetic and
real datasets demonstrated that our method improves the rotation accuracy when used with
multiple rotation averaging. In Chapter 5, we also provided several geometric interpretations
of the normalized epipolar error, which is what the cost function of ROBA is based on.

In Chapter 11, we proposed RODIAN, a novel method for robustly averaging numbers
contaminated by a large proportion of outliers. Inspired by MINPRAN (Stewart, 1995), we
assume that the outliers are uniformly distributed within the range of the data and search for
the region that is least likely to contain outliers only. The median of the numbers within this
region is then taken as RODIAN. Compared to existing methods, RODIAN has the advantage
that it is fast, deterministic and highly robust without relying on a known inlier error bound.

Finally, in Chapter 12, we proposed the DTE, a novel error metric for quantitative tra-
jectory evaluation. Unlike the commonly used ATE whose sensitivity quickly deteriorates in
the presence of just a few outliers, the DTE can robustly discern the varying accuracy as the
inlier trajectory error or the number of outliers varies. This is mainly because we use more
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robust, median-based methods when computing the translation, rotation and scale of the tra-
jectory alignment. In addition, we proposed the DRE, a rotation-only metric that uses the
similar idea and has similar advantages to the DTE. We also proposed a simple yet effective
method for calibrating the camera-to-marker rotation, which is required for computing both
DTE and DRE.

13.2 Future Work

In this section, we discuss some of the possible directions for future work.

• LCSD-SLAM proposed in Chapter 2 has two main limitations: First, the relative scale and
initial pose estimation described in Section 2.6.1 does not resolve the scale discrepancy
between the direct and the feature-based map until the keyframes are marginalized. The
real-time tracking accuracy can be improved by continuously adjusting the scale of one
map to match that of the other. Second, the robustness of the LCSD-SLAM depends
entirely on the robustness of DSO-reduced described in Section 2.7.1. The robustness
could be improved by using DSO-default as the direct module, but it may incur excessive
computational cost. A more practical solution would be to consider using an additional
sensor, such as an inertial measurement unit (IMU). Visual-inertial SLAM systems are
generally more robust than vision-only systems (Von Stumberg et al., 2018, Mur-Artal
and Tardós, 2017), and at the same time, the absolute scale of the map is also estimated.
For this reason, it would be interesting to develop the visual-inertial LCSD-SLAM and
compare it against the vision-only LCSD-SLAM, as well as other existing visual-inertial
methods.

• The uncertainty estimation method proposed for multiview triangulation in Chapter 6 has
not been compared against other methods. It would be interesting to compare this method
with the uncertainty estimation using the inverse of the Gauss-Newton Hessian matrix
(Hartley and Zisserman, 2003, p.144). Also, our method uses the mean reprojection error
to compute the uncertainty, which is not the ideal strategy if cameras have different reso-
lutions. A possible direction for future work would then be to estimate the triangulation
uncertainty based angular errors, such we can take into account the different resolutions
and focal lengths of the cameras.

• The L0+ optimization proposed in Chapter 9 was effective for multiple rotation averaging
on the tested datasets because the error distributions of the datasets happen to match the
PDF associated with the cost function. Unfortunately, there is no guarantee that this would
be the case for other datasets. A more elegant solution would be to adapt c and p in (9.2)
according to the error distributions at each iteration of the IRLS.

• Our work on rotation-only bundle adjustment in Chapter 10 has three main limitations:
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1. The effectiveness of ROBA has not been demonstrated in a full SfM pipeline. Would
the final results be significantly different after bundle adjustment with and without
ROBA in the pipeline? Answering this specific question is left for future work.

2. We have not compared our optimization method with other methods. For example,
is it really better to use the Adam optimizer (Kingma and Ba, 2015) instead of the
commonly used Levenberg-Marquardt algorithm (Moré, 1978)? What about other
stochastic optimization methods, such as AMSGrad (Reddi et al., 2018) and AdamW
(Loshchilov and Hutter, 2019)? Again, answering these questions is left for future
work.

3. The current version of ROBA is not robust to outliers, and it is not straightforward
to robustify it without incurring excessive computational cost. We speculate that it
may be more effective to handle outliers prior to ROBA than within. This could be
achieved by further boosting the robustness of the multiple rotation averaging and/or
the relative pose estimation step in the pipeline shown in Fig. 1.2.

• We believe that RODIAN proposed in Chapter 11 can be useful in some geometric prob-
lems, such as translation averaging. Application of RODIAN to motion averaging in SfM
is left for future work.

• Another interesting future work would be to evaluate existing translation estimation algo-
rithms using the trajectory evaluation method proposed in Chapter 12. Ultimately, the best
outcome would be the development of a novel translation estimation method that gives
smaller DTEs than the existing methods.



Appendix

A Derivation of (2.7) and (2.8)

Let subscript w, i and j denote the world reference frame, the previous and the current
keyframe, respectively. Also, let subscript D and F denote the direct and the feature-based
module, respectively. Suppose that two modules have the same camera axes convention.
Now, let the relative scale between the two modules be s, such that for an arbitrary point p,

spi|D = pi|F, (A.1)

spj|D = pj|F = Rji|Fpi|F + tji|F. (A.2)

Then, we have

spj|D = s(Rji|Dpi|D + tji|D) (A.3)

= Rji|D(spi|D) + stji|D (A.4)
(A.1)
= Rji|Dpi|F + stji|D (A.5)

Subtracting (A.5) from (A.2) leads to

(Rji|F −Rji|D)pi|F + tji|F − stji|D = 0. (A.6)

For (A.6) to hold for pi|F = 0:
tji|F = stji|D. (A.7)

Likewise, for (A.6) to hold for pi|F ̸= 0,

Rji|F = Rji|D. (A.8)

On the other hand, we know that

pi|D = Riw|Dpw|D + tiw|D, (A.9)

pj|D = Rjw|Dpw|D + tjw|D. (A.10)
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Hence,

pw|D
(A.9)
= (Riw|D)

-1(pi|D − tiw|D) = (Riw|D)
T(pi|D − tiw|D) = (Riw|D)

Tpi|D − (Riw|D)
Ttiw|D,

(A.11)

pw|D
(A.10)
= (Rjw|D)

-1(pj|D − tjw|D). (A.12)

Equating the right-hand sides of (A.11) and (A.12), we get

pj|D = Rjw|D(Riw|D)
Tpi|D −Rjw|D(Riw|D)

Ttiw|D + tjw|D. (A.13)

This shows that
Rij|D = Rjw|D(Riw|D)

T (A.14)

and

tji|D = −Rjw|D(Riw|D)
Ttiw|D + tjw|D (A.15)

(A.14)
= −Rji|Dtiw|D + tjw|D. (A.16)

Finally, substituting (A.14) and (A.16) into (A.7) and (A.8) leads to (2.7) and (2.8).
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B The Median Errors of the Tested VO/SLAM Methods

ORB ORB DSO DSO Ours Ours
VO SLAM default reduced VO SLAM

M1L 0.046 0.046 0.053 0.076 0.044 0.046

M2L 0.038 0.037 0.050 0.071 0.038 0.037
M3L 0.039 0.039 0.166 0.249 0.040 0.040

M4L 0.064 0.065 0.172 0.163 0.060 0.064

M5L 0.078 0.051 0.101 0.144 0.061 0.065

V11L 0.096 0.097 0.104 0.115 0.089 0.090

V12L 0.127 0.103 0.516 0.136 0.104 0.105

V13L 0.938 0.423 × 0.757 0.608 0.412
V21L 0.080 0.080 0.089 0.090 0.089 0.088

V22L 0.185 0.178 0.210 0.233 0.181 0.178
V23L × × 1.429 1.055 1.174 1.062

ORB ORB DSO DSO Ours Ours
VO SLAM default reduced VO SLAM

M1R 0.040 0.038 0.052 0.076 0.038 0.039

M2R 0.038 0.038 0.052 0.071 0.036 0.036
M3R 0.045 0.043 0.149 0.185 0.043 0.045

M4R 0.074 0.069 0.129 0.174 0.070 0.074

M5R 0.056 0.055 0.095 0.122 0.065 0.060

V11R 0.103 0.104 0.119 0.215 0.100 0.099
V12R 0.125 0.112 0.133 0.161 0.111 0.111
V13R × 0.130 × 0.614 1.277 0.825

V21R 0.103 0.104 0.104 0.116 0.113 0.114

V22R 0.198 0.183 0.255 0.209 0.201 0.191

V23R × × 0.707 0.432 0.345 0.238

Table B.1: [EuRoC MAV] Median absolute trajectory errors eate [m] over 10 runs on each sequence. The best
and the worst results are in blue and red, respectively. The mark × indicates that more than half of the total
runs lost tracking due to challenging scene textures, camera motions or illumination changes.

ORB ORB DSO DSO Ours Ours
VO SLAM default reduced VO SLAM

1 0.744 1.063 0.526 0.799 0.885 0.860

2 19.08 56.03 0.570 0.487 1.412 0.908

3 0.731 0.510 3.393 4.747 3.283 0.529

4 2.458 2.234 0.689 0.770 0.677 0.764

5 × × 1.718 2.004 1.921 1.880

6 1.328 0.037 0.808 1.328 1.358 0.522
7 0.406 0.454 0.604 0.969 0.926 0.931

8 596.9 425.0 0.353 0.483 0.600 0.625

9 0.534 0.393 0.617 1.069 1.057 0.994

10 1.632 1.312 0.289 0.427 0.400 0.564

11 1.086 0.152 0.592 0.847 0.961 0.172

12 2.533 1.646 0.597 0.937 1.000 0.812

13 2.232 2.366 1.388 1.312 1.130 1.216

14 10.05 20.63 0.718 0.666 0.863 0.847

15 1.241 1.498 0.832 1.310 1.340 1.323

16 0.832 0.086 0.514 0.739 0.931 0.603

17 1.777 0.417 2.300 2.684 2.681 1.300

18 5.381 × 1.579 2.135 1.986 0.411
19 6.493 5.621 1.898 3.534 3.673 1.232
20 1.266 0.273 0.754 1.095 1.331 0.295

21 × × 4.219 2.707 2.504 0.230
22 × × 3.954 4.785 4.732 1.131
23 5.140 0.161 0.478 2.344 2.538 0.061
24 5.731 0.263 0.297 0.361 0.275 0.156
25 1.657 0.099 0.821 2.275 2.070 0.081

ORB ORB DSO DSO Ours Ours
VO SLAM default reduced VO SLAM

26 5.386 0.323 3.336 4.756 3.705 0.241
27 3.810 0.198 0.965 1.496 1.530 0.321

28 9.517 0.433 2.185 2.309 2.186 0.121
29 8.255 0.325 0.430 1.232 1.311 0.039
30 1.278 0.046 0.663 1.919 0.821 0.037
31 × × 0.593 0.770 0.738 0.078
32 3.094 0.077 0.320 0.816 0.876 0.070
33 2.726 0.074 1.449 1.730 1.632 0.078

34 2.687 0.105 0.884 9.434 22.54 0.355

35 7.046 0.705 0.578 2.620 2.758 0.290
36 1.465 0.590 5.851 2.898 3.661 0.528
37 0.442 0.103 0.379 0.685 0.709 0.180

38 × × 0.768 1.662 1.966 0.171
39 32.58 0.314 1.293 2.221 2.896 0.210
40 × × 1.805 1.185 1.007 0.164
41 × × 0.897 0.542 0.449 0.195
42 × 0.547 0.889 1.293 1.158 0.084
43 1.388 0.181 0.458 1.963 1.902 0.102
44 1.388 0.065 0.552 1.780 1.713 0.120

45 4.085 0.204 1.258 2.442 2.693 0.227

46 12.09 1.345 0.608 1.415 1.605 0.403
47 12.68 0.252 1.519 2.019 2.234 0.122
48 3.753 0.208 1.089 3.314 2.621 0.060
49 11.40 0.164 × 1.023 1.172 0.195

50 137.2 4.557 0.771 1.830 1.999 1.586

Table B.2: [TUM monoVO] Median alignment errors ealign [m] over 10 runs on each sequence. The best and
the worst results are in blue and red, respectively. The mark × indicates that more than half of the total runs
lost tracking due to challenging scene textures, camera motions or illumination changes.
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C Derivation of the Depths given by the Classic Midpoint
Method

In this section, we derive the equation for computing the depths in the classic midpoint
method, i.e., λmid0 and λmid1 in Fig. 4.2. In literature, the formula has been used many
times without derivation (Kanazawa and Kanatani, 1995, Lindstrom, 2010, Lee and Civera,
2019a). For the sake of completeness, we present the full derivations here. In doing so, we
will use the following properties of the dot product and the cross product operations:

â× (â× b) = â(â · b)− b. (C.17)

(â× b) · (â× c) = b · c− (â · b)(â · c). (C.18)

(a× b)× (a× c) = (a · (b× c)) a. (C.19)

Next, we introduce the following lemma:

Lemma 7 (The Closest Pair of Points on Two Skew Lines)
Consider two skew lines L0(s0) = c0 + s0m0 and L1(s1) = c1 + s1m1 in 3D space. Let
t = c0 − c1 and (r0, r1) be the two points on each line that form the closest pair. Then,

r0 = c0 +
(m̂0 × m̂1) · (m̂1 × t)

∥m̂0 × m̂1∥2
m̂0 (C.20)

and
r1 = c1 +

(m̂0 × m̂1) · (m̂0 × t)

∥m̂0 × m̂1∥2
m̂1. (C.21)

Proof. In geometry, it is a well-known fact that the closest pair of points on two skew
lines lie on the common perpendicular to both lines. In other words, the vector r0 − r1 is
perpendicular to both L0 and L1. Therefore, for some scalar τ ,

r0 − r1 = τ (m̂0 × m̂1) . (C.22)

Since point r0 and r1 are respectively located along L0 and L1, we can write

r0 = c0 + λ0m̂0 and r1 = c1 + λ1m̂1. (C.23)

for some scalar λ0 and λ1. Then, (C.22) becomes

t+ λ0m̂0 − λ1m̂1 = τn, (C.24)
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where n = m̂0 × m̂1. This makes a system of three equations (in each coordinate x, y and
z) with three unknowns λ0, λ1, and τ . Removing τ from the equations leads to

tx + λ0m0x − λ1m1x

nx

=
ty + λ0m0y − λ1m1y

ny

(C.25)

and
ty + λ0m0y − λ1m1y

ny

=
tz + λ0m0z − λ1m1z

nz

. (C.26)

Note that t = [tx, ty, tz]
⊺, n = [nx, ny, nz]

⊺, m̂0 = [m0x,m0y,m0z]
⊺ and m̂1 = [m1x,m1y,m1z]

⊺.
From (C.25) and (C.26), we get

λ0 =
λ1 (m1xny −m1ynx) + tynx − txny

m0xny −m0ynx

(C.27)

and
λ0 =

λ1 (m1ynz −m1zny) + tzny − tynz

m0ynz −m0zny

. (C.28)

Equating the right-hand sides of (C.27) and (C.28) leads to

λ1 =
A−B
C −D

, (C.29)

where

A = (tzny − tynz)(m0xny −m0ynx)

B = (tynx − txny)(m0ynz −m0zny)

C = (m1xny −m1ynx)(m0ynz −m0zny)

= (m̂1 × n)z (m̂0 × n)x ,

D = (m1ynz −m1zny)(m0xny −m0ynx)

= (m̂1 × n)x (m̂0 × n)z .

We can rearrange A−B into

A−B = nyt ·

m0ynz −m0zny

m0znx −m0xnz

m0xny −m0ynx

 . (C.30)
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The latter term in the dot product of (C.30) is equal to m̂0 × n. Thus,

A−B = nyt · (m̂0 × (m̂0 × m̂1))

(C.17)
= nyt · (m̂0 (m̂0 · m̂1)− m̂1)

= ny ((m̂0 · m̂1) (m̂0 · t)− m̂1 · t)
(C.18)
= −ny (m̂0 × m̂1) · (m̂0 × t) . (C.31)

We can rearrange C −D into

C −D = (m̂1 × n)z (m̂0 × n)x − (m̂1 × n)x (m̂0 × n)z

= ((m̂1 × n)× (m̂0 × n))y
(C.19)
= ((n · (m̂1 × m̂0))n)y

=
(
−∥m̂0 × m̂1∥2n

)
y

= −∥m̂0 × m̂1∥2ny. (C.32)

Substituting (C.31) and (C.32) into (C.29) gives

λ1 =
(m̂0 × m̂1) · (m̂0 × t)

∥m̂0 × m̂1∥2
. (C.33)

Finally, substituting (C.33) into (C.23) leads to (C.21). Equation (C.20) can be derived anal-
ogously. ■

By substituting Rf0 and f1 into m0 and m1, we can use lemma 7 to obtain λmid0 and
λmid1 in Fig 4.2:

λmid0 =
(Rf̂0 × f̂1) · (f̂1 × t)

∥Rf̂0 × f̂1∥2
, λmid1 =

(Rf̂0 × f̂1) · (Rf̂0 × t)

∥Rf̂0 × f̂1∥2
. (C.34)

Finally, letting p = Rf̂0 × f̂1, q = Rf̂0 × t and r = f̂1 × t, we get (4.8).
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D Nomenclature for Chapter 6

Symbol Description

ci Camera/View with index i.

V Set of all cameras/views observing the point to be triangulated.

xw Ground-truth 3D point to be triangulated, expressed in the world reference frame.

xw
est Estimated 3D point, expressed in the world reference frame.

xi Estimated 3D point, expressed in the camera reference frame of ci.

Ri and ti Rotation matrix and translation vector that together transform the vector in the world frame to the
reference frame of ci, e.g., xi = Rix

w
est + ti.

Pi Extrinsic matrix of ci, i.e., Pi = [Ri | ti].

cwi The position of ci in the world reference frame, i.e., ci = −R⊤
i ti.

Ki Camera calibration matrix of ci.

ui Noisy pixel coordinates of the point observed in ci, i.e., ui =

[
ui

vi

]
.

u′
i Pixel coordinates of the projection of xw

est in ci, i.e., u′
i =

[
u′
i

v′i

]
=

[
1 0 0

0 1 0

]
Kixi

(xi)3
.

fi Normalized image coordinates of the point observed in ci, i.e., fi = K−1
i

[
ui

1

]
.

fwi Feature ray of the point observed in ci, expressed in the world reference frame i.e., fwi = R⊤
i fi.

I Set of all inlying cameras/views for a given xw
est that meet the following conditions: (1) It has a small

reprojection error, and (2) it satisfies the cheirality.

βmax Maximum parallax angle of I, i.e., βmax = max
{
∠
(
fwj , fwk

)
| j, k ∈ I

}
.

twjk Vector difference of the camera position j and k, i.e., twjk = cwj − cwk .

ejk Normalized epipolar error for the point observed in cj and ck , i.e., ejk :=
∣∣∣̂twjk ·

(
f̂wj × f̂wk

)∣∣∣.
pjk , qjk and rjk Quantities for the point observed in cj and ck , defined as follows: pjk = f̂wj · f̂wk , qjk = f̂wj · t̂wjk ,

rjk = f̂wk · t̂wjk .

λj and λk Depths of the midpoint anchors for the point observed in cj and ck .

bgood Boolean that indicates the validity of the resulting midpoint.

e2D 2D reprojection error of xw
est in V , i.e., e2D =

[
· · · , ∥ui − u′

i∥, · · ·
]⊤

for all i ∈ V .

e2D Mean 2D reprojection error of xw
est in I.

σ3D Estimated magnitude of the 3D uncertainty of xw
est.

J Jacobian matrix in the Gauss-Newton algorithm.

r Residual vector in the Gauss-Newton algorithm.

G 3D regular grid that maps (|I|, e2D, βmax) to σ3D .

η Desired probability that at least one outlier-free pair is sampled in the two-view RANSAC.

ϵ Estimated inlier ratio.

mmin Minimum number of pairs to be sampled in RANSAC to achieve the desired η.

C Cost function of the hypothesis in RANSAC.

δ2D Inlier threshold for the reprojection error.

δepipolar Threshold for the normalized epipolar error.

δupdate Threshold for detecting the convergence of the mean reprojection error in the Gauss-Newton algorithm.

δlower Lower threshold for the cosine of the considered angle.

δupper Upper threshold for the cosine of the considered angle.

δpair Maximum number of pairs to be sampled for computing the maximum parallax angle.



184 Appendix

E Derivation of (6.10)
For camera ci, the 2D reprojection error of point xw

est is obtained by

[
(uerror)i
(verror)i

]
= −

[
ui

vi

]
+

[
1 0 0

0 1 0

]
Ki

[(Pi)row1x̃
w
est] / [(Pi)row3x̃

w
est]

[(Pi)row2x̃
w
est] / [(Pi)row3x̃

w
est]

1

 , (E.35)

where

[
ui

vi

]
is the image coordinates of the observed point, Ki =

ki11 ki12 ki13

ki21 ki22 ki23

ki31 ki32 ki33

 is the

intrinsic matrix1, Pi = [Ri | ti] is the extrinsic matrix, and x̃w
est =

[
xw
est

1

]
is the homogeneous

coordinates of xw
est. Rewriting (E.35), we get[

(uerror)i
(verror)i

]
=

[
ki13 − ui

ki23 − vi

]
+

1

(x̃w
est)

⊤ (Pi)⊤row3

[
(x̃w

est)
⊤ (ki11(Pi)

⊤
row1 + ki12(Pi)

⊤
row2

)
(x̃w

est)
⊤ (ki21(Pi)

⊤
row1 + ki22(Pi)

⊤
row2

)] . (E.36)

Now, for n views observing the same point, define the following matrices:

M1 := [k113 − u1, · · · , kn13 − un] , (E.37)

M2 := [k123 − v1, · · · , kn23 − vn] , (E.38)

M3 :=
[(

k111(P1)
⊤
row1 + k112(P1)

⊤
row2

)
, · · · ,

(
kn11(Pn)

⊤
row1 + kn12(Pn)

⊤
row2

)]
, (E.39)

M4 :=
[(

k121(P1)
⊤
row1 + k122(P1)

⊤
row2

)
, · · · ,

(
kn21(Pn)

⊤
row1 + kn22(Pn)

⊤
row2

)]
, (E.40)

M5 :=
[
(P1)

⊤
row3, · · · , (Pn)

⊤
row3

]
∈ R3×n, (E.41)

M6 := (x̃w
est)

⊤M5, (E.42)

M7 := M1 +
(
(x̃w

est)
⊤M3

)
⊘M6, (E.43)

M8 := M2 +
(
(x̃w

est)
⊤M4

)
⊘M6. (E.44)

Then, by stacking (E.36) for all views, we obtain the following equation:[
(uerror)1 (uerror)2 · · · (uerror)n
(verror)1 (verror)2 · · · (verror)n

]
=

[
M7

M8

]
, (E.45)

which leads to[
(uerror)

2
1 + (verror)

2
1 , · · · , (uerror)

2
n + (verror)

2
n

]
= M7 ◦M7 +M8 ◦M8. (E.46)

Therefore, the reprojection errors can be obtained as vector e2D in the following form:

e⊤2D = (M7 ◦M7 +M8 ◦M8)
◦1/2 . (E.47)

1Here, we treat the matrix Ki as if it is a full matrix, but it is in fact an upper triangular matrix: ki11 and
ki22 are the focal lengths in the horizontal and vertical direction, respectively. ki13 and ki23 are the horizontal
and vertical coordinate of the principal point, respectively. ki12 is the skew coefficient. ki21, ki31 and ki32 are
equal to zero, and ki33 is equal to one.
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F Derivation of (6.33)

Expanding (E.35), we get

(uerror)i

= −ui +
ki11(ri11x

w
est + ri12y

w
est + ri13z

w
est + ti1) + ki12(ri21x

w
est + ri22y

w
est + ri23z

w
est + ti2)

ri31xw
est + ri32ywest + ri33zwest + ti3

+ ki13,

= −ui + ki13 +
(ki11ri11 + ki12ri21)x

w
est + (ki11ri12 + ki12ri22)y

w
est + (ki11ri13 + ki12ri23)z

w
est + ki11ti1 + ki12ti2

ri31xw
est + ri32ywest + ri33zwest + ti3

,

(verror)i

= −vi +
ki21(ri11x

w
est + ri12y

w
est + ri13z

w
est + ti1) + ki22(ri21x

w
est + ri22y

w
est + ri23z

w
est + ti2)

ri31xw
est + ri32ywest + ri33zwest + ti3

+ ki23

= −vi + ki23 +
(ki21ri11 + ki22ri21)x

w
est + (ki21ri12 + ki22ri22)y

w
est + (ki21ri13 + ki22ri23)z

w
est + ki21ti1 + ki22ti2

ri31xw
est + ri32ywest + ri33zwest + ti3

,

where rijk and kijk respectively indicate the elements of Ri and Ki at the j-th row and k-th
column, and tij indicate the j-th element of ti. To compute the Jacobian, we take the partial
derivatives with respect to xwest, y

w
est and zwest.

Using the fact that
d

dx

(
ax+ b

cx+ d

)
=

ad− bc
(cx+ d)2

, we obtain the following:

∂(uerror)i

∂xw
est

=
(ki11ri11 + ki12ri21)(ri32y

w
est + ri33z

w
est + ti3)− ri31 [(ki11ri12 + ki12ri22)y

w
est + (ki11ri13 + ki12ri23)z

w
est + ki11ti1 + ki12ti2]

(ri31xw
est + ri32ywest + ri33zwest + ti3)2

∂(verror)i

∂xw
est

=
(ki21ri11 + ki22ri21)(ri32y

w
est + ri33z

w
est + ti3)− ri31 [(ki21ri12 + ki22ri22)y

w
est + (ki21ri13 + ki22ri23)z

w
est + ki21ti1 + ki22ti2]

(ri31xw
est + ri32ywest + ri33zwest + ti3)2

∂(uerror)i

∂ywest

=
(ki11ri12 + ki12ri22)(ri31x

w
est + ri33z

w
est + ti3)− ri32 [(ki11ri11 + ki12ri21)x

w
est + (ki11ri13 + ki12ri23)z

w
est + ki11ti1 + ki12ti2]

(ri31xw
est + ri32ywest + ri33zwest + ti3)2

∂(verror)i

∂ywest

=
(ki21ri12 + ki22ri22)(ri31x

w
est + ri33z

w
est + ti3)− ri32 [(ki21ri11 + ki22ri21)x

w
est + (ki21ri13 + ki22ri23)z

w
est + ki21ti1 + ki22ti2]

(ri31xw
est + ri32ywest + ri33zwest + ti3)2

∂(uerror)i

∂zwest

=
(ki11ri13 + ki12ri23)(ri31x

w
est + ri32y

w
est + ti3)− ri33 [(ki11ri11 + ki12ri21)x

w
est + (ki11ri12 + ki12ri22)y

w
est + ki11ti1 + ki12ti2]

(ri31xw
est + ri32ywest + ri33zwest + ti3)2

∂(verror)i

∂zwest

=
(ki21ri13 + ki22ri23)(ri31x

w
est + ri32y

w
est + ti3)− ri33 [(ki21ri11 + ki22ri21)x

w
est + (ki21ri12 + ki22ri22)y

w
est + ki21ti1 + ki22ti2]

(ri31xw
est + ri32ywest + ri33zwest + ti3)2
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Letting x̃w
est =

[
xw
est

1

]
and Pi = [Ri | ti], we can rearrange these equations as follows:

∂(uerror)i
∂xwest

=
a⊤
1ix̃

w
est

((Pi)row3x̃w
est)

2 ,
∂(verror)i
∂xwest

=
a⊤
2ix̃

w
est

((Pi)row3x̃w
est)

2 , (F.48)

∂(uerror)i
∂ywest

=
a⊤
3ix̃

w
est

((Pi)row3x̃w
est)

2 ,
∂(verror)i
∂ywest

=
a⊤
4ix̃

w
est

((Pi)row3x̃w
est)

2 , (F.49)

∂(uerror)i
∂zwest

=
a⊤
5ix̃

w
est

((Pi)row3x̃w
est)

2 ,
∂(verror)i
∂zwest

=
a⊤
6ix̃

w
est

((Pi)row3x̃w
est)

2 , (F.50)

with

a1i =


0

ki11(ri11ri32 − ri31ri12) + ki12(ri21ri32 − ri31ri22)

ki11(ri11ri33 − ri31ri13) + ki12(ri21ri33 − ri31ri23)

ki11(ri11ti3 − ri31ti1) + ki12(ri21ti3 − ri31ti2)

 , a2i =


0

ki21(ri11ri32 − ri31ri12) + ki22(ri21ri32 − ri31ri22)

ki21(ri11ri33 − ri31ri13) + ki22(ri21ri33 − ri31ri23)

ki21(ri11ti3 − ri31ti1) + ki22(ri21ti3 − ri31ti2)

 ,

(F.51)

a3i =


ki11(ri12ri31 − ri32ri11) + ki12(ri22ri31 − ri32ri21)

0

ki11(ri12ri33 − ri32ri13) + ki12(ri22ri33 − ri32ri23)

ki11(ri12ti3 − ri32ti1) + ki12(ri22ti3 − ri32ti2)

 , a4i =


ki21(ri12ri31 − ri32ri11) + ki22(ri22ri31 − ri32ri21)

0

ki21(ri12ri33 − ri32ri13) + ki22(ri22ri33 − ri32ri23)

ki21(ri12ti3 − ri32ti1) + ki22(ri22ti3 − ri32ti2)

 ,

(F.52)

a5i =


ki11(ri13ri31 − ri33ri11) + ki12(ri23ri31 − ri33ri21)

ki11(ri13ri32 − ri33ri12) + ki12(ri23ri32 − ri33ri22)

0

ki11(ri13ti3 − ri33ti1) + ki12(ri23ti3 − ri33ti2)

 , a6i =


ki21(ri13ri31 − ri33ri11) + ki22(ri23ri31 − ri33ri21)

ki21(ri13ri32 − ri33ri12) + ki22(ri23ri32 − ri33ri22)

0

ki21(ri13ti3 − ri33ti1) + ki22(ri23ti3 − ri33ti2)

 .

(F.53)

The vector a1i, · · · , a6i can also be written in the following form:

a1i = ki11b1i + ki12b2i, a2i = ki21b1i + ki22b2i, a3i = ki11b3i + ki12b4i, (F.54)

a4i = ki21b3i + ki22b4i, a5i = ki11b5i + ki12b6i, a6i = ki21b5i + ki22b6i, (F.55)

with

b1i := ri11 [0, ri32, ri33, ti3]
⊤− ri31 [0, ri12, ri13, ti1]

⊤, b2i := ri21 [0, ri32, ri33, ti3]
⊤− ri31 [0, ri22, ri23, ti2]

⊤, (F.56)

b3i := ri12 [ri31, 0, ri33, ti3]
⊤− ri32 [ri11, 0, ri13, ti1]

⊤, b4i := ri22 [ri31, 0, ri33, ti3]
⊤− ri32 [ri21, 0, ri23, ti2]

⊤, (F.57)

b5i := ri13 [ri31, ri32, 0, ti3]
⊤− ri33 [ri11, ri12, 0, ti1]

⊤, b6i := ri23 [ri31, ri32, 0, ti3]
⊤− ri33 [ri21, ri22, 0, ti2]

⊤. (F.58)
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Putting (F.48)–(F.50) together in one vector, we get

∂(uerror)i/∂x
w
est

∂(verror)i/∂x
w
est

∂(uerror)i/∂y
w
est

∂(verror)i/∂y
w
est

∂(uerror)i/∂z
w
est

∂(verror)i/∂z
w
est


= ((Pi)row3x̃

w
est)

−2A⊤
i x̃

w
est with Ai = [a1i a2i a3i a4i a5i a6i] .

(F.59)
Therefore, the Jacobian matrix for camera ci is given by

Ji =


∂(uerror)i
∂xwest

∂(uerror)i
∂ywest

∂(uerror)i
∂zwest

∂(verror)i
∂xwest

∂(verror)i
∂ywest

∂(verror)i
∂zwest

 (F.60)

= vec−1
2×3

(
((Pi)row3x̃

w
est)

−2A⊤
i x̃

w
est

)
(F.61)

= ((Pi)row3x̃
w
est)

−2 vec−1
2×3

(
A⊤

i x̃
w
est

)
. (F.62)
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G Monotone Smoothing used in Section 6.3.3

Before
After

(a)
0 1 0 1

(b) (c)

Figure G.1: (a): Monotone smoothing example on 1D data. (b)–(c): 2D example before and after smoothing.

We propose a simple smoothing method that enforces the monotonicity. Our method
iteratively updates the data using the following rule:

xnew ←
1

|N |
∑
i∈N

f(xold, xi) (G.63)

with f(xold, xi) =

xold if xold and xi fulfills the desired monotonicity,

0.5(xold + xi) otherwise,

where xold and xnew are the data values before and after the update, N is the set of its neigh-
bors, and xi∈N is the data value of the i-th neighbor. Basically, (G.63) means that each
neighbor of the data point xold votes on how much xold should change. If the neighbor xi
is already fulfilling the desired monotonicity, it votes for no change. Otherwise, it votes for
changing xold to 0.5(xold + xi) in order to bring it closer to itself. Once every neighbor casts
a vote, we average it to determine xnew. Since we do not want the update order to influence
the result, we use the pre-update values for the neighbor xi. Only after every data point
is assigned a new value, we update them altogether at once. We repeat this process until
convergence.

Fig. G.1(a) illustrates an example on 1D data. Each data point has either one neighbor
(if it is located at the boundary) or two neighbors. Notice that our method flattens out the
“bumps” that violate the desired monotonicity. Fig. G.1(b)–(c) shows an example on 2D
data. In this case, each data point has either two neighbors (if it is located at the corner),
three neighbors (if it is located at the edge), or four neighbors. In contrast to the noisy input,
the output is both smooth and monotonic.

In Section 6.3.3, we apply the smoothing on a 3D grid.



Appendix 189

H More Results from ROBA on the Synthetic Dataset

In Chapter 10, we compared the rotational accuracy of RA and ROBA (initialized by RA)
in terms of the mean angular error after the L1 alignment. Here, we show additional com-
parisons in other metrics, namely the median angular error after the L1 alignment, and the
mean/median angular error after the L2 alignment. Fig. H.2–H.4 and Table H.3 present the
results. With these additional metrics, we reach the same conclusion as in Chapter 10. That
is,

1. ROBA improves the results of RA in all scenarios considered.

2. Both RA and ROBA yield more accurate results for fewer views, farther points and
pure rotations, all of which lead to a denser view-graph. In these cases, the relative
error reduction by ROBA is also larger.
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Figure H.2: [Synthetic - md1] Comparison of RA and ROBA (initialized by RA) in terms of the median
angular error after L1 alignment.

RA ROBA

4

0.06

RA ROBA RA ROBA RA ROBA RA ROBA RA ROBA

RA ROBA RA ROBA RA ROBA RA ROBA RA ROBA RA ROBA

Baseline Fewer views More views Closer pointsMore points Farther points

Less noise More noise Planar scene Pure rotations Pure + Planar Mixed rotations

5

4

3

2

1

0

3

2

1

0

2

1.5

1

0.5

0

8

6

4

2

0

10

8

6

4

2
0

1.2

0.8

0.4

0

5

4

3

2

1

0

5

4

3

2

1

0

3.5
3

2

1

0

0.04

0.02

0

0.06

0.04

0.02

0

0.25

0.2

0.15

0.1

0.05

0

M
ea

n 
er

ro
r 

(d
eg

)
M

ea
n 

er
ro

r 
(d

eg
)

5 12 1.6

2.5

1.5

0.5

Figure H.3: [Synthetic - mn2] Comparison of RA and ROBA (initialized by RA) in terms of the mean angular
error after L2 alignment.
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Figure H.4: [Synthetic - md2] Comparison of RA and ROBA (initialized by RA) in terms of the median
angular error after L2 alignment.

Settings %E eE ẽE
RA RA + ROBA (100 iter) %better

mn1 md1 mn2 md2 mn1 md1 mn2 md2 mn1 md1 mn2 md2
Baseline 6.0% 2.21 1.39 2.31 2.08 2.33 2.18 1.26 1.20 1.26 1.30 100% 99% 100% 100%
More points 7.2% 2.51 1.52 1.78 1.73 1.80 1.75 1.05 1.03 1.06 1.10 100% 100% 100% 100%
Fewer camera 21% 2.23 1.38 1.08 0.97 1.09 0.99 0.33 0.31 0.33 0.32 100% 100% 100% 100%
More views 2.0% 2.24 1.40 4.35 4.13 4.39 4.26 3.73 3.45 3.75 3.89 100% 98% 100% 97%
Closer points 4.0% 2.57 1.65 5.74 5.35 5.83 5.52 3.99 3.75 4.05 4.10 100% 97% 100% 99%
Farther points 10% 1.97 1.22 0.69 0.65 0.70 0.67 0.36 0.34 0.36 0.35 100% 100% 100% 100%
Less noise 6.0% 2.25 1.40 2.30 2.15 2.31 2.17 1.17 1.15 1.19 1.27 100% 99% 100% 100%
More noise 5.9% 2.23 1.38 2.31 2.17 2.32 2.24 1.48 1.39 1.48 1.44 100% 98% 100% 99%
Planar scene 7.4% 2.61 1.56 1.74 1.69 1.75 1.69 0.80 0.75 0.80 0.77 100% 100% 100% 100%
Pure rotations 100% 0.89 0.74 0.045 0.042 0.045 0.042 0.026 0.024 0.026 0.024 100% 100% 100% 100%
Pure + Planar 100% 0.89 0.74 0.045 0.042 0.045 0.042 0.027 0.024 0.027 0.024 100% 100% 100% 100%
Mixed rotations 37% 3.13 1.66 0.17 0.16 0.17 0.16 0.069 0.066 0.069 0.067 100% 100% 100% 100%

%E , %better: proportion of existing edges and improved results,
eE , ẽE : mean and median angular errors (in deg) of the relative rotations from all edges.

Table H.3: [Synthetic datasets] Median results of the 100 simulations in each setting.
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I Evolution of Total Cost and Rotation Errors of ROBA on
the Real Datasets

In Fig. I.5, we plot the evolution of the relative errors aggregated from all 15 real-world
datasets. Notice that most of the improvement occurs in less than 50 iterations. In Fig. I.6–
I.20, we show the evolution of the total cost and the different rotation error metrics for each
dataset. We make the following observations:

1. The cost always overshoots after the first rotation update. From the second update
onward, it starts decreasing with occasional “mini” overshoots. From additional ex-
periments, we found that reducing the step size α in the Adam optimizer prevents this
overshoot, but this leads to a slower rate of convergence. Interestingly, the overshoot
of the total cost does not necessarily lead to the overshoot of the rotation errors.

2. On most datasets, the cost converges after 30–40 iterations. However, a relatively
small change in the total cost can sometimes lead to a non-negligible change in the
angular errors. For example, see the results for MDR, PDP and TOL in Fig. I.9, I.13,
I.16 after 40 iterations.

3. For ROF dataset in Fig. I.15, the final total cost after 100 iterations is larger than the
initial total cost. However, all of the rotation error metrics are reduced.

These observations indicate that there is a discrepancy between the total cost and the rotation
errors. This suggests that when we implement the stopping criteria for the iterations, we need
to consider not only the change in the total cost, but also the number of iterations and the
angular change in the rotations.
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Figure I.5: [Real datasets] Relative errors with respect to the initial errors. mn/md/1/2: mean/median angular
error after L1/L2 alignment.
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Figure I.6: [ALM - Alamo] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.7: [ELS - Ellis Island] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.8: [GDM - Gendarmenmarkt] mn/md/1/2: mean/median angular error (in deg) after the L1/L2

alignment,
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Figure I.9: [MDR - Madrid Metropolis] mn/md/1/2: mean/median angular error (in deg) after the L1/L2

alignment,

Total cost md1 mn2

100

md2

100806040200
Number of iterations

806040

mn1

100806040200
Number of iterations

200
Number of iterations

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

100806040200
Number of iterations

0

0.2

0.4

0.6

0.8

1

100806040200
Number of iterations

0

0.5

1

1.5

2

0
100
200
300
400
500
600
700 1

Figure I.10: [MND - Montreal Notre Dame] mn/md/1/2: mean/median angular error (in deg) after the L1/L2

alignment,
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Figure I.11: [NTD - Notre Dame] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.12: [NYC - NYC Library] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.13: [PDP - Piazza del Popolo] mn/md/1/2: mean/median angular error (in deg) after the L1/L2

alignment,
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Figure I.14: [PIC - Picadilly] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.15: [ROF - Roman Forum] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 align-
ment,
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Figure I.16: [TOL - Tower of London] mn/md/1/2: mean/median angular error (in deg) after the L1/L2

alignment,
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Figure I.17: [TFG - Trafalgar] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.18: [USQ - Union Square] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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Figure I.19: [VNC - Vienna Cathedral] mn/md/1/2: mean/median angular error (in deg) after the L1/L2

alignment,
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Figure I.20: [YKM - Yorkminster] mn/md/1/2: mean/median angular error (in deg) after the L1/L2 alignment,
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J Proof of Degeneracy in Section 12.7

First, it is useful to know the following identity (Eade, 2017):

RExp(v)R⊤ = Exp (Rv) . (J.64)

This means that for any rotation matrices R1 and R2,

∠
(
R1R2R

⊤
1

)
= ∠ (R2) , (J.65)

where ∠(·) denotes the angle of the rotation. When orientations are related by rotations
around the same axis, they can be parameterized in two different ways using (J.64):

Ri = Exp(θiv̂)R1 = R1Exp(θiŵ) for all i, (J.66)

where θi is the signed angle of rotation between the first and the ith orientation, and v̂ and
ŵ are the axes of rotation that are related by v̂ = R1ŵ.

Next, we prove the following proposition: When solving (12.20), degeneracy occurs if
all cameras have the same fixed orientation, or if the axes of their relative rotations are all
the same. Since the former case is a special instance of the latter case (i.e., when the rotation
angle is 0), we focus on the latter here. First, we rewrite the summand in (12.20) as

si = ∠
(
R̃gm,iR̃mcR

⊤
ec,iR

⊤
align

)
. (J.67)

If the ground-truth orientations R̃gm,i are related to each other by rotations around the same
axis (say v̂), we have

R̃gm,i
(J.66)
= Exp(θiv̂)R̃gm,1. (J.68)

Now, consider the following update:(
R̃mc

)
new
← R̃⊤

gm,1Exp(av̂)R̃gm,1R̂mc, (J.69)

(Ralign)new ← Exp(av̂)Ralign, (J.70)

where a is an arbitrary angle. Substituting (J.68), (J.69) and (J.70) into (J.67) and using the
fact that the rotations are commutative if they share the same axis, we get

si = ∠
(
Exp(av̂)R̃gm,iR̃mcR

⊤
ec,iR

⊤
alignExp(av̂)

⊤
)
. (J.71)

According to (J.65), the angle given by (J.71) must be the same as that given by (J.67). Thus,
by varying a in (J.69) and (J.70), we get infinitely many solutions for R̃mc and Ralign that
lead to the exact same cost in (12.20), resulting in degeneracy.

A similar argument can be made when the estimated orientations Rec,i are related to
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one another by rotations around the same axis (say ŵ). In this case, it is convenient to
parameterize Rec,i as follows:

Rec,i
(J.66)
= Rec,1Exp(θiŵ). (J.72)

Now, consider the following update:(
R̃mc

)
new
← R̂mcExp(aŵ), (J.73)

(Ralign)new ← RalignRec,1Exp(aŵ)R⊤
ec,1, (J.74)

where a is an arbitrary angle. Substituting (J.72), (J.73) and (J.74) into (J.67) and again using
the fact that the rotations are commutative if they share the same axis, we end up with the
same expression as (J.67). Thus, by varying a in (J.73) and (J.74), we get infinitely many
solutions that lead to the exact same cost in (12.20), resulting in degeneracy.
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