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Abstract

The localization and tracking of sound sources using microphone arrays

is a problem that, even if it has attracted attention from the signal pro-

cessing research community for decades, remains open. In recent years,

deep learning models have surpassed the state-of-the-art that had been

established by classic signal processing techniques, but these models still

struggle with handling rooms with strong reverberations or tracking mul-

tiple sources that dynamically appear and disappear, especially when we

cannot apply any criteria to classify or order them. In this thesis, we fol-

low the ideas of the Geometric Deep Learning framework to propose new

models and techniques that mean an advance of the state-of-the-art in the

aforementioned scenarios.

As the input of our models, we use acoustic power maps computed us-

ing the SRP-PHAT algorithm, a classic signal processing technique that

allows us to estimate the acoustic energy received from any direction of

the space and, therefore, compute arbitrary-shaped power maps. In ad-

dition, we also propose a new technique to analytically cancel a source

from the generalized cross-correlations used to compute the SRP-PHAT

maps. Based on previous narrowband cancellation techniques, we prove

that we can project the cross-correlation functions of the signals captured

by a microphone array into a space orthogonal to a given direction by

just computing a linear combination of time-shifted versions of the orig-

inal cross-correlations. The proposed cancellation technique can be used

to design iterative multi-source localization systems where, after having

found the strongest source in the generalized cross-correlation functions or



in the SRP-PHAT maps, we can cancel it and find new sources that were

previously masked by the first source.

Before being able to train deep learning models we need data, which, in

the case of following a supervised learning approach, means a dataset of

multichannel recordings with the position of the sources accurately labeled.

Although there exist some datasets like this, they are not large enough to

train a neural network and the acoustic environments they include are not

diverse enough. To overcome this lack of real data, we present a technique

to simulate acoustic scenes with one or several moving sound sources and,

to be able to perform these simulations as they are needed during the

training, we present what is, to the best of our knowledge, the first free

and open source room acoustics simulation library with GPU acceleration.

As we prove in this thesis, the presented library is more than two orders

of magnitude faster than other state-of-the-art CPU libraries.

The main idea of the Geometric Deep Learning philosophy is that the

models should fit the symmetries (i.e. the invariances and equivariances)

of the data and the problem we want to solve. For single-source direction

of arrival estimation, the use of SRP-PHAT maps as inputs of our models

makes the rotational equivariance of the problem undeniably clear and,

after a first approach using 3D convolutional neural networks, we present

a model using icosahedral convolutions that approximate the equivariance

to the continuous group of spherical rotations by the discrete group of the

60 icosahedral symmetries. We prove that the SRP-PHATmaps are a much

more robust input feature than the spectrograms typically used in many

state-of-the-art models and that the use of the icosahedral convolutions,

combined with a new soft-argmax function that obtains a regression output

from the output of the convolutional neural network by interpreting it as

a probability distribution and computing its expected value, allows us to

dramatically reduce the number of trainable parameters of the models

without losing accuracy in their estimations.



When we want to track multiple moving sources and we cannot use any

criteria to order or classify them, the problem becomes invariant to the

permutations of the estimates, so we cannot directly compare them with

the ground truth labels since we cannot expect them to be in the same

order. This kind of models has typically been trained using permutation

invariant training strategies, but these strategies usually do not penalize

the identity switches and the models trained with them do not keep the

identity of every source consistent during the tracking. To solve this issue,

we propose a new training strategy, which we call sliding permutation

invariant training, that is able to optimize all the features that we could

expect from a multi-source tracking system: the precision of the direction of

arrival estimates, the accuracy of the source detections, and the consistency

of the assigned identities.

Finally, we propose a new kind of recursive neural network that, instead

of using vectors as their input and their state, uses sets of vectors and is

invariant to the permutation of the elements of the input set and equivari-

ant to the permutations of the elements of the state set. We show how this

is the behavior that we should expect from a tracking model which takes

as inputs the estimates of a multi-source localization model and compare

these permutation-invariant recursive neural networks with the conven-

tional gated recurrent units for sound source tracking applications.





Resumen

La localización y el tracking de fuentes sonoras mediante agrupaciones de

micrófonos es un problema que, pese a llevar décadas siendo estudiado,

permanece abierto. En los últimos años, modelos basados en deep lear-

ning han superado el estado del arte que hab́ıa sido establecido por las

técnicas clásicas de procesado de señal, pero estos modelos todav́ıa pre-

sentan problemas para trabajar en espacios con alta reverberación o para

realizar el tracking de varias fuentes sonoras, especialmente cuando no es

posible aplicar ningún criterio para clasificarlas u ordenarlas. En esta te-

sis, se proponen nuevos modelos que, basados en las ideas del Geometric

Deep Learning, suponen un avance en el estado del arte para las situaciones

mencionadas previamente.

Los modelos propuestos utilizan como entrada mapas de potencia acústica

calculados con el algoritmo SRP-PHAT, una técnica clásica de procesado

de señal que permite estimar la enerǵıa acústica recibida desde cualquier di-

rección del espacio. Además, también proponemos una nueva técnica para

suprimir anaĺıticamente el efecto de una fuente en las funciones de corre-

lación cruzada usadas para calcular los mapas SRP-PHAT. Basándonos

en técnicas de banda estrecha, se demuestra que es posible proyectar las

funciones de correlación cruzada de las señales capturadas por una agrupa-

ción de micrófonos a un espacio ortogonal a una dirección dada simplemen-

te usando una combinación lineal de las funciones originales con retardos

temporales. La técnica propuesta puede usarse para diseñar sistemas ite-

rativos de localización de múltiples fuentes que, tras localizar la fuente

con mayor enerǵıa en las funciones de correlación cruzada o en los mapas



SRP-PHAT, la cancelen para poder encontrar otras fuentes que estuvieran

enmascaradas por ella.

Antes de poder entrenar modelos de deep learning necesitamos datos. Esto,

en el caso de seguir un esquema de aprendizaje supervisado, supone un

dataset de grabaciones de audio multicanal con la posición de las fuentes

etiquetada con precisión. Pese a que existen algunos datasets con estas

caracteŕısticas, estos no son lo suficientemente extensos para entrenar una

red neuronal y los entornos acústicos que incluyen no son suficientemente

variados. Para solventar el problema de la falta de datos, presentamos

una técnica para simular escenas acústicas con una o varias fuentes en

movimiento y, para realizar estas simulaciones conforme son necesarias

durante el entrenamiento de la red, presentamos la que es, que sepamos,

la primera libreŕıa de software libre para la simulación de acústica de salas

con aceleración por GPU. Tal y como queda demostrado en esta tesis, esta

libreŕıa es más de dos ordenes de magnitud más rápida que otras libreŕıas

del estado del arte.

La idea principal del Geometric Deep Learning es que los modelos debeŕıan

compartir las simetŕıas (i.e. las invarianzas y equivarianzas) de los datos

y el problema que se quiere resolver. Para la estimación de la dirección de

llegada de una única fuente, el uso de mapas SRP-PHAT como entrada de

nuestros modelos hace que la equivarianza a las rotaciones sea obvia y, tras

presentar una primera aproximación usando redes convolucionales tridi-

mensionales, presentamos un modelo basado en convoluciones icosaédricas

que son capaces de aproximar la equivarianza al grupo continuo de rota-

ciones esféricas por la equivarianza al grupo discreto de las 60 simetŕıas

del icosaedro. En la tesis se demuestra que los mapas SRP-PHAT son una

caracteŕıstica de entrada mucho más robusta que los espectrogramas que

se usan t́ıpicamente en muchos modelos del estado del arte y que el uso

de las convoluciones icosaedricas, combinado con una nueva función soft-

argmax que obtiene una salida de regresión a partir del resultado de una



red convolucional interpretándolo como una distribución de probabilidad

y calculando su valor esperado, permite reducir enormemente el número

de parámetros entrenables de los modelos sin reducir la precisión de sus

estimaciones.

Cuando queremos realizar el tracking de varias fuentes en movimiento y

no podemos aplicar ningún criterio para ordenarlas o clasificarlas, el pro-

blema se vuelve invariante a las permutaciones de las estimaciones, por lo

que no podemos compararlas directamente con las etiquetas de referencia

dado que no podemos esperar que sigan el mismo orden. Este tipo de mo-

delos se han entrenado t́ıpicamente usando estrategias de entrenamiento

invariantes a las permutaciones, pero estas normalmente no penalizan los

cambios de identidad por lo que los modelos entrenados con ellas no man-

tienen la identidad de cada fuente de forma consistente. Para resolver este

problema, en esta tesis proponemos una nueva estrategia de entrenamien-

to, a la que llamamos sliding permutation invariant training (sPIT), que

es capaz de optimizar todas las caracteŕısticas que podemos esperar de un

sistema de tracking de múltiples fuentes: la precisión de sus estimaciones

de dirección de llegada, la exactitud de sus detecciones y la consistencia de

las identidades asignadas a cada fuente.

Finalmente, proponemos un nuevo tipo de red recursiva que usa conjuntos

de vectores en lugar de vectores para representar su entrada y su estado y

que es invariante a las permutaciones de los elementos del conjunto de en-

trada y equivariante a las del conjunto de estado. En esta tesis se muestra

como este es el comportamiento que debeŕıamos esperar de un sistema de

tracking que toma como entradas las estimaciones de un modelo de loca-

lización multifuente y se compara el rendimiento de estas redes recursivas

invariantes a las permutaciones con redes recursivas GRU convencionales

para aplicaciones de tracking de fuentes sonoras.
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1

Introduction

In this introduction chapter, we first make a general description of the context of the

research developed along this thesis and the main ideas that guided it (section 1.1).

Then, we make a brief review of the start-of-the-art of sound source localization and

tracking with neural networks (section 1.2) and introduce the concept of Geometric

Deep Learning (section 1.3). Finally, we summarize the main contributions and results

of this thesis (section 1.4) and outline the structure of the following chapters of the

thesis (section 1.5).

1.1 Context and motivation

Microphone array signal processing is a research field with a long trajectory within

the signal processing community. Even if we can find earlier references ([1, 2] for

example), it is typically considered that their study and implementation started in the

late 70s and early 80s [3] and, since then, there has been a constant stream of both

research studies and applications. However, in the last few years, after the revolution

originated by the rebirth of neural networks in computer vision applications, there

has been an explosion of new research studies that, using deep learning techniques,

have clearly overcome the classic techniques that had constituted the state-of-the-art

for years. This improvement in the capabilities of, for example, speech recognition

systems, has led to the emergence of new applications of microphone arrays, such as

1



1. INTRODUCTION

smart speakers or teleconference devices, that have increased even more the attention

to multichannel signal processing research.

Focusing on the main topic of this dissertation, sound source localization and

tracking have always been active fields of research since, apart from their own ap-

plications, they are a preliminary step for many other applications such as speech

enhancement using beamforming techniques. Knowing this, it is not surprising that,

in recent years, many deep learning-based techniques had been proposed. However,

although these new techniques improve the state-of-the-art previously established by

the classical methods, we are still far from being able to perfectly estimate and track

the position of sound sources in highly reverberant spaces using compact arrays.

In this context of a growing number of proposals for new sound source localization

and tracking systems based on deep learning, the main ideas that guided this thesis

were:

1. Exploiting the classic signal processing knowledge of the problem: even if the per-

formance of the classical methods quickly decreased in presence of reverberation,

they were based on interesting analytical models that allow us to extract spatial

information from the audio signals recorded with microphone arrays. Even if

end-to-end approaches can also offer some advantages, carefully designed pre-

processing stages can provide more refined input features to the neural networks

and allow them to obtain better results.

2. Using models that fit the nature of the problem: many of the first deep learning-

based proposals for sound source localization and tracking were straightforward

translations of the techniques that had obtained good results in computer vision

problems using the spectrograms of the microphone array signals as input images

of convolutional neural networks (CNNs). However, audio spectrograms have a

very different nature than images since, while both dimensions of an image rep-

resent the same magnitude (space), the two dimensions of an audio spectrogram

represent two different magnitudes (time and frequency) with different proper-

ties and characteristics. What started more like an intuition at the beginning of

this thesis has recently been properly formalized under the name of Geometric

2
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Deep Learning (GDL), an approach with growing popularity in many fields and

applications of deep learning.

3. Avoiding the use of non-causal elements: while most of the classic methods were

strictly causal, and therefore they were feasible for real-time applications (al-

though the computational complexity of some of them made impossible their

real-time implementation at that time), many of the techniques based on deep

learning that have been proposed in the recent literature include non-causal el-

ements (such as bidirectional recurrent units) that make impossible any kind

of real-time implementation independently of the available computational re-

sources. However, although sound source localization can be performed offline

in some applications (like audio forensics), most require real-time estimations.

1.2 Sound source localization and tracking using neu-

ral networks

In this section, we present a brief review of the state-of-the-art of sound source lo-

calization and tracking using deep learning techniques, especially focusing on those

techniques that have influenced this work. For a more in-depth and extensive litera-

ture review, we recommend the remarkable survey by Grumiaux et al. [4].

In general, we can consider that, in order to design a deep learning system, we

must choose: i) with which representation of the input of our problem we will feed our

neural network, ii) with which neural architecture we are going to process that input,

iii) how the neural network should represent the result of our problem and iv) how we

are going to train it (including with which dataset).

1.2.1 Input representation

Although feeding a neural network directly with the raw audio samples obtained with

a microphone array is also possible [5, 6, 7], most of the state of the state-of-the-art

techniques perform some preprocessing over the audio samples to provide their neural

networks with a higher level representation of the acoustic scene.

3
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The simplest (and most general) input features typically used as input of neural

networks for sound source localization are multichannel spectral representations. Some

proposals use only magnitude spectrograms [8, 9, 10] but, since most of the localization

information is usually on the inter-channel phase differences, it is more common to

use phase spectrograms [11, 12, 13] or combinations of both, stacking two separate

channels with the magnitude and phase spectrum [14, 15, 16, 17] or the real and

imaginary part of the spectrum [18, 19, 20], or using a single channel with complex

values [21].

Other proposals use higher-level representations more suited for the sound source

localization task, such as generalized cross-correlation coefficients [22, 23, 24, 25] or

Ambisonics intensity vectors [26, 27, 28]. We could consider as the highest level repre-

sentations those based on classical signal processing techniques that allow computing

spatial representation of an acoustic scene from the multichannel signals of a micro-

phone array, which can be based on the eigendecomposition of the cross-correlation

matrices of the signals, such as MUSIC [29] or ESPRIT [30], or in acoustic power

maps, such as the SRP-PHAT method [31, 32]. For example, we can find the use of

the eigenvectors of the cross-correlation matrices as inputs of a neural network in [33],

the use of MUSIC-based spatial pseudo-spectrums in [34], or SRP-PHAT power maps

in [35] and in the works presented in this thesis.

Finally, it is worth mentioning that combining several of the input features dis-

cussed above is also a popular approach [36, 37, 38]. A comparison between several of

these combinations can be found in [39].

1.2.2 Network architecture

Although multi-layer perceptrons were the most popular approach among the first

proposals for sound source localization using neural networks [22, 23], the attention

soon moved towards the architecture that was revolutionizing several computer vision

problems: convolutional neural networks (CNNs) [9, 12, 37, 40]. In order to improve

the tracking capabilities of CNNs, many authors propose the use of one or several re-

current layers after them, creating recurrent convolutional neural networks (RCNNs)

[14, 41, 42]; however, most of these RCNNs use bidirectional recurrent layers that are
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non-causal and, therefore, are not suitable for real-time applications. More recently,

other architectures have also been proposed for sound source localization and track-

ing, like the use of attention mechanisms [43, 44, 45] or autoencoder and variational

autoencoder architectures [46, 47, 48, 49, 50].

In section 1.3, we provide a further analysis of the different approaches of using

CNNs for sound source localization and their advantages and disadvantages.

1.2.3 Output representation

Among the first proposals for sound source localization based on deep learning, the

most popular approach to encode the direction of arrival (DOA) at the network out-

put was to define a set of possible DOAs and use a network output to represent the

probability of each one of them containing a sound source; i.e., they solved the local-

ization problem as a classification problem [22, 51, 52]. In the case of single-source

localization, the estimated DOA simply corresponds to the maximum of the outputs,

but in the case of multiple sound source localization, we need to use some peak-picking

algorithm to determine the number of sources and which maxima actually correspond

to real sources.

One of the main drawbacks of this classification approach is that the maximum

accuracy that the system can reach is limited by the number of outputs of the network.

This problem is not too serious if we only want to estimate the azimuth component

of the DOAs, but the number of outputs needed to keep the desired resolution grows

quadratically if we want to estimate both the azimuth and the elevation and even

cubically if we also want to estimate the distance or if we want to estimate XYZ

Cartesian coordinates in the case of distributed arrays. Increasing the number of

outputs of the network does not only mean increasing its size (and therefore the

computational complexity of the system) but also the size of the training dataset, which

should contain enough examples of sources in all the possible positions (especially

when using fully-connected layers at the end of the network, which does not have any

geometrical structure and whose outputs are completely independent regardless of the

position they represent).

5
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On the other hand, most of the recent proposals seem to prefer regression ap-

proaches, where the DOAs are directly provided by the continuous value of the outputs

of the network. Since DOAs are generally expressed in terms of spherical coordinates

(azimuth and elevation or polar angle) we could expect them to be the most common

representation at the output of the regression networks, but it has been proved that

estimating unitary 3D Cartesian vectors pointing towards the DOA provides better

results [53, 54] and this is the most popular approach nowadays [14, 38, 55].

However, the regression approach makes working with several sources more com-

plex. First, we need to set a maximum number of sources the system can work with

(which will determine the number of outputs of the network) and, after that, we need

to establish a strategy to determine which outputs are representing active sources at

every time frame. To do this, many proposals use an additional binary-classification

output for every localization output to act as activity detector (which can also be used

for sound event detection when every one of these outputs represents a different event

class) [14, 38, 56, 57] but in the case of using 3D Cartesian vectors to represent the

DOA, we can also encode the activity estimation into the norm of the DOA vector,

leading to what it is called activity-coupled Cartesian direction of arrival (ACCDOA)

in [58].

In sound event localization and detection (SELD) techniques, it is frequently sup-

posed that only one source of each type of event can be simultaneously present and a

localization output is employed for each one of them. However, systems designed to

locate several sources of the same class (e.g., several unknown speakers) have to face

the source permutation problem [13], which is further explained in section 1.3.

Finally, it is worth saying that there are also some proposals where the neural

networks are not used to directly estimate the DOAs, but to help other classical

methods through time-frequency mask estimation [8, 59], signal dereverberation [60],

or time difference of arrival estimation [48] for example.

1.2.4 Training and datasets

Although some unsupervised, semi-supervised, or weakly supervised approaches have

been recently proposed [16, 46, 50], most of the deep learning-based sound source

6



1.3 Geometric deep learning

localization systems use supervised strategies where the train dataset includes the

ground-truth DOA of the sound sources present in the recordings This leads us to

another problem: the lack of large datasets of multichannel recordings with accurate

spatial annotations.

To solve this issue, the image source method (ISM) [61] is typically used to sim-

ulate RIRs for different positions and in different acoustic environments and then

signals taken from single-channel datasets are convolved with them to be used for

training; speech corpora are typically used to obtain the source signals, but more di-

verse datasets can also be used [62]. Since we can simulate as many positions and

scenarios as we want, this should allow us to have infinite-size training datasets, but,

due to the time needed to execute the ISM, most proposals first generate a fixed-size

dataset and then use it to train their models instead of generating the training signals

on the fly, which has been proven to provide better results in other acoustic signal

processing problems [63]. The use of synthetic signals for training usually generates

a drop in the performance of the models when tested on actual real-world recordings

and several techniques have been proposed in recent years to fix this issue [64, 65, 66].

1.3 Geometric deep learning

1.3.1 General concepts

Geometric Deep Learning (GDL) is an emerging concept in the deep learning commu-

nity that attempts to propose a unifying framework for many well-known deep learning

architectures and that also provides a new approach to design new architectures for

new kinds of data [67]. Their main idea is that, although in multidimensional spaces

the amount of data needed to learn a distribution grows exponentially with the number

of dimensions (phenomena known as the curse of dimensionality), we can still work on

them by exploiting their symmetries (i.e., those transformations that leave invariant

the properties of interest).

A function f is said to be invariant to a group of transformationsG if applying them

to the function input does not affect the function output (i.e., f (g(x)) = f(x) ∀g ∈ G)

and it is said to be equivariant if applying the transformation to the input leads to

7



1. INTRODUCTION

the same transformation in the output (i.e., f (g(x)) = g (f(x)) ∀g ∈ G). Probably,

one of the clearest and best-known examples of invariant and equivariant models that

have succeeded in deep learning are the CNNs [68]. Bidimiensional convolutions are

equivariant to translations and, according to the GDL ideas, this would explain the

success of convolutional architectures in many computer vision problems that are

invariant or equivariant to translations, such as image classification [69, 70] and image

segmentation [71, 72] respectively.

Conventional CNNs can be generalized to group-equivariant convolutional neural

networks (G-CNNs) [73] to exploit the equivariance to different types of symmetry

groups. These symmetry groups can be discrete, such as discrete sets of rotations in

the plane [74], in the space [75] or in 3D surfaces [76], or continuous, such as the group

SO(3) of spherical rotations [77].

Another family of models that can be analyzed under the perspective of GDL are

the graph neural networks (GNNs). The convolutional [78, 79], attentional [80, 81]

and message-passing [82] approaches are all invariant to the permutations of their

nodes and many other permutation-invariant models, such as Deep Sets [83] or the

Transformers [84], can be seen as special cases of GNNs for fully connected graphs.

Continuing with this GDL approach, we can find even modifications of the GNNs

to include spatial information in their nodes and make them invariant both to their

permutation and to spatial transformations [85].

1.3.2 Geometric deep learning for sound source localization

and tracking

Since the success of 2D CNNs on computer vision tasks led to their use over audio

spectrograms for many audio analysis and processing tasks, it makes sense to analyze if

the translational equivariance of 2D convolutions is also an interesting property when

analyzing audio spectrograms. For the time dimension, translational equivariance

means equivariance to time shifts, which might be an interesting property in most

of the audio processing tasks, however, in the frequency domain, the translational

equivariance means equivariance to frequency shifts, whose interest is much more

difficult to determine.
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In the case of sound source localization, the main source of information is usually

considered to be in the phase difference between the signals, but the phase difference

for a determined position depends on the frequency, so being equivariant to frequency

shifts does not seem to be an interesting property for this task. In the case of mul-

tichannel signals, the spectrum of every channel is typically used as a different input

channel for the CNNs, but we can find a different approach in [12]. In this work, the

time is not taken into account and the convolutions are performed along the channel

axis. Since they use uniform linear arrays, we can expect the phase differences for a

given DOA to be the same between adjacent channels, and therefore being equivariant

to shifts in this dimension can be positive according to the ideas of GDL, but this

would not be true for other array geometries.

As commented in the previous section, several input features are usually combined

in sound source localization systems by stacking them as additional input channels

for the convolutional layers. This might make sense from the point of view of GDL

when all of them represent spectral features with the same frequency scale, but this is

not the case when combining features that do not share the same axis, such as spec-

trograms and generalized cross-correlation (GCC) coefficients, where the frequencies

of the spectrograms that are analyzed with each GCC coefficients as the convolution

kernels move along them are arbitrary. In any case, it is worth saying that archi-

tectures that do not follow the GDL ideas can still obtain good results; for example,

good results were obtained in [39] by stacking spectrograms and GCC coefficients and

applying 2D convolutions over them. This means that spectrograms and GCCs indeed

contain important information for sound source localization, but GDL suggests that

there are probably better architectures to analyze them.

As we have seen, most of the deep-learning models for sound source localization

and tracking that we can find in the literature present equivariances that are not

shared by their inputs and by the problem that they are intended to solve. However,

there are at least two symmetries closely related to this problem that we can exploit

to design sound source localization and tracking models: the rotational symmetry and

the source permutation symmetry.

9
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1.3.2.1 Rotational symmetry

Since, in compact arrays, DOAs are typically represented in spherical coordinates, we

could expect the sound source localization problem to exhibit a strong equivariance

to spherical rotations. However, this symmetry is not easily exploited in many input

representations, especially when working with arbitrary array geometries. In chapter

4, we propose the use of the steered response power with phase transform (SRP-PHAT)

algorithm to obtain spatial representations of the acoustic scene where this symmetry

becomes more obvious and it is easier to design network architectures that are able to

exploit it. It is worth saying that, even if we used the SRP-PHAT algorithm, other

kinds of spatial pseudo-spectrums could also be used, such as those computed with

the multiple signal classification (MUSIC) algorithm, or even a combination of several

techniques stacking different spatial representations as different input channels of the

networks. Finally, spherical harmonics or Ambisonics representations could also be

interesting for designing neural networks equivariant to the spherical rotations of the

sources; some works have been recently proposed in this line [86, 87] but we do not

explore this possibility in this work.

1.3.2.2 Source permutation symmetry

While the rotational symmetry could be ignored and still obtain good localization

results, when we want to locate multiple sound sources and we do not have any valid

criteria to organize them (as it is done in SELD) we have to face the problem of the

source permutation symmetry when training our models; i.e., we cannot expect our

model to output the DOAs in the same arbitrary order that they have in the ground-

truth data of our dataset [13]. The typical way to solve this is to compute the loss

function using the permutation of the sources that generates a better match between

the network output and the ground truth, but choosing a common permutation for

the whole acoustic scene generates local minima in the loss function where the training

usually get stuck and choosing a different permutation for each time instant does not

encourage the model to keep the identities of every output stable (this issue is further

explained in chapter 5).
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The source permutation symmetry has typically been seen as a problem when

trying to train neural networks, but it also opens the door to the design of new

network architectures to exploit it. In chapter 5, we propose both a new loss function

to train multi-source trackers and a new permutation invariant recurrent layer where

the information of every source is encoded in independent embedding vectors whose

order does not affect the network output.

1.4 Main contributions and results of the thesis

The main contributions and results of this thesis are:

1. We present a new analytical method to cancel the effect of a source in the inter-

channel cross-correlation functions: We generalize previous narrowband cancel-

lation techniques to the broadband case and present an efficient time-domain

implementation that can eliminate the effect of a sound source from the inter-

channel cross-correlation functions. This new technique can be used to design

iterative multi-source localization systems using these modified cross-correlation

functions or other representations derived from them, such as the SRP-PHAT

maps. We published this technique in [II] and we explain it in chapter 2.

2. We present the first free and open-source implementation of the image source

with GPU acceleration: our python library gpuRIR reduces in two orders of

magnitude the time needed to simulate room impulse responses using the image

source method, which allows us to perform the simulations on the fly as we

train our models, obtaining infinite-size datasets. This GPU implementation is

explained in chapter 3 and we published it in [IV] and also presented it in [III].

3. We prove that SRP-PHAT power maps are robust input features that allow the

models to obtain higher accuracy in highly reverberant scenarios: Compared with

models using spectrogram as inputs, we prove that models using higher-level

features such as SRP-PHAT power maps (or even GCCs) are more robust against

reverberation. This is explained in chapter 4, whose results were published in

[V].

11
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4. We present the first free and open-source implementation of the icosahedral con-

volutional neural networks (icoCNNs): The icosahedral CNNs were originally

proposed by Cohen et al. in [76] but they did not publish their implementation.

We have published a PyTorch implementation which we believe will be useful

for many researchers working with spherical signals.

5. We present a new output layer that combines classification and regression: We

explain in chapter 5 how, interpreting them as probability distributions, we can

use the spatial output of a CNN to obtain a regression output without needing

to add any extra learnable parameters [VI].

6. We prove that the use of models with rotational symmetry can improve the lo-

calization accuracy even with coarser inputs: the use of power maps as inputs

allows us to use models that are invariant to rotations and we show in chapter

4 that, as published in [VI], these models have higher localization accuracy even

using lower resolution power maps.

7. We present a new permutation invariant training strategy which allows the train-

ing of tracking models while encouraging them to keep the identities of the inputs

stable: while many of the loss functions and training strategies used to train

tracking networks do not prevent identity switches in the models’ outputs in or-

der avoid local minima that make the training impossible, our new training strat-

egy explained in chapter 5 (and published in [VII]) makes the model converge

to solutions with lower identity switches without losing localization accuracy.

8. We present a new permutation invariant recurrent layer for sound source track-

ing: opposed to conventional recurrent units where the information of each

source is represented in a unique state vector, our permutation invariant gated

recurrent unit (PI-GRU) explained in chapter 5 split the information of every

source in independent state vectors whose order does not affect the result of the

model.
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1.5 Outline and organization of the thesis

The reminder of this thesis is organized as follows:

• Chapter 2 introduces the SRP-PHAT algorithm since we use them to compute

the acoustic power maps that we use as input for our models in the rest of the

thesis. In addition, we present the analytical method that we published in [II] to

cancel the effect of a sound source in the inter-channel correlation functions of

a microphone array, and that can be used to remove the effect of a source from

the SRP-PHAT maps and therefore design iterative multi-source localization

algorithms.

• Chapter 3 explains the technique that we utilized to generate our training

datasets, including our GPU implementation of the image source method [IV]

and the algorithm that we used to generate synthetic moving sound sources.

• Chapter 4 introduces our works on single source localization with neural net-

works using SRP-PHAT power maps as inputs. In section 4.1, we first present

the 3D CNN published in [V] and then, in section 4.2, we present our model

based on an icosahedral CNN [VI].

• Chapter 5 explains our works on multi-source tracking. This includes both a

new permutation invariant training strategy [VII] and our permutation invariant

recurrent units.

• Chapter 6 presents the conclusion of the thesis and discusses some future direc-

tions for sound source localization and tracking research.
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The SRP-PHAT power maps

In this chapter, we present an introduction to the classic signal processing techniques

for direction of arrival (DOA) estimation, focusing on the SRP-PHAT power maps

since we will use them as input representation for the deep learning models presented

in the following chapters. Finally, we also present a new technique to cancel the

effect of a sound source on the inter-microphone generalized cross-correlation (GCC)

functions that allows us to design iterative algorithms for multi-source DOA estimation

systems.

This chapter includes the reproduction of some figures and text fragments from

[II] and [V] with the permission of the copyright holders.

2.1 Classic signal processing techniques for broad-

band DOA estimation

As proposed in [32] for the sound source localization (SSL) problem, the broadband

DOA estimation strategies may be divided into three categories: techniques employ-

ing time difference of arrival (TDOA) information, strategies based on maximizing

the steered response power (SRP) of a beamformer, and approaches adopting high-

resolution spectral estimation concepts. Some techniques have been proposed for spe-

cific geometric configurations, such as those based on the Spherical Harmonic Domain
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[88, 89] that can only be used in spherical arrays, but in this chapter we will focus on

geometry-independent techniques.

TDOA-based locators follow two-step strategies where, in the first step, the TDOA

between pairs of microphones is estimated and, in the second step, the most reliable

DOA for those TDOAs is computed. The most common approach to the estimation

of the TDOA between two microphones is finding the maxima of the generalized

cross-correlation (GCC) function [90]. In audio applications, especially for speaker

localization, the phase transform (PHAT) is typically used [91, 92, 93] due to its good

performance in reverberant environments [94]. The two-step strategy greatly reduces

the complexity of these algorithms, but the loss of information between the two steps

(only the maximums of the GCCs are used for the DOA estimation) dramatically

degrades their performance when noise or reverberation levels increase [95].

The SRP methods are based on the calculation of the output power of a beamformer

steered towards different directions and the search for its maximum. Computing the

filter-and-sum beamformer output for each direction is computationally exhaustive,

but fortunately, as proved in [31, 32], the SRP can be computed in terms of GCCs.

In this case, most of the computational cost of each beamformer is shared and the

computational complexity of the algorithms increases slower with the search space.

Another advantage of computing the SRP in terms of GCCs is that including the

phase transform becomes trivial, which results in the steered response power with

phase transform (SRP-PHAT) algorithm [31, 32]. Despite this, its complexity can also

become excessive if the search space increases considerably (as in 3D SSL problems)

and several efficient search algorithms [96, 97, 98], functional modifications to allow

coarser grids [98, 99, 100] and GPU [101, 102], FPGA or ASIC [103] implementations

have been proposed.

Finally, the high-resolution spectral-estimation-based locators use beamforming

methods based on techniques like autoregressive (AR) modeling, minimum variance

(MV), spectral estimation, etc. Some of the most commonly used narrowband al-

gorithms, such as multiple signal classification (MUSIC) [29] or estimation of signal

parameters via rotational invariant techniques (ESPRIT) [30, 104], are based on the
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2.1 Classic signal processing techniques for broadband DOA estimation

signal and noise subspaces. After applying these narrowband techniques to each fre-

quency bin of a broadband signal it is necessary to coherently combine the results of

each bin [105] and many of these techniques are more sensitive to noise and reverber-

ation [106] than the SRP-PHAT. In [107], an extension of the MUSIC algorithm for

broadband signals based on the parameterized spatial correlation matrix (PSCM) or

steered covariance matrix [108, 109] claims to outperform the SRP-PHAT algorithm

even in high reverberant scenarios. This approach has a higher computational cost

since, after computing the GCCs, the eigenvalue decomposition of the PSCM for each

search direction must be computed.

Multi-source localization is another challenge in addition to robustness and compu-

tational efficiency, especially in wide dynamic range scenarios, where a more powerful

source can mask a weaker one. Various techniques have been recently proposed to

find multiple sources [110, 111, 112, 113, 114, 115], most assuming different degrees

of time-frequency sparsity on the source signals. These sparsity constraints can be

applied, for example, when speech sources need to be found [116] but cannot be ap-

plied with other sources like music or noise. Furthermore, these techniques are usually

based on the incoherent application of subspace DOA estimation techniques in the

time-frequency bins where just one source (or only a few sources) is present. This has

two disadvantages: we lost the spatial information present in the bins where multiple

sources are active and, on the other hand, subspace methods usually have high com-

putational complexity and some of them may not work properly if correlation between

sources exists. Finally, there are no studies about the performance of these techniques

when the power level difference between sources increases.

Due to the non-stationary nature of most of the signals of interest, such as the

speech or the music, a tracking stage is needed after the DOA estimation to exploit

the temporal correlation between the source positions and to avoid inaccurate estima-

tions in frames where the power of the signal is low or its auto-correlation makes the

maximum of the power maps become too wide. The algorithms for one source tracking

are typically based on the Kalman filter [117, 118] although more advanced techniques

have been proposed to deal with multiple sources, such as those based on particle filter-

ing [119, 120]. However, in these approaches, they use two-step strategies which make
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them sensitive to potential information loss when only the DOA estimations are used

for the tracking; e.g. the absolute maximum of the SRP-PHAT maps is always selected

even if another local-maximum was much closer to the previous estimations and we

assign the same likelihood to all the DOA estimations while some of them correspond

to wider maximums from frames where the source was weaker. Including some of this

information in the tracking algorithms may be possible, but it would increase both its

complexity and the number of parameters that need to be fine-tuned. For example,

in [121] a technique to share information between an iterative DOA estimator based

on Expectation-Maximization [122] and a tracking system based on particle filtering

is proposed.

2.2 The SRP-PHAT algorithm

The signal received at the nth sensor of a microphone array in a room with Ns sources

can be modeled as

xn(t) =

Ns∑
i=1

ai(t) ∗ hn(θθθi, t) + vn(t), (2.1)

where ai(t) is the signal generated by the source in the position θθθi, hn(θθθi, t) is the

impulse response from θθθi to the nth sensor, and vn(t) is the noise of the sensor, which

is typically supposed to be white, Gaussian, and uncorrelated with the source signal

and with the noises of other sensors. It is worth mentioning that θθθs is written in bold

because it can represent an angle, two spherical coordinates, or even a point in 3D

Cartesian coordinates depending on the geometry of the array.

One of the most classic and popular approaches to DOA estimation is finding

the peaks of the steered response power (SRP) maps that we would obtain using a

filter-and-sum beamformer:

P (θθθ) =

∫ +∞

−∞

∣∣∣∣∣
N−1∑
n=0

Gn(ω)Xn(ω)e
−jωτn(θθθ)

∣∣∣∣∣
2

dω, (2.2)

where N is the number of sensors of the array, Xn(ω) is the Fourier transform of xn(t),

Gn(ω) is the frequency response of the filter for the channel n, and τn(θθθ) is the time

delay occurring from the position or direction θθθ to the nth sensor.
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2.2 The SRP-PHAT algorithm

Although directly implementing (2.2) would be computationally expensive, it can

be computed in terms of the GCC functions as

P (θθθ) =

∫ +∞

−∞

∣∣∣∣∣
N∑

n=1

Gn(ω)Xn(ω)e
−jωτn(θθθ)

∣∣∣∣∣
2

dω =

N∑
n=1

N∑
m=1

∫ +∞

−∞
(Gn(ω)Xn(ω))(Gm(ω)Xm(ω))∗e−jωτn(θθθ)dω =

2π

N∑
n=1

N∑
m=1

Rnm(∆τnm(θθθ)), (2.3)

where ∆τnm(θθθ) = τn(θθθ) − τm(θθθ) and Rnm is the GCC between the signals of the nth

and the mth sensor:

Rnm(τ) =
1

2π

∫ +∞

−∞
Ψnm(ω)Xn(ω)X

∗
m(ω)ejωtdω, (2.4)

where ∗ denotes the complex conjugate and Ψnm(ω) = Gn(ω)G
∗
m(ω) is a weighting

function.

Equation (2.3), combined with the use of the phase transform (PHAT) Gn(ω) =

1/|Xn(ω)|, is commonly known as the SRP-PHAT algorithm [31, 32], and allows us

to obtain an acoustic power map of the environment whose peaks should correspond

with the position of the sources.

Although the SRP-PHAT algorithm is a good trade-off between robustness and

computational efficiency, obtaining more accurate results than two-step TDOA based

techniques with a lower computational cost than most of the broadband subspace

techniques, it still presents several issues. The main advantage of (2.3) is that most

of its computational cost is in computing the GCCs and does not increase with the

search space. However, the computation of its sums for each direction, especially if it is

needed to interpolate Rnm(∆τnm(θθθ)) from its adjacent samples, may not be negligible;

this problem becomes more challenging when the search space is two-dimensional, e.g.

the two angles of the spherical coordinates, or even three-dimensional, e.g. XYZ

coordinates. Some search strategies have been proposed to reduce the number of

evaluations of (2.3) that need to be computed to accurately find the maximum of

P (θθθ) [97, 98, 123] but, due to the non-convexity of the SRP-PHAT power maps, the
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(a) (b)

(c) (d)

Figure 2.1: Example of SRP-PHAT power maps with different resolutions in a favorable
scenario: SNR=30dB and T60=0.3 s. The red dot indicates the actual DOA of the sound
source and the black dot is at the maximum of the map.

number of SRP-PHAT evaluations needed might still be an issue in some scenarios.

In [98, 124], it is proposed to modify (2.3) to compute the power received from a space

region instead of from a point, so they can use hierarchical search strategies over maps

with lower resolution.

As we can see in Fig. 2.1, in favorable scenarios with high signal-to-noise ratio

(SNR) and low reverberation, the SRP-PHAT power maps have a clear maximum in

the DOA of the sound source that can be used to obtain a good estimation even with

low-resolution maps but, when SNR decreases and the reverberation increases, such

as in the scenario of Fig. 2.2, the maps present several local maxima that may be

incorrectly interpreted as the DOA of the sound, especially when using low-resolution

maps. However, in those maps, in addition to the maxima, we can also observe several

patterns that are also related to the DOA of the sound and the geometry of the array

and that may be exploited to obtain a more accurate DOA estimation.

Another limitation of the SRP-PHAT power maps is that, even if the phase trans-

form is usually able to reduce the width of the maxima generated by the sources, weak
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(a) (b)

(c) (d)

Figure 2.2: Example of SRP-PHAT power maps with different resolutions in an adverse
scenario: SNR=5dB and T60=0.9 s. The red dot indicates the actual DOA of the sound
source and the black dot is at the maximum of the map.

sources are still easily masked by stronger sources. Due to this reason, SRP-PHAT

power maps are rarely used for multi-source SSL.

2.3 Source cancellation in Cross-Correlation func-

tions

In this section, we present a new technique to eliminate the effect of a source from

the inter-microphone cross-correlation (CC) functions or the GCCs in a broadband

sensor array [II]. It can be applied to any array geometry and it does not need any

time-frequency sparsity constraint, so the technique can work with white noise sources.

In addition, this technique does not only eliminate the source in the desired direction

but also the spurious maxima that appear when the sources are correlated. As it is

a modification of the GCCs functions, most of the techniques and methods developed

using the cross-correlation functions can be combined with it.

Our technique is based on a spatial correlation matrix (SCM) projection technique
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widely employed in narrowband arrays [125, 126, 127], but we extend it to broadband

sources. An efficient time-domain implementation is also presented and, if a lower

computational cost is needed, we also propose a coarser approximation that can offer

adequate results. Our technique is especially interesting in scenarios with correlation

between sources and strong power differences between them.

In order to deal with multiple sources, the proposed technique can be used to

iteratively find the strongest source, eliminate it, and find the following source. A

similar idea has been recently published in [128] for DOA estimation of acoustic echoes,

but it only deals with narrowband sources. A broadband technique is proposed in [129]

to remove the effect of a source from the GCCs functions to locate multiple audio

sources. However, it only suggests multiplying the GCCs by a de-emphasis function;

they propose using a notch function with two parameters to control its sharpness.

This approach lacks theoretical foundations and strongly depends on the choice of the

proposed parameters, but [129] does not provide any technique to choose them.

2.3.1 Narrowband source elimination

The complex snapshot received by an array of N narrowband sensors in a scenario

with Ns sources can be written as

x = Da+ v, (2.5)

where a is a vector of length Ns with the amplitudes of each signal, v is a zero-mean

white noise vector of length N uncorrelated with a, and D is the steering matrix

composed of the steering vectors of each source:

D = [d(θθθ1),d(θθθ2), ...,d(θθθNs
)] (2.6)

d(θθθi) = [e−jωτ1(θθθi), e−jωτ2(θθθi), ..., e−jωτN (θθθi)]T , (2.7)

With this model, the complex SCM is

R = E{xxH} = DE{aaH}DH + σ2
vI, (2.8)
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where E{·} is the expectation operator, and the superscript H denotes Hermitian

transpose, σ2
v is the noise power and, if there is no correlation between the sources,

the correlation matrix of signals E{aaH} is just a diagonal matrix with the power of

each signal.

Several techniques have been proposed to prevent a strong source from hiding a

weaker one in narrowband DOA estimation [125, 126, 127]. They are based on the

projection of the correlation matrix onto a space orthogonal to the position θθθ0 of the

stronger source:

R’(θθθ0) = U(θθθ0)RU(θθθ0), (2.9)

where U(θθθ0) is the projection matrix

U(θθθ0) = I− d(θθθ0)d
H(θθθ0)

dH(θθθ0)d(θθθ0)
. (2.10)

After obtaining R’(θθθ0), several narrowband localization techniques can be used to

find the second source and, if there are still more sources to be found, apply (2.9) with

θθθ0 equal to the position of the second source and then repeat the localization process.

2.3.2 Broadband source elimination

In broadband arrays, it is necessary to take into account the temporal characteristics

of the signals and the effect of the reverberation as in the model followed in (2.1).

The CC between the signals received in the nth and the mth sensors is defined in the

frequency domain as

Rnm(t) =
1

2π

∫ +∞

−∞
Xn(ω)X

∗
m(ω)ejωtdω (2.11)

and the Fourier transform of the CC, F{Rnm(t)} = Snm(ω) = Xn(ω)X
∗
m(ω), is known

as the cross-power spectral density (CPSD).

In order to get the CC functions with the source in the position θθθ0 canceled, we

propose to apply (2.9) to each frequency bin of the CPSDs. The matrix multiplications
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in (2.9) can be rewritten as:

SSC
nm(θθθ0, ω) =

N∑
k=1

[
N∑
l=1

[Unl(θθθ0, ω)Slk(ω)]Ukm(θθθ0, ω)

]
, (2.12)

where Unm(θθθ0, ω) is the (n,m) entry of the matrix U(θθθ0) for the frequency ω, obtained

expanding (2.10):

Unm(θθθ0, ω) =

{
e−jω∆τnm(θθθ0)/N, if n ̸= m

(N − 1)/N, if n = m
(2.13)

From (2.12) we can expand the summations into three main terms:

SSC
nm(θθθ0, ω) =

(N − 1)2

N2
Snm(ω)− N − 1

N2
Pnm(θθθ0, ω) +

1

N2
Qnm(θθθ0, ω), (2.14)

where

Pnm(θθθ0, ω) =

k ̸=n∑
k=1,...,N

Skm(ω)e−jω∆τnk(θθθ0) +

l ̸=m∑
l=1,...,N

Snl(ω)e
−jω∆τlm(θθθ0) (2.15)

and

Qnm(θθθ0, ω) =

k ̸=n∑
k=1,...,N

l ̸=m∑
l=1,...,N

Skl(ω)e
−jω(∆τnk(θθθ0)+∆τlm(θθθ0)). (2.16)

Finally, through the inverse Fourier transform, we conclude that the CC between

the nth and the mth sensor with the source in the position θθθ0 removed is just the

original CC and a linear combination of the CCs between each pair of sensors with

different delays:

RSC
nm(θθθ0, t) =

(N − 1)2

N2
Rnm(t)− N − 1

N2
Pnm(θθθ0, t) +

1

N2
Qnm(θθθ0, t) (2.17)

Pnm(θθθ0, t) =

k ̸=n∑
k=1,...,N

Rkm (t−∆τnk(θθθ0)) +

l ̸=m∑
l=1,...,N

Rnl (t−∆τlm(θθθ0)) (2.18)

Qnm(θθθ0, t) =

k ̸=n∑
k=1,...,N

l ̸=m∑
l=1,...,N

Rkl (t−∆τnk(θθθ0)−∆τlm(θθθ0)) . (2.19)

With the term involving Pnm(θθθ0, t) in (2.17), we are subtracting to each original

CCs, i.e. Rnm (black star in Fig. 2.3), a delayed version of the CCs that have a sensor
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R11(t) R12(t) R13(t)

R21(t) R22(t) R23( )τ

R31(t) R32(t) R33(t)

Figure 2.3: A representation of the auto-correlation functions of 2 sources and 3
sensors. In order to remove the effect of the first source (whose autocorrelation is
represented with a red triangle) from R12(t) (indicated with a black star) we must use
the CCs that have a sensor in common (indicated in blue circles) to compute P12(t) and
the CCs without any sensor in common (indicated with a green triangle) to compute
Q12(t). See equations (2.17), (2.18) and (2.19) in the text.

in common, i.e. Rn′m′ with n′ = n or m′ = m (blue circles in Fig. 2.3). The applied

delay places the peak corresponding to the source we want to remove in the position

∆τnm(θθθ0). With the term involving Qnm(θθθ0, t), we are adding the CCs without any

sensor in common, i.e. Rn′m′ with n′ ̸= n and m′ ̸= m (green triangles in Fig. 2.3),

also placing in ∆τnm(θθθ0) the peaks generated by the source in θθθ0. This process is

represented in Fig. 2.4.

In the presence of reverberation, the array does not only receive the source signals

from its direct paths, but also from the DOA of the early reflections. Applying (2.17)

with θθθ0 equal to the position (or the direction) of a source, our technique does not

remove the signals received due to its reflections; equivalently, with θθθ0 equal to the

DOA of a reflection, only that reflection is canceled. Not suppressing the reflections of

the canceled source can be a disadvantage for source localization applications (although

most tracking algorithms are designed to deal with the erroneous DOAs generated by

the reverberation), but it is indispensable for the acoustic characterization of a room,

where the goal is to locate the DOAs of its early reflections [130, 131].

2.3.3 Coarse approximation

Most of the computational complexity of (2.17) correspond to compute Qnm(θθθ0, t),

however, the elimination of the effect of the desired source happens in the subtraction
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P12(t)

R13 32(t-∆ )τ

R11 12(t-∆ )τ

R22 12(t-∆ )τ

R32 13(t-∆ )τ

R12(t)

R11(t)

R13(t)

R22(t)

R32(t)

Q12(t)

R21 12 12(t-∆ -∆ )τ τ

R23 12 32(t-∆ -∆ )τ τ

R33 13 32(t-∆ -∆ )τ τ

R31 13 12(t-∆ -∆ )τ τ

R21(t)

R23(t)

R33(t)

R31(t)

R12(t)

Figure 2.4: A representation of the terms P12(t) and Q12(t) in equations (2.17), (2.18)
and (2.19). Following the picture in Fig. 2.3, in order to compute both P12(t) and
Q12(t), the delays applied to each CC function place the peak generated by the source
we want to remove (the red triangle) in the position it was in R12(t).

of Pnm(θθθ0, t) (although it is true that the CCs can have both positive and negative

values, there will always be positive peaks at the positions of the sources). Therefore,

we could get a strong reduction of the computational cost, i.e. the number of operations

reduces from O((N − 1)2) to O(2(N − 1)), by approximating (2.17) by:

RSC
nm(θθθ0, t) ≈ RSC−T

nm (θθθ0, t) =
(N − 1)2

N2
Rnm(t)− N − 1

N2
Pnm(θθθ0, t). (2.20)

The error introduced by this approximation is further analyzed in section 2.4.2.

2.3.4 Phase Transform (PHAT)

As previously explained, the CC function (2.11) can be generalized to the GCC (2.4)

by introducing a weighting function Ψnm(ω) and, for SSL, the phase transform is

typically used:

ΨPHAT
nm (ω) =

1

|Xn(ω)X∗
m(ω)|

, (2.21)

which equally emphasizes all the frequencies for the DOA estimation and has been

proved to approximate the Maximum Likelihood solution in low-noise reverberant

environments [132] and is especially useful to deal with speech sources.

In order to correctly obtain the GCC with the source in the position θθθ0 removed,

we should compute (2.14), apply the desired weighting function Ψnm(ω), and compute

26



2.3 Source cancellation in Cross-Correlation functions

the inverse Fourier transform. To compute Ψnm(ω) it would be necessary to get the

signalXn(ω) without the source in the position θθθ0 but, in a real situation, we only have

the signal with all the sources present. Therefore, it is impossible to obtain Ψnm(ω).

To solve this issue and to exploit the benefits of the PHAT in reverberant scenarios,

we propose to apply directly (2.17) by replacing the original CCs with the GCCs.

2.3.5 Examples

In order to better understand the effect of equations (2.17) and (2.20), in this section

we present several examples with a linear array of 3 sensors.

2.3.5.1 Two uncorrelated Gaussian sources

If the signals generated by 2 uncorrelated white Gaussian sources arrive at the sensors

with delays τ(θθθ1) = [0, 10, 20] and τ(θθθ2) = [−5, 6, 17] samples in an anechoic envi-

ronment, the CCs between sensors have 2 peaks, some of them in adjacent samples,

as shown in Fig. 2.5 (a). If we apply the coarse approximation proposed in (2.20)

to eliminate the source θθθ0 = θθθ1, the only remaining positive peaks are in ∆τnm(θθθ2)

and belong only to θθθ2 (Fig. 2.5 (b)), but they have strong negative peaks and break

some properties of the CC functions, e.g. the maximum of Rnn(t) is not at τ = 0.

This could generate some artifacts in the power estimation, as negative values in the

SRP maps, but if we only need to find the position of the main positive peak, the

approximation may be good enough.

Finally, if we apply the complete expression, i.e. equation (2.17), the CCs still

have only the desired positive peak, but they follow the properties of the Correlation

functions and the negative peaks are reduced, as shown in Fig. 2.5 (c).

2.3.5.2 Two impulsive sources

If we replace the Gaussian sources of the previous example with impulsive sources,

we get 2 strongly correlated sources, that may be seen as an original source and a

non-attenuated echo. In Fig. 2.6 (a), we can see how the correlation between sources

generates additional peaks in the CCs that could lead to the estimation of spurious

sources. However, our elimination technique, as shown in Fig. 2.6 (b) and Fig. 2.6
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Figure 2.5: CCs between sensors in the scenario described in the example 2.3.5.1 (a),
CCs after applying the coarse approximation to cancel the first source (b) and CCs after
applying the complete equation of the proposed cancellation technique (c). The red
circles are at ∆τnm(θθθ1) and the red stars at ∆τnm(θθθ2).
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2.3 Source cancellation in Cross-Correlation functions

(c) for the coarse approximation and the complete expression, removes both the peaks

corresponding to the source in θ0 = θ1 and the peaks generated by the correlation

between sources, so correlated sources can be handled as if they were uncorrelated.

This is especially useful for echo localization, where several correlated sources have to

be found.

It is worth mentioning that, in both examples, we supposed that the first source

was perfectly located and, since the auto-correlations of the sources are really narrow,

small errors on it would have dramatically degraded its cancellation. However, the

estimation of the sources is more accurate as the autocorrelation of the sources becomes

narrower and, for wider autocorrelation, the accuracy of the estimation is not so critical

since both the original source and the terms we are subtracting in (2.17) and (2.20)

are wider. This effect is further studied in section 2.4.2.

2.3.5.3 Two speech sources with reverberation

Finally, we used Lehmann’s implementation [133] of the image source method (ISM)

algorithm [61] to simulate a linear array with 5 microphones and 10 cm of inter-

microphone distance in a room with reverberation time T60 = 0.1 s; although this

is a quite low reverberation, it allows us to check that our technique still works when

the delay introduced by the propagation does not have a perfectly linear phase, i.e.

each frequency component of the signal suffers a slightly different delay. Fig 2.7 (a)

shows the CCs between the signals received by the microphones 1 and 5 when a speech

source is placed in front of the array and another one at 45◦; we can see how the source

in front of the array (whose peak is indicated with a red circle) mask the effect of the

second source (whose peak should be at the red star). As we can see in Fig. 2.7 (b),

the truncated version of our cancellation technique removes too much energy from

CCs and we need to apply the complete equation, Fig. 2.7 (c), to properly identify

the peak corresponding to the second source.

We analyze higher reverberant rooms in section 2.4.3, but only locating peaks in

the CCs is not enough to deal with them, so we need to employ more sophisticated

DOA estimation algorithms.
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a) Original Cross-Correlation Functions
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Figure 2.6: CCs between sensors in the scenario described in the example 2.3.5.2 (a),
CCs after applying the coarse approximation to cancel the first source (b) and CCs after
applying the complete equation of the proposed cancellation technique (c). The red
circles are at ∆τnm(θθθ1) and the red stars at ∆τnm(θθθ2).
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2.4 An iterative multi-source localization algorithm based on source
cancellation and SRP-PHAT
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Figure 2.7: CC between sensors 1 and 5 in the scenario described in the example
2.3.5.3 (a) and the result of applying the coarse approximation (b) and the complete
equation (c) over it. The theoretical positions of the peaks generated by the first and
the second source are indicated with a circle and with a star, respectively.

2.4 An iterative multi-source localization algorithm

based on source cancellation and SRP-PHAT

2.4.1 Algorithm

Several multiple-source localization algorithms may be proposed by combining the

SRP-PHAT power maps with the source cancellation technique presented in the pre-

vious section. Here, we propose a simple iterative algorithm similar to the one used

for narrowband arrays that, despite its simplicity, is able to prove the power of the

proposed source cancellation technique.

The algorithm, detailed in Fig. 2.8, first computes the CCs (2.11) or GCCs (2.4)

and uses them to compute the SRP or SRP-PHAT power map (2.3). Then, it itera-

tively searches for the strongest source and cancels it to compute a new power map.

It also allows to iteratively apply the source cancellation in the same position if a

new maximum is not found; however, as proved in sections 2.4.2 and 2.4.3, only a low
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Figure 2.8: Iterative algorithm to find several sources using source cancellation and
SRP techniques.
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2.4 An iterative multi-source localization algorithm based on source
cancellation and SRP-PHAT

number of iterations, controlled by the IT MAX parameter in Fig. 2.8, is needed.

For the sake of simplicity, it is assumed that the number of sources (N SOURCES)

is known, but it would be easy to modify the algorithm to dynamically obtain the

number of sources. To do so, a threshold could be applied to the power of each new

maximum to determine if it is a new source or if there are no more sources to be

removed.

Implementing both (2.17) and (2.3) in a discrete-time system has the problem that

∆τnm(θθθ0) may not be multiple of the sampling period. In order to deal with that, we

found that using a linear interpolation between adjacent samples in (2.17) and just

taking the closest one in (2.3) provides good enough results.

2.4.2 Simulations

2.4.2.1 Uncorrelated white sources

Simulations were conducted to compare the performance of the conventional SRP

method with our proposal. We carried out 1000 simulations with 1024 samples of 2

Gaussian sources (without correlation between them) in random positions, capturing

the signals with a circular array with 16 sensors and a diameter of 0.5 meters in an

anechoic environment. We repeated the 1000 simulations with 31 different power levels

of the second source from −30 dB to 0 dB relative to the first source. The signal-to-

noise ratio (SNR) was always 10 dB with reference to the first source, i.e. the SNR

was from −20 dB to 10 dB with reference to the second source.

The SRP equation (2.3) was computed over a grid of spherical coordinates with

129 different values of polar angle θ and 129 of azimuthal angle ϕ, where the reference

system (x̂, ŷ, ẑ) has its origin in the center of the array with ẑ normal to the array

plane and x̂ pointing to the first sensor. After that, the two principal local maxima

were located assuming a minimum separation of 2◦.

To prove the performance of our source cancellation technique, the algorithm pre-

viously proposed (SRP SC) was used with IT MAX = 2. In order to compute the

probability of finding the second source, for both methods we assumed that the sec-

ond source had been found if the localization error was fewer than 5◦. In addition, we

33



2. THE SRP-PHAT POWER MAPS

-30 -25 -20 -15 -10 -5 0

P
s2

 [dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of finding the second source

SRP

SRP-PHAT

SRP SC

SRP-PHAT SC

SRP SC(T)

SRP-PHAT SC(T)

deeGCF

Figure 2.9: Probability of finding the second source in a 2 random sources scenario
with Ps1 = 0dB, SNRs1 = −10 dB and different values of Ps2.

repeated the simulation using the phase transform in the original GCCs (SRP-PHAT

and SRP-PHAT SC) and with the truncation of (2.17) proposed in section 2.3.3: SRP

SC(T) and SRP-PHAT SC(T). Finally, we implemented the source cancellation tech-

nique proposed in [129] (deeGCF). The authors did not provide any method to find

the optimum parameters for their de-emphasis function, but for our array geometry

we found that the best results were obtained for p ∈ [0.5, 1] and that b has a low

impact on the performance of the algorithm; we finally used p = 0.75 and b = 2.

As shown in Fig. 2.9, our algorithm suffers less degradation when the power of

the second source decreases and, surprisingly, truncating (2.17) makes our proposal

even more robust. When combining the proposed source cancellation technique with

the SRP algorithm, we can locate sources about 5 dB weaker than when using only

the SRP algorithm, and the coarse approximation proposed in section 2.3.3 achieves

an additional gain of 5 dB. Finally, the results show that, as could be expected, the

phase transform does not generate great improvements for uncorrelated white sources

since it does not modify white signals.

The truncated source cancellation technique (SC(T)) seems to perform better than
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cancellation and SRP-PHAT

the original (SC) because it removes more energy from the maps and sometimes ap-

plying the complete equation leaves residual energy around the source that may be

identified as a new source. To solve this issue, it would be possible to modify the

algorithm to not only repeat the source cancellation when the new maximum is in the

same position as the original source, but also when it is closer than a threshold. Doing

this would impose a trade-off between finding the weakest sources and the minimum

necessary separation between them.

Multiplying the CC functions by a de-emphasis function as proposed in [129] gives a

similar performance to the truncated version of our technique, but with our technique

we do not need to fine-tune any parameters.

2.4.2.2 Uncorrelated speech sources

In order to analyze the performance of the proposed technique with more complex

sources, we replaced the white Gaussian sources with segments of 1024 samples ran-

domly taken from a database of speech signals without silences sampled at 44 100Hz

created by us from audio-book recordings in Spanish. We reduced IT MAX to 1 as

increasing it did not improve the results.

As shown in Fig. 2.10, the algorithm with a better performance in this scenario

is our source cancellation technique applied over GCCs with PHAT, followed by its

coarse approximation. As expected for speech sources, the phase transform improves

the performance of all algorithms.

Contrary to other cases, there is a non-negligible probability that the SRP algo-

rithm without PHAT cannot locate any of the sources (about 25% for Ps2 = Ps1).

This is due to the wide auto-correlation that some voice segments have, which leads to

oversized peaks in the SRP maps. However, even in these cases where the estimation

of the position of the first source is quite inaccurate, the proposed technique can elimi-

nate the first source. Interestingly, the same issue that is responsible for the inaccurate

localization of the first source, i.e. the wideness of the auto-correlation of the source,

causes that the inaccuracy in the estimation of θθθ0 does not lead to dramatic changes

in the result of (2.17). Fig. 2.11 shows an example taken from a simulation where the

second source was hidden by the first, but our technique was able to find it even after
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Figure 2.10: Probability of finding the second source in a 2 speech sources scenario
with Ps1 = 0dB, SNRs1 = −10 dB and different values of Ps2.

an inaccurate estimation of θθθ0. In this situation, the cancellation technique proposed

in [129] fails, since a notch function wide enough to eliminate the first source would

also eliminate the second one.

The degradation SRP SC technique when the power of the second source approach

the power of the first one is due to the fact that, when the two sources are too close,

the second one is removed when the first one is canceled. This does not occur with

SRP-PHAT SC since the phase transform narrows the wide of the peaks of the GCCs.

Although our cancellation technique is quite robust to errors in the estimation of

the position of the first source, there are some cases where the two sources are too close

and, if they have similar power, it removes both if used without PHAT. Applying the

phase transform, it is possible to separate the two sources and, when our cancellation

technique is applied, only the desired one is removed. However, we can see in Fig.

2.10 how SRP SC outperforms SRP-PHAT SC when the power of the second source

decreases. Analyzing these cases, we found that in the original power maps (both with

and without PHAT) the second source was completely hidden even when it was quite

far from the first one. We also found that when applying the proposed technique, the
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Figure 2.11: SRP power map resulting from the simulation of two speech sources with
equal power and the SRP power map after applying our source cancellation technique at
its maximum. The black circles indicate the actual position of the sources and the red
circle the maximum of the map. The first source was successfully removed even after an
inaccurate estimation of its position.

second source emerged from the SRP map but not from the SRP-PHAT map. This

could be because the phase transform has been proven to approach the maximum

likelihood solution in low-noise reverberant environments [132], but here the power of

the second source is under the noise level (PN = Ps1 − 10 dB). An example of this

situation is shown in Fig. 2.12.

With speech signals, it is not feasible to use the coarse approximation over GCCs

without PHAT. This is due, again, to the wideness of the auto-correlation of the speech

segments, causing the coarse approximation to remove too much information from the

GCCs which needs to be recovered with the last term of (2.17). As expected, the

de-emphasis function also has this problem; we tried to modify its parameters but we

could not improve its results.

2.4.2.3 Correlated speech sources

Finally, to test the effect of the correlation between sources, we repeated the previous

simulation using the same signal (but with different power levels) for both sources, as

if the second source was an echo of the first one. In this situation, the SRP without
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Figure 2.12: SRP and SRP-PHAT power maps resulting from the simulation of two
speech sources with Ps2 = Ps1 − 13 dB and the SRP and SRP-PHAT power maps
after applying our source cancellation technique. The black circles indicate the actual
position of the sources and the red circle the maximum of the map. The first source was
successfully removed both with and without PHAT, but the second source only appeared
in the second case.
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Figure 2.13: Probability of finding the second source in a 2 correlated speech sources
scenario with Ps1 = 0dB, SNRs1 = −10 dB and different values of Ps2.

PHAT is unable to find the first source and, even with PHAT, when the sources are

too close and have similar power the maximum of the map is between them and it is

impossible to locate them (this happens in about 30% of cases for Ps2 = Ps1).

As shown in Fig. 2.13, the SRP-PHAT algorithm can find the second source

only if both sources have similar power, but with the proposed source cancellation

technique we significantly improve the dynamic range of the algorithm. Due to the

strong correlation between the sources, the SRP maps present a third maximum in

the middle, which leads to the poor performance of SRP SC when both sources have

similar power. Fortunately, if we use our cancellation technique on this spurious

maximum it disappears without affecting the maxima that correspond to the sources,

so it would be possible to find the two sources if our technique is applied twice. If

we apply the cancellation technique to a maximum that corresponds to a source,

the spurious maximum is also removed, so this could be exploited to differentiate

the spurious maxima from the real ones. When using the phase transformation, the

spurious maximum is attenuated, making it easier to find the second source simply by

canceling the maximum of the original SRP-PHAT map. As with previous scenarios,
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Figure 2.14: Probability of finding the second source in a 2 correlated speech sources
scenario with Ps1 = 0dB, SNRs1 = −10 dB and different values of Ps2 using a longer
window size (K = 4096).

the technique proposed in [129] performs similarly to the truncated version of our

algorithm.

To test the effect of increasing the window size, we repeated the simulation with

speech segments of 4096 samples and achieved the results shown in Fig. 2.14. As

expected, using longer window sizes improves the performance of all the algorithms,

but the relations between them remain constant.

2.4.3 Recordings

Finally, some recordings were made in a highly reverberant room (see Fig. 2.15) in

order to validate the effectiveness of the algorithm in real environments. The dimen-

sions of the room were 6m × 8.5m × 3m and we measured a reverberation time T60

of 1 second and a noise level of 55 dBSPL. There was no acoustic foam in the walls or

any other system to reduce reflections. Four loudspeakers were placed 80 cm apart, 4

meters in front of the array. The height of the array and the speakers were 1.05m and

0.64m, respectively.
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Figure 2.15: Set-up of the recordings.

2.4.3.1 White sources

The power map in Fig. 2.16 (a) was obtained by playing white noise in only 2 loud-

speakers, with 70 dBSPL and 65 dBSPL at the array position, and applying the con-

ventional SRP-PHAT algorithm. After identifying the global maximum (which had

an error of 2.04◦ regarding the first source position), the proposed technique (without

truncation) was applied and we obtained the power map shown in Fig. 2.16 (b). The

new global maximum was not the second loudspeaker, but the floor reflection of the

first one. Applying our algorithm again to cancel this new direction, we obtained Fig.

2.16 (c), where the maximum is the reflection at the right wall. Finally, after canceling

this direction, we found the second loudspeaker in Fig. 2.16 (d) with an error of only

1.97◦. In order to locate the second source directly from the original SRP-PHAT map,

we would have had to take its third local maxima as the second source (the second

maxima was the floor reflection) which was at the same position as the maximum of

Fig. 2.16 (d).

Fig. 2.17 and Fig. 2.18 show the same process for 3 and 4 loudspeakers, respec-

tively. In all cases, we can see the ability of our algorithm to cancel the stronger

sources, but sometimes some reflections are found before the weakest sources are lo-

cated. In the first scenario (see Fig. 2.17), the localization error of each source were

1.63◦, 2.01◦ and 0.81◦, while the second maximum in the original map was 2.10◦ apart

from the second source and the peak closest to the third source was the 9th most

energetic peak (so it would hardly have been considered a source if we did not know

there had to be one in that direction) and its error was 2.11◦. In the second scenario
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Figure 2.16: Power maps obtained with SRP-PHAT (a) and applying our algorithm
at the position of the maximum of the previous map (b, c, d), for 2 loudspeakers with
70 dBSPL and 65 dBSPL of white noise at the array position. The black circles are the
actual positions of the loudspeakers and the red circle the maximum of each power map.
After removing two reflections of the first source, we found the second source in (d).
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Figure 2.17: Power maps obtained with SRP-PHAT (a) and applying our algorithm
at the position of the maximum of the previous map (b, c, d), for 3 loudspeakers with
75 dBSPL, 70 dBSPL and 65 dBSPL of white noise at the array position. The black circles
are the actual positions of the loudspeakers and the red circle the maximum of each
power map.
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Figure 2.18: Power maps obtained with SRP-PHAT (a) and applying our algorithm
at the position of the maximum of the previous map (b, c, d), for 4 loudspeakers with
65 dBSPL of white noise at the array position. The black circles are the actual positions
of the loudspeakers and the red circle the maximum of each power map.

(see Fig. 2.18), the errors were 1.63◦, 2.10◦, 1.43◦ and 1.21◦ while the maximum of the

original SRP-PHAT map closest to the sources was at the same positions, but to find

the fourth source we would have needed to take into account the 6 strongest maxima.

2.4.3.2 Speech sources

Finally, we replaced the white noise recordings with speech recordings. Due to the

non-stationary nature of the speech signal, the power generated by each loudspeaker

may be strongly different in each 1024-sample frame, even after removing the silences

from the recordings.

Fig. 2.19 and Fig. 2.20 had been obtained using 2 and 3 loudspeakers respectively

and selecting a frame when the sources had power enough to locate all of them. In

order to implement a complete speaker localization system, some tracking algorithm

would be needed so it can deal with the fluctuations of the power of the sources and

with the presence of estimated DOAs corresponding to reflections instead of sources

(this issue is common to most of the DOA estimation algorithms when working with

43



2. THE SRP-PHAT POWER MAPS

(a)

-100 0 100

φ [º]

0

20

40

60

80

θ
 
[
º
]

(b)

-100 0 100

φ [º]

0

20

40

60

80

θ
 
[
º
]

(c)

-100 0 100

φ [º]

0

20

40

60

80

θ
 
[
º
]

(d)

-100 0 100

φ [º]

0

20

40

60

80

θ
 
[
º
]

Figure 2.19: Power maps obtained with SRP-PHAT (a) and applying our algorithm
at the position of the maximum of the previous map (b, c, d), for 2 loudspeakers playing
speech signals. The black circles are the position of the loudspeakers and the red circle
the maximum of each power map.
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Figure 2.20: Power maps obtained with SRP-PHAT (a) and applying our algorithm
at the position of the maximum of the previous map (b, c, d), for 3 loudspeakers playing
speech signals. The black circles are the actual positions of the loudspeakers and the
red circle the maximum of each power map.

44



2.5 Conclusions

speech signals and this is the reason why tracking algorithms are implemented).

The localization error in Fig. 2.19 were 1.04◦ and 0.38◦. The distance between the

second source and the 4th peak of the original SRP-PHAT map (the closest one) was

0.99◦, but it was surrounded by multiple maxima of similar power, so it would have

been difficult to choose which of them are sources and which are not if we had not

known the number of sources, while with our technique most of these maxima were

cleaned. In Fig. 2.20, the localization error was 3.84◦, 3.07◦ and 1.77◦ while using

only the SRP-PHAT algorithm we would have only been able to find two sources (with

errors 2.58◦ and 3.07◦) since none of the 20 strongest peaks of the original map were

close to the 3rd source.

We can see with these examples how our technique does not improve the accuracy

of the location of the sources that could be found with the SRP-PHAT algorithm but

makes it possible to find sources that were hidden in the original maps. The main issue

in using our cancellation technique (or the proposed in [129]) for speaker localization

applications would be dealing with the estimated DOAs which correspond to reflections

of an already found source rather than the direct path of a new one. An approach to

classify the reflections could be using a beamformer steered to each estimated DOA

and studying the correlation between the sources received from each direction, but the

computational cost would be prohibitive for most applications. A setup that could

facilitate the classification of the reflections would be arranging multiple arrays in the

room, so only the DOAs of the direct path from each source to each array would

intersect at one point since each array would receive different reflections; another

approach could be using near-field arrays whose spherical wave propagation model is

more robust against wall reflections. Finally, a survey on the multi-source tracking

algorithms should be performed to find those that better fit with the DOA estimates

that our cancellation technique provides.

2.5 Conclusions

Sound source localization (SSL) is a problem that has been extensively studied using

classical signal processing techniques and a broad range of techniques have been pro-
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posed to solve it, each one with different advantages and disadvantages. Among them,

SRP-PHAT provides an efficient algorithm to compute acoustic power maps whose

peaks allow us to estimate the DOAs of the sound sources recorded with a microphone

array. Despite having many advantages, like being more robust to reverberation than

other techniques, SRP-PHAT still has some drawbacks, like the need of high resolution

maps to ensure that their peaks really correspond to the DOAs, which increases its

computational cost, and the issue of strong sources masking the weakest ones, which

complicates its use for multi-source applications.

In order to solve this second issue, a new technique has been presented that allows

broadband sensor arrays to cancel the effect of a source at an affordable computa-

tional cost. This technique is an extension of previous narrowband techniques with

an efficient implementation that can be used iteratively to cancel several sources. It

is compatible with other broadband techniques, like the SRP-PHAT, or with most of

the multi-source tracking algorithms already proposed. It can be used in arrays with

any geometry, no assumptions about the sources need to be made and it can deal with

correlated sources.

The proposed algorithm is capable of locating multiple sources even when the sec-

ond source is much weaker than the first one. The simulations made with a microphone

array obtained an increase between 5 dB and 10 dB in the dynamic range in compari-

son with the conventional SRP-PHAT algorithm and the recordings demonstrate that

the algorithm also works in real environments. This is especially important when the

sources are not sparse and the weakest source will always be masked, both in time and

frequency, by the strongest one. We have proved through simulations that the coarse

approximation of our algorithm has a similar performance to the technique proposed

in [129] but without needing to fine-tune any parameter and that, working with the

complete equation, we clearly outperform it. This coarse approximation, and the tech-

nique proposed in [129], has a good performance for white sources but suffers a strong

degradation when dealing with more complex sources like speech. It may be useful

in applications where we have control over the sound sources, such as in the acoustic

characterization of rooms, or when we want to locate noise sources that we already
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know are white, but for speaker localization applications the complete equation should

be employed.

It should be noted that the new technique cancels the desired direction, its diffrac-

tion lobes, and the artifacts generated by the correlation between sources. But, when

used in a reverberant real acoustic environment, it does not eliminate the room reflec-

tions generated by the same source. In cases where the aim is only to detect sound

sources, further stages will be required in order to classify and detect the reflections.

However, if the objective is to study the acoustics of a room, the reflections need to

be located and, therefore, must not be eliminated.
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3

An infinite-size synthetic

dataset for sound source

localization and tracking

Due to the difficulty of obtaining an accurately hand-labeled dataset of moving sources

recorded with microphone arrays, we opted to train our models with simulated signals.

Another approach might have been using measured room impulse responses (RIRs)

convolved with speech signals, but this would have reduced the amount of different

acoustic conditions seen by the model during training, increasing the possibility of

overfitting to those conditions and not generalizing.

Since we simulate our training signals from completely random parameters, we can

simulate them as they are needed during the training obtaining an infinite-size dataset.

This makes the training slower, but has two important advantages: i) we increase the

different acoustic conditions that the models see during the training, which has proven

to increase the model accuracy [63], and ii) we have higher flexibility to modify the

probability distribution of the parameters of the simulation, such as the signal-to-noise

ratio or the reverberation time, during training so we can perform curriculum learning

strategies [134].

In this chapter, we first describe the procedure that we follow to simulate moving

sources in section 3.1 and then we present the GPU implementation of the image
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source method (ISM) that we used to accelerate these simulations.

This chapter includes the reproduction of figures and text fragments from [V] and

[IV] with the permission of the copyright holders.

3.1 Moving sources simulation

3.1.1 Trajectory generation

In order to generate trajectories that can be used to train tracking systems, we need

to randomly generate continuous trajectory points that can be tracked, but we also

need to ensure that they have enough diversity to avoid the network to learn how they

are generated and overfit to them.

In order to do so, after randomly choosing the room dimensions, we randomly

select two points within the room boundaries to be the starting (p0 = [px0, py0, pz0]
T )

and ending (p′
L = [p′xL, p

′
yL, p

′
zL]

T ) points of the trajectory and add to the straight

line that connects them a sinusoidal function in each axis with random frequencies

(ωωω = [ωx, ωy, ωz]
T ) and amplitudes (A = [Ax, Ay, Az]

T ) ensuring that no more than 2

oscillations are performed during the trajectory in each axis and that the amplitude

is low enough to avoid the source to exit the room:

pi = p0 +
i

L− 1
(p′

L − p0) +A ◦ sin(ωωωi), (3.1)

where L is the number of points of the trajectory, ◦ stands for the pointwise product

and the sin function also operates pointwise. Although the generation model is quite

simple, it generates quite diverse trajectories (some examples are shown in Fig. 3.1)

and, since the network only sees the azimuth and elevation coordinates and has a

limited temporal perceptive field, the model should not overfit to it. In order to

confirm this, we always test our models with the recordings of the LOCATA dataset

(see section 4.1.4.3).

With this generation algorithm, we do not have direct control over the speed of the

sources and it depends on the size of the rooms and the duration of the trajectories.
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3.1 Moving sources simulation

Figure 3.1: Examples of source trajectories used to train the models. The red dots are
the trajectory points and the gray points represent the microphones.

The histogram in Fig. 3.2 shows the distribution of the source speed generated by the

parameters employed in all the experiments presented in this thesis.

3.1.2 Trajectory simulation

As shown in Fig. 3.3, we use LibriSpeech utterances as sound sources. The LibriSpeech

corpus [135] contains 960 hours of speech sampled at fs = 16 kHz extracted from

audiobooks. Although audiobooks could be expected to contain quite clean speech

signals, we found that some of them have a strong background noise that, after filtered

by the RIRs, would be located in the same position as the source and would facilitate its

localization and tracking in silent segments. To prevent our network learning to exploit

this fact, which will not be present in actual recordings, we use the WebRTC voice

activity detector (VAD) [136] to detect silent segments and clean them by completely

removing the signal in those frames.

The sizes of the rooms are randomly selected from the range 3m× 3m× 2.5m to

10m × 8m × 6m and the array is randomly placed inside the room, being restricted

to have a separation from the walls of a 10% of the room size in each dimension and
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be in the lower half of the room for the vertical axis. The signal-to-noise ratio (SNR)

and reverberation time (T60) are also randomly selected from the ranges 5 dB to 30 dB

and 0.2 s to 1.3 s respectively. Uniform distributions over the specified ranges are used

for all the random parameters of the dataset.

In order to be able to evaluate the models trained with this synthetic dataset with

actual recordings, we use the same microphone geometry as the microphone array with

12 sensors designed to be mounted over an NAO robot head employed in the LOCATA

dataset [137]. The minimum and maximum inter-microphone distance of the array are

1.3 cm and 12.1 cm and the actual position of each microphone can be found in [138].

Once we have the position of the trajectory points and the microphones and the

properties of the room, we can use the image source method (ISM) to obtain the

RIRs for every trajectory position and convolve the source signal with them using the

overlap-add method to obtain the sound signals received at the microphone positions.

After that, we finally add an omnidirectional Gaussian noise to obtain the desired

SNR. In order to compute the noise power needed to obtain the desired SNR, we

compute the average energy of the sound signal during the whole trajectory excluding

the silent segments (including the silent segments in the average would have led to

lower noise levels for the same SNR).

3.1.3 Multi-source scenes

For the acoustic scenes with a varying number of sources employed to train the models

presented in chapter 5, we need to model how new sources appear (born) and how

existing sources disappear (die). In order to allow several sources to appear in the

same time frame, we model the number of sources that are born in a time frame using

a Poisson distribution:

P{k new sources born in the time frame t} =
e−λλk

k!
, (3.2)

where λ is the rate of the distribution, which is equal to its mean and its variance.

This is similar to the birth assumption typically used in multi-object trackers based

on probabilistic models [139, 140] but, in order to control the maximum number of
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Figure 3.4: Distribution of the number of sources in every time frame.

sources simultaneously active, we made the birth rate λ dependent on the number of

sources active in the previous frame and truncated the probability of (3.2) to avoid

exceeding the chosen maximum of sources. In the experiments shown in chapter 5, we

allowed up to 3 sources simultaneously active and employed a birthrate of 0.06, 0.04,

or 0.02 depending if the number of active sources in the previous frame was 0, 1, or 2.

Following again the typical assumptions used in multi-object trackers, we model

the death probability of every source in every time frame with a Bernoulli distribution,

but in order to avoid sources that lived too short, we added a minimum life length:

P{the active source i dies in the time frame t} =

{
p t− tbi > Tmin

0 else
, (3.3)

where p is the death probability, T b
i the time frame when the source i was born and

Tmin the minimum life of the sources. In the experiments shown in chapter 5 we used

p = 0.02 and Tmin = 200ms.

This model, with the parameters used in chapter 5, generates the distribution

shown in Fig. 3.4 for the number of sources in every time frame.
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3.2 Room impulse response simulation with GPU

acceleration

The technique presented in the previous section allowed us to generate infinite acoustic

scenes to train our models, but the simulation of the room acoustics was too slow to

simulate them as they were needed during the training. This issue has typically been

overcome by pre-generating enough acoustic scenes to train the models, but that would

have meant fixing the size of the dataset. Oppositely to this approach, we opted by

exploiting the power of the graphics processing units (GPUs) to implement a faster

version of the image source method (ISM).

3.2.1 Introduction

The simulation of the acoustics of a room is needed in many fields and applications

of audio engineering and acoustic signal processing, such as training robust speech

recognition systems [141] or training and evaluating sound source localization [142]

or speech enhancement [143] algorithms. Although there are many low-complexity

techniques to simulate the reverberation effect of a room in real time, such as the

classic Schroeder Reverberator [144], some applications require an accurate simulation

of the reflections causing the reverberation. The information of all those reflections is

gathered in the room impulse response (RIR) between the source and the receiver po-

sitions, which allows the simulation of the reverberation process by filtering the source

signal with it. The image source method (ISM) is probably the most used technique

for RIR simulation due to its conceptual simplicity and its flexibility to modify pa-

rameters such as the room size, the absorption coefficients of the walls, and the source

and receiver positions. We can simulate any level of reverberation by modifying the

room size and the absorption coefficients, but the computational complexity of the

algorithm grows fast as the number of reflections to simulate increases.

Initially developed to support the graphics computations of video games, graphics

processing units (GPUs) are today one of the best and cheapest ways to increase the

speed of many algorithms that can be expressed in a parallel form. Despite parallelizing

most of the stages of the ISM is quite straightforward, to the best of our knowledge,
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Table 3.1: Comparison of some state-of-the-art ISM implementation.

RIR generator [146] pyroomacoustics [147] [133] [145] gpuRIR

Open source library (language) ✓(Matlab and Python) ✓(Python) ✓(Matlab) ✗ ✓(Python)
Implementation language C++ Python and C++ Matlab CUDA CUDA
Fractional delays ✓ ✓ ✓ ✓ ✓
Negative reflection coefficients ✗ ✗ ✓ ✗ ✓
Diffuse reverberation model ✗ ✗ ✓ ✗ ✓
GPU acceleration ✗ ✗ ✗ ✓ ✓
Lookup table implementation ✗ ✓ ✗ ✗ ✓
Mixed precision implementation ✗ ✗ ✗ ✗ ✓

only [145] proposed to implement it in GPUs. Although they showed that using GPUs

it was possible to speed up the RIR simulations, they did not provide the code of their

implementation and the acoustic signal processing and audio engineering communities

have not embraced their approach. In addition, they used an overlap-add strategy

with atomic operations to combine the contributions of each image source, which

strongly reduces the level of parallelism. In this chapter, we present a new GPU

implementation with a higher degree of parallelism, which allows us to achieve higher

speed-ups with cheaper GPUs. Motivated by the performance boost obtained with

the use of lookup tables (LUTs) in the CPU implementations, we also study its use

in our GPUs implementation. Finally, we propose a 16-bit precision implementation

which can increase even more the simulation speed in the newer GPUs with mixed

precision support.

Table 3.1 shows some state-of-the-art implementations of the ISM and compares

some of their main characteristics. We can see how our implementation is the only

one with GPU acceleration that is available as a free and open source library and how

it includes some features (further explained in section 3.2.2.2) that are not included in

other Python libraries. Using our library does not require any knowledge about GPU

programming, but just having a CUDA compatible GPU and the CUDA Toolkit, and

it can be installed and used as any CPU RIR simulation library.

3.2.2 The Image Source Method (ISM)

The method of images has been widely used in many fields of physics to solve dif-

ferential equations with boundary conditions, but its application for RIR estimations

was originally proposed by Allen and Berkley [61]. In this section, we first review
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Figure 3.5: Image sources for a two-dimensional room. The red square and the blue
dot represent the receiver and the source and the blue circumferences represent the
image sources. The solid green line represents one of the multiple reflection paths and
the dashed green line is the direct path of the equivalent image source. The black dot
is the origin of the coordinates system.

their original algorithm and then explain some of the improvements that have been

proposed to improve both its accuracy and computational performance.

3.2.2.1 Original Allen and Berkley algorithm

The main idea behind the ISM is to compute each wave-front that arrives at the

receiver from each reflection off the walls as the direct path received from an equivalent

(or image) source. In order to get the positions of these image sources, we need to

create a 3D grid of mirrored rooms with the reflections of the room in each dimension;

as shown in Fig. 3.5 simplified to 2D for an example.

If the number of images we want to compute for each dimension is Nx, Ny and

Nz, then we define a grid N of image sources n = (nx, ny, nz) : ⌈−Nx/2⌉ ≤ nx <

⌈Nx/2⌉, ⌈−Ny/2⌉ ≤ ny < ⌈Ny/2⌉ and ⌈−Nz/2⌉ ≤ nz < ⌈Nz/2⌉ (where ⌈·⌉ stands for

the round toward positive infinity operator). The coordinates of the position of each

image pn = (xn, yn, zn) are calculated using its grid indices, the position of the source
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and the dimensions of the room; as an example, the component x would be calculated

as

xn =

{
nxLx + xs if nx is even

(nx + 1)Lx − xs if nx is odd
, (3.4)

where L = (Lx, Ly, Lz) is the size of the room and ps = (xs, ys, zs) is the position of

the original source. The y and the z coordinates can be obtained similarly.

The distance dn from the image source n to a receiver in the position pr =

(xr, yr, zr), and therefore the delay of arrival τn, is trivial if we know the image source

position:

dn = ||pr − ps||, (3.5)

τn =
dn
c
, (3.6)

where || · || denotes the Euclidean norm and c is the speed of sound.

In order to calculate the amplitude with which the signals from each image source

arrive at the receiver, we need to take into account the reflection coefficients of the

walls of the room. We define βx0 as the reflection coefficient of the wall parallel to

the x axis closest to the origin of the coordinates system and βx1 as the farthest; βy0,

βy1, βz0 and βz1 are defined equivalently. Finally, if we define βn as the product of

the reflection coefficients of each wall crossed by the path from the image source n to

the receiver, its amplitude factor will be

An =
βn

4π · dn
. (3.7)

Knowing the amplitude and the delay for each image, we can easily obtain the RIR

as the sum of the contribution of each image source:

h(t) =
∑
n∈N

An · δ(t− τn), (3.8)

where δ(t) is the Dirac impulse function.
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3.2.2.2 Improvements to the original algorithm

Fractional delays

In order to implement (3.8) in the digital domain, we need to deal with the fact that

the values of τn may not be multiples of the sampling period. The original algorithm

proposed to just approximate the fractional delays by the closest sample, however,

the error introduced by this approximation is too high for some applications, such as

sound source localization (SSL) with microphone arrays. In [148], Paterson proposed

to replace the Dirac impulse function with a sinc windowed by a Hanning function:

δ′(t) =

{
1
2

(
1 + cos 2πt

Tω

)
sinc(2πfct) if− Tω

2 < t < Tω

2

0 otherwise
, (3.9)

where fc is the cut-off frequency, Tω is the window length, and the sinc function is

defined as sinc(x) = sin(x)/x. This is motivated by the low pass anti-aliasing filter

that would be used if the RIR was recorded with a microphone in the real room. A

window duration of Tω = 4ms and a cut-off frequency equal to the Nyquist frequency,

i.e. fs/2, are typically used.

Using the Paterson approach with Tω = ∞ is equivalent to computing (3.8) in the

frequency domain as the sum of complex exponential functions as proposed in [149]

[150], but using shorter window lengths reduces the computational complexity of the

algorithm.

Negative reflection coefficients

Using positive reflection coefficients as proposed in [61] generates a low-frequency

artifact that must be removed using a high-pass filter. In addition, while a RIR

recorded in a real room has both positive and negative peaks, all peaks generated by

the ISM are positive. Using negative reflection coefficients as proposed in [150] solves

both problems without the need for adding any posterior filter to the ISM algorithm.

Diffuse reverberation

In order to properly simulate a RIR, we need to use values of Nx, Ny, and Nz high

enough to get all the reflections that arrive in the desired reverberation time. Since
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the delays of the signals of each image source are proportional to their distance to the

receiver, and the distance is to the image index, the number of images to calculate for

each dimension grows linearly with the reverberation time, and, therefore, the number

of operations in (3.8) grows in a cubic way.

A popular solution to allow the simulation of long reverberation times in a rea-

sonable time is decomposing the RIR in two parts: the early reflections and the late,

or diffuse, reverberation. While the early reflections need to be correctly simulated

with the ISM method to avoid losing spatial information, the diffuse reverberation can

be modeled as a noise tail with the correct power envelope. In [133], Lehmann and

Johansson propose using noise with logistic distribution and the technique introduced

in [151] to predict the power envelope.

Although the technique presented in [151] generates better predictions of the power

envelope obtained in real rooms, its computational complexity is quite high. There-

fore, for the sake of computational efficiency, we decided to use a simple exponential

envelope following the popular Sabine formula [152]. According to this model, the

reverberation time T60 that takes for a sound to decay by 60 dB in a room, is

T60 =
0.161V∑

Siαi
, (3.10)

where V is the volume of the room and Si and αi = 1 − β2
i are the surface area and

the absorption coefficient of each wall1; and the power envelope of the RIR is

P (t) =

{
A exp

(
log10

(
T60

20

)
(t− t0)

)
if t > t0

0 otherwise
. (3.11)

Therefore, knowing T60, we can easily estimate A from the early reflections sim-

ulated with the ISM and then multiply the logistic-distributed noise by
√
P (t) to

simulate the diffuse reverberation.

1It should be noted that, as done in [61], we are defining the absorption ratio α as a quotient
of sound intensities (energies) while the reflection coefficient β is defined as a quotient of pressures
(amplitudes).
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Table 3.2: Kernels and functions of the CUDA implementation.

CUDA functions Description Time (%)

calcAmpTau kernel Equations (3.6) and (3.7) 0.68
generateRIR kernel Sincs computation and initial sum (3.8) 90.34
reduceRIR kernel Parallel sum (3.8) 1.07
envPred kernel Power envelope prediction 0.03
generate seed pseudo cuRAND function (diffuse reverberation) 7.78
gen sequenced cuRAND function (diffuse reverberation) 0.01
diffRev kernel Diffuse reverberation computation 0.01
CUDA memcpy [CPU to GPU] 0.00
CUDA memcpy [GPU to CPU] 0.06

3.2.3 Parallel implementation

As shown in Fig. 3.6, the parallel computation of the delays and the amplitudes of

arrival for the signals from each image source and their sinc functions is straightfor-

ward since there are not any dependencies between each image source, and computing

RIRs for different source or receiver positions in parallel is also trivial. However, the

parallelization of (3.8) involves more problems, as the contributions of all the image

sources need to be added into the same RIR.

It is worth mentioning that, though it would be possible to compute RIRs from

different rooms in parallel, we choose to implement only the parallelization of RIRs

corresponding to the same room. This was because the number of image sources

to be computed depends on the room dimensions and the reverberation time and,

to compute different rooms in parallel, we would have needed to use the worst-case

scenario (i.e. the smallest room and higher reverberation time) for all of them, which

would have decreased the average performance.

In order to implement the ISM in GPUs, we decided to use the Nvidia™’s Compute

Unified Device Architecture (CUDA) [153] and divide our code into the kernels1 listed

in Table 3.2. For illustrative purposes, we show in Table 3.2 the average proportion

of time employed by each kernel to compute a standard case of 6 RIRs with T60 = 1 s

using the ISM method for the 250 first milliseconds and the diffuse model for the

1A CUDA kernel is a function that, when is called, is executed N times in parallel by N different
CUDA threads in the GPU. For more details, see the CUDA programming guide: https://docs.

nvidia.com/cuda/cuda-c-programming-guide/
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Figure 3.6: ISM parallel implementation. Our library actually computes some of the
sincs sequentially, which leads to more efficient memory use. The reduction sum is
detailed in Fig. 3.7
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following 750ms using a Nvidia™ GTX 980Ti. It can be seen how the bottleneck is

located at the beginning of the computation of (3.8), which is due to the high amount

of sinc functions that are needed to be computed. The following sections provide

further details about the implementation of the different parts of the algorithm.

3.2.3.1 Amplitudes and delays computation

For computing (3.6) and (3.7), we use calcAmpTau kernel, which computes sequen-

tially each RIR but parallelizes the computation for each image source. Although par-

allelizing the computations for each RIR would have been possible, since Nx ·Ny ·Nz

is generally greater than the number of RIRs to compute, the level of parallelization

is already quite high and, as shown in Table 3.2, further optimizations of this kernel

would have had a slight impact on the final performance of the simulation.

3.2.3.2 Computation and sum of the contribution of each image source

The computation of (3.8) is the most complex part of the implementation as it implies

a reduction operation (the sum of the contributions of each image source into the

final RIR), which is hard to parallelize since it would imply several threads writing

in the same memory address, and the calculation of a high number of trigonometric

functions. We can see it as creating a tensor with 3 axes (each RIR, each image source,

and each time sample) and summing it along the image sources axis. However, the

size of this tensor would be huge and it would not fit in the memory of most GPUs.

To solve this problem, we first compute and sum a fraction of the sources contribu-

tions sequentially, so the size of the tensor we need to allocate in the GPU memory is

reduced; we do that through generateRIR kernel. Specifically, each parallel thread

of this kernel performs sequentially the sum of 512 images for a time sample of a RIR.

This sequential sum reduces the degree of parallelism of the implementation but, since

the number of threads is already high enough to keep the GPU always busy, it does

not decrease the performance. It should be noted that, although all the threads can

potentially run in parallel, the number of threads which actually run in parallel is

limited by the number of CUDA cores of the GPU and, if we have more threads than

CUDA cores, many threads will be queued and will run sequentially.
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Figure 3.7: Parallel reduction sum of the sincs (each level is performed by a call to
reduceRIR kernel). The sum must be performed pairwise to prevent several threads
from concurrently writing in the same variable. The sums of each time sample are also
performed in parallel.

After that, we use reduceRIR kernel recursively to perform the reduction in par-

allel by pairwise summing the contribution of each group of images as shown in Fig.

3.7. Performing the whole sum in parallel would lead to all the threads concurrently

writing in the same memory positions, which would corrupt the result.

It can be seen in Table 3.2 how most of the simulation time is expended in

generateRIR kernel, this is due to the high amount of sinc functions that need to

be computed and it also happens in the sequential implementations. However, thanks

to the computing power of modern GPUs, we can compute many sinc functions in

parallel and therefore reduce the time we would have needed to sequentially compute

them in a CPU. We analyze the implementation of these sinc functions using lookup

tables (LUTs) in section 3.2.3.5 and its performance in section 3.2.5.2.
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3.2.3.3 Diffuse reverberation computation

For the diffuse reverberation, we first use envPred kernel to predict in parallel the

amplitude and the time constant of each RIR. After that, we use the cuRAND library

included in the CUDA Toolkit to generate a uniformly distributed noise (the functions

generate seed pseudo and gen sequenced in Table 3.2 belong to this library) and

we finally transform it to a logistic distributed noise and apply the power envelope

through diffRev kernel, which parallelizes the computations of each sample of each

RIR. The function generate seed pseudo generates the seed for the cuRAND random

number generator and it is only called when the library is imported, not every time a

new RIR is calculated.

3.2.3.4 Simulating moving sources

In order to simulate a moving source recorded by a microphone array, we need to

compute the RIR between each point of the trajectory and each microphone of the

array and filter the sound source by them using the overlap-add method. In sequential

libraries, the complexity of the filtering is negligible compared to the RIR simulation;

however, in our library, thanks to the performance of the GPUs, we found that we

also needed to parallelize the filtering process if we did not want to be limited by it

(especially for short reverberation times). To solve this problem, our library is able

to compute multiple convolutions in parallel using the cuFFT library (included in

the CUDA Toolkit) and a custom CUDA kernel to perform the pointwise complex

multiplication of the FFTs.

3.2.3.5 Lookup tables (LUTs)

Motivated by the performance increase that the CPU implementations achieve by

using lookup tables (LUTs) to calculate the sinc functions (see section 3.2.5), we also

implemented it in our GPU library.

Our LUT stores the values of a sinc oversampled in a factor Q = 16 multiplied by

a Hanning window:

LUT [n] =
1

2

(
1 + cos

2πn

QTω

)
sinc

(
π
n

Q

)
for n ∈

{
−Tω

2
Qfs, ...,

Tω

2
Qfs

}
(3.12)
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and then we use linear interpolation between the closest entries of the table to compute

each sample of the sinc functions of each image source.

The main design choice we must make is to define the type of memory that will

be used to place the LUT. CUDA GPUs have, in addition to the registers of each

thread, 4 different memories: shared, global, constant, and texture memory. On the

one hand, shared memory is shared only between threads of the same block and it

has the fastest access, however, it is generally lower than 100 kB. On the other hand,

global memory is shared by all the threads and usually has several gigabytes, but it has

the lowest bandwidth and the highest latency. Finally, constant and texture memories

are read-only cached memories, constant memory being optimized for several threads

accessing the same address and texture memory being optimized for memory access

with spatial locality. Although constant memory has a lower latency than texture

memory, texture memory implements some features like several accessing modes and

hardware interpolation, which are extremely useful for the implementation of LUTs.

We implemented the windowed sinc LUT both in shared memory and texture memory

and obtained better performance with the texture memory thanks to the hardware

interpolation.

3.2.3.6 Mixed precision

Since the Pascal architecture, the NvidiaTM GPUs include support for 16-bit precision

floats and are able to perform two 16-bit operations at a time. To exploit this feature,

we developed the kernels generateRIR mp kernel and reduceRIR mp kernel, which

compute two consecutive time samples at a time so we can halve the number of threads

needed. We focused on these kernels and did not optimize the others because, as shown

in Table 3.2, most of the simulation time is spent on them.

CUDA provides the data type half2, which contains 2 floating point numbers of

16 bits, and several intrinsics to operate with it. These intrinsics allow us to double

the number of arithmetic operations that we can perform per second; however, we

found that the functions provided to compute two 16-bit trigonometric functions were

not as fast as computing one 32-bit function. To increase the simulation speed, we

developed our own sinpi(half2) and cospi(half2) functions. For the sine function,
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we first reduce the argument to the range [-0.5, 0.5], then we approximate the sine

function in this range by

sin(πx) ≈ 2.326171875x5 − 5.14453125x3 + 3.140625x (3.13)

and finally, multiply the result by -1 if the angle was in the second or the third

quadrant. The coefficients of the polynomial are the closest numbers that can be

represented with half-precision floats to those of the optimal polynomial in a least-

squares sense. Equivalently, for the cosine function, we used the polynomial:

cos(πx) ≈ −1.2294921875x6 + 4.04296875x4 − 4.93359375x2 + 1 (3.14)

with the advantage that, since we only used it for computing the Hanning window in

(3.8), we do not need to perform argument reduction or sign correction.

The polynomial evaluation can be efficiently performed with Horner’s method:

bn = an

bn−1 = an−1 + bnx

...

p(x) = b0 = a0 + b1x

(3.15)

where ai is the coefficient of the n degree polynomial p(x) we want to evaluate and the

computation of bi can be done in parallel for two different values of x using the CUDA

intrinsic hfma2(half2) that performs the fused multiply-add operation of the two

elements of three half2 variables at a time. More information about the polynomial

approximation of transcendental functions can be found in [154].

Obviously, working with half-precision representation reduces the accuracy of the

results. We found that the most critical part was in subtracting t− τn. Working with

16-bit precision floats, we can only represent 3 significant figures accurately, so, when

t grows, we lose precision in the argument of the sinc function which leads to an error

that increases with time; when t grows we expend the precision in the integer part

and we do not represent accurately the fractional part. To solve this issue, we perform

the subtraction with 32 bits arithmetic and then we transform the result to 16-bit
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precision. Working this way, we have always maximum precision in the center of the

sinc and the lower accuracy is outside the Hanning window.

Unfortunately, the hardware interpolation of the texture memory does not support

16-bit arithmetic, so the mixed precision implementation is not compatible with the

LUT.

3.2.4 Python library

We have included the previous implementation in a Python library1 that can be easily

compiled and installed using the Python packet manager (pip) and be used as any CPU

library. The library provides a function that takes as parameters the room dimensions,

the reflections coefficients of the walls, the position of the source and the receivers, the

number of images to simulate for each dimension, the duration of the RIR in seconds,

the time to switch from the ISM method to the diffuse reverberation model, and the

sampling frequency and it returns a 3D tensor with the RIR for each pair of source

and receiver positions. Information about the polar pattern of the receivers and their

orientation can be also included in the simulation.

We also provide some python functions to predict the time when some level of

attenuation will be reached, to get the reflections coefficients needed to get the desired

reverberation time (expressed in terms of T60, i.e. the time needed to get an attenua-

tion of 60 dB), and to get the number of image sources to simulate in each dimension to

get the desired simulation time without loss reflections. Finally, we include a function

to filter a sound signal by several RIRs in order to simulate a moving source recorded

by a microphone array. In the repository of the library, some examples can be found

about how to simulate both isolated RIRs and moving sources.

Since the use of the LUT to compute the sinc function improves the performance

in most of the cases and the precision loss is negligible (see section 3.2.5.2), its use

is activated by default, but the library provides a function to deactivate it and use

the CUDA trigonometric functions instead. In order to exploit the mixed precision

capabilities of the newer GPUs, it has a function to activate it and use the 16-bit

1The code, the documentation, the installation instructions, and examples can be found in https:

//github.com/DavidDiazGuerra/gpuRIR
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precision kernels instead of the 32-bit; activating it automatically deactivates the use

of the LUT.

3.2.5 Results

3.2.5.1 Base implementation

In order to show the benefits of using GPUs for RIR simulation, we have compared our

library against three of the most employed libraries for this purpose: the Python ver-

sion of the RIR Generator library presented in [146], whose code is freely available in

[155] and has been used, for example, in [143, 156, 157]; the Python package pyrooma-

coustics presented in [147] that has been employed in [158, 159, 160] among others;

and the Matlab™ library presented in [133], whose code is freely available in [161], and

that has been used, for example, in [142, 162, 163]. Since all the libraries are based on

the ISM, whose acoustical accuracy is well known, we focus on the computation time

of each library.

Neither RIR Generator nor pyroomacoustics implement any kind of diffuse rever-

beration model, so they are expected to have worse performance than the Matlab™

library and our GPU library if we use it. The Matlab™ library uses the formula pre-

sented in [151] to model the power envelope of the diffuse reverberation, which is more

complex than our exponential envelope model, so, for the sake of a fairer comparison,

we modified the Matlab™ implementation to use an exponential model. The simu-

lations with the sequential libraries and the ones with the Nvidia™ GTX 980Ti and

the RTX 3090 were performed in a computer with an Intel™ Core i7-6700 CPU and

16GB of RAM, while the simulations with the Nvidia™ Tesla P100 and V100 were

performed in an n1-highmem-4 instance in the Google Cloud Platform™ with 4 virtual

CPUs cores and 26GB of CPU memory; more details about the GPUs employed for

the simulations can be found in Table 3.3.

Fig. 3.8 represents the runtime of the different libraries for computing different

numbers of RIRs in a room with size 3m × 4m × 2.5m and T60 = 0.7 s. It can

be seen how our library can simulate a hundred times more RIRs in a second than

the Matlab™ library even with a GPU designed for gaming (the Nvidia™ GTX 980
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Table 3.3: GPUs employed for the performance analysis.

GPU model
Release
year

Architecture Memory
Single Precision
FLOP/s

Memory
Bandwidth

GTX 980 Ti 2015 Maxwell 6GB 5.6 TeraFLOP/s 337 GB/s
Tesla P100 2016 Pascal 16GB 9.5 TeraFLOP/s 732 GB/s
Tesla V100 2017 Volta 16GB 14.9 TeraFLOP/s 900 GB/s
RTX 3090 2020 Ampere 24GB 29.3 TeraFLOP/s 936 GB/s

100 101 102 103

M
scr

10-3

10-2

10-1

100

101

102

ru
n
ti
m

e
 [
s
]

Runtime vs number of RIRs

gpuRIR

gpuRIR (full ISM)

Matlab library

RIRgenerator

pyroomacoustics

Figure 3.8: Runtime of each library for computing different numbers of RIRs (Msrc)
in a room with size 3m× 4m× 2.5m and T60 = 0.7 s. For the gpuRIR library, the solid
line times were obtained with the GTX 980 Ti GPU, the dashed lines with the Tesla
P100, the dotted lines with the Tesla V100, and the dash-dot lines with the RTX 3090.
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Ti). Using our library without any kind of diffuse reverberation modeling, we have a

similar execution time to the Matlab™ library, which only computes the ISM until the

RIR has an attenuation of 13 dB, and we are also about a hundred times faster than

the RIR Generator library. Finally, it is worth noting how pyroomacoustics performs

quite similarly to our library when we use a GTX 980 Ti and compute the whole RIR

with the ISM without using any diffuse reverberation model; this is due to the use of

LUTs to compute the sinc functions by pyroomacoustics (to confirm this hypothesis we

modified the code of pyroomacoustics to avoid the use of LUTs and its performance

degraded to the same results than RIR Generator). However, using a faster GPU,

i.e. the Tesla V100 or the RTX 3090, our library can compute ten times more RIRs

in a second than pyroomacoustics even without using LUTs, since we can set at full

performance all the parallelization mechanisms presented in section 3.2.3.

Comparing the performance of our library using different GPUs, we can see how

the lower results are obtained using the GTX 980 Ti and the Tesla P100 and the

best results are obtained with the Tesla V100 and the RTX 3090 (being between 5

and 10 times faster than the GTX 980 Ti). It is worth noting how, in less than 5

years, a gaming-oriented GPU as the RTX 3090 has matched and ever surpassed the

performance of the professional GPU Tesla V100. We can expect the number of RIRs

that we can compute per second with our parallel implementation to continue increas-

ing at a good peace, something that we cannot expect from most of the sequential

implementations designed to run in CPUs.

In Fig. 3.9 we show the runtime of the different libraries for computing 128 RIRs in

a room with size 3m×4m×2.5m and different reverberation times. We can see again

how our library is about two orders of magnitude faster than the sequential alternatives

which do not use LUTs. It must be said that our library has some limitations because

calculating a large number of RIRs with high reverberation times may require more

memory than what is available in the GPU; however, using the diffuse reverberation

model, this limitation appears only for really high number of RIRs and reverberation

times. Furthermore, it would be always possible to batch the RIRs in several function

calls to circumvent this problem.

71



3. AN INFINITE-SIZE SYNTHETIC DATASET FOR SOUND
SOURCE LOCALIZATION AND TRACKING

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T60 [s]

10-3

10-2

10-1

100

101

102

ru
n
ti
m

e
 [
s
]

Runtime vs reverberation time

gpuRIR

gpuRIR (full ISM)

Matlab library

RIRgenerator

pyroomacoustics

Figure 3.9: Runtime of each library for computing 128 RIRs in a room with size
3m × 4m × 2.5m and different reverberation times. For the gpuRIR library, the solid
line times were obtained with the GTX 980 Ti GPU, the dashed lines with the Tesla
P100, the dotted lines with the Tesla V100, and the dash-dot lines with the RTX 3090.
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Table 3.4: Lookup table (LUT) and mixed precision (MP) simulation times and
speedups for computing different numbers of RIR with T60 = 0.7 s.

Number of RIRs
Diffuse reverberation model Full ISM

1 16 128 1024 1 16 128

Matlab Library [ms] 221,52 1,643.20 12,252.67 96,208.58 - - -

pyroomacoustics [ms] - - - - 242.35 3,6409.16 28,646.86

g
p
u
R
IR

G
T
X

98
0
T
i

Base [ms] 4.98 17.43 117.60 898.54 283.88 2,601.82 19,630.60

LUT [ms] 5.19 16.64 109.38 834.38 279.28 2,434.33 18,547.03
speedup x0.96 x1.05 x1.08 x1.08 x1.02 x1.07 x1.06

MP [ms] - - - - - - -
speedup

T
es
la

P
10

0 Base [ms] 5.81 13.86 79.28 596.02 115.57 1,661.35 12,879.31

LUT [ms] 5.97 12.14 63.90 471.16 86.86 1,235.64 9,397.40
speedup x0.97 x1.14 x1.24 x1.27 x1.33 x1.35 x1.37

MP [ms] 5.52 9.45 45.49 324.12 59.46 847.74 6,493.92
speedup x1.05 x1.47 x1.74 x1.84 x1.94 x1.96 x1.98

T
es
la

V
10

0 Base [ms] 4.76 7.13 28.14 195.69 37.62 447.04 3,403.60

LUT [ms] 5.01 6.79 23.66 156.91 30.66 394.54 2,595.97
speedup x0.95 x1.05 x1.19 x1.25 x1.23 x1.13 x1.31

MP [ms] 4.55 6.29 19.57 128.72 21.76 253.03 1,900.52
speedup x1.05 x1.13 x1.44 x1.52 x1.73 x1.77 x1.79

R
T
X

30
9
0 Base [ms] 5.95 8.04 23.27 139.41 46.75 351.10 2,638.73

LUT [ms] 6.02 8.12 21.42 127.14 35.02 331.02 2,437.89
speedup x0.99 x0.99 x1.09 x1.10 x1.33 x1.06 x1.08

MP [ms] 5.69 7.06 16.22 84.33 27.79 200.90 1,481.32
speedup x1.04 x1.14 x1.43 x1.65 x1.68 x1.74 x1.78

3.2.5.2 Lookup tables

Motivated by the huge speedup generated by the use of LUTs in the CPU implementa-

tions (a factor 5 in Fig. 3.8) we replaced the trigonometric computations with a LUT

as described in section 3.2.3.5. Tables 3.4 and 3.5 show the speedup (defined as the

runtime without using the LUT divided by the runtime using it) for several numbers

of RIRs and reverberation times using different GPUs.

We can see how our library obtains a speedup much lower than the one obtained

by pyroomacoustics over CPUs. This is due to the high computation power of the

GPUs, which makes the computation of trigonometric functions quite efficient and

therefore they are not so benefited by replacing computation tasks with memory calls.

Despite that, we can see how using LUTs is faster than computing the trigonometric

functions, i.e. the speedup is higher than 1.0, in most of the cases, especially when

the number of RIRs or the reverberation time increases.

Among the studied GPUs, the Tesla P100 obtains the higher speedups since it has
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Table 3.5: Lookup table (LUT) and mixed precision (MP) simulation times and
speedups for computing 128 RIRs with different reverberation times.

T60 [s]
Diffuse reverberation model Full ISM

0.3 0.7 1.1 1.5 1.9 0.3 0.7 1.1

Matlab Library [ms] 2,573.67 12,078.52 39,330.40 94,946.73 136,522.39 - - -

pyroomacoustics [ms] - - - - - 1,854.08 23,253.22 90,960.54

gp
u
R
IR

G
T
X

98
0
T
i

Base [ms] 8.90 118.00 627.15 2,016.40 5,073.48 731.59 19,657.05 -

LUT [ms] 8.62 109.89 588.90 1,896.48 4,769.68 694.10 18,466.15 -
speedup x1.03 x1.07 x1.06 x1.06 x1.06 x1.05 x1.06

MP [ms] - - - - - - -
speedup

T
es
la

P
1
0
0 Base [ms] 8.97 80.78 416.57 1,349.47 3,289.13 494.33 12,875.14 76,383.87

LUT [ms] 7.39 64.90 321.97 1,023.39 2,452.18 391.39 9,406.31 55,402.08
speedup x1.21 x1.25 x1.29 x1.32 x1.34 x1.26 x1.37 x1.38

MP [ms] 6.64 45.18 218.18 699.95 1,698.17 258.96 6,484.46 38,393.03
speedup x1.35 x1.79 x1.91 x1.93 x1.94 x1.91 x1.99 x1.99

T
es
la

V
10
0 Base [ms] 5.80 28.81 125.02 379.13 896.97 141.86 3,400.95 19,935.71

LUT [ms] 5.95 24.43 101.85 332.35 690.02 117.55 2,594.15 15,363.05
speedup x0.97 x1.18 x1.23 x1.14 x1.30 x1.22 x1.31 x1.30

MP [ms] 5.08 19.80 76.71 220.66 519.46 87.48 1,901.21 11,052.52
speedup x1.14 x1.46 x1.63 x1.72 x1.73 x1.62 x1.79 x1.80

R
T
X

30
90

Base [ms] 6.02 24.31 96.60 295.95 694.41 112.20 2,585.85 15,498.97

LUT [ms] 6.09 22.38 88.22 273.19 639.95 103.85 2,380.35 14,225.71
speedup x0.99 x1.09 x1.09 x1.08 x1.09 x1.08 x1.09 x1.09

MP [ms] 5.80 17.21 57.32 170.21 401.21 63.81 1,477.57 8,544.19
speedup x1.04 x1.41 x1.69 x1.74 x1.73 x1.73 x1.76 x1.81

a higher memory bandwidth compared with its computing power. The GTX 980 Ti

gets really humble speedups due to its low memory bandwidth and the Tesla V100 and

the RTX 3090, though they have the higher bandwidth, do not reach the speedups

obtained by the Tesla P100 due to their huge computing power.

Fig. 3.10 shows the first 0.5 seconds of the RIR of a room with T60 = 1 s computed

with our GPU implementation working with single (32-bit) precision trigonometric

functions and the error introduced by replacing them with our LUT. We can see how,

as could be expected, the error introduced by the use of the LUT is negligible: three

orders of magnitude lower than the amplitude of the RIR.

3.2.5.3 Mixed precision

In the case of using the 16-bit precision kernels, we are reducing the accuracy of

the simulation, so we need to analyze its impact. Fig. 3.10 also shows the error

introduced by computing the same RIR using our half (16-bit) precision kernels. We

can see how the error is 3 orders of magnitude lower than the amplitude of the RIR at
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Figure 3.10: RIR computed with single (32-bit) precision trigonometric functions and
the errors introduced due to computing it using a lookup table (LUT) and half (16-bit)
precision functions (Mixed Precision).
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the beginning, which should be acceptable for most of the applications; however, since

the error does not decrease with time as much as the RIR does, the signal-to-error

ratio deteriorates with the time. Fortunately, this higher error corresponds with the

diffuse reverberation, where its perceptual importance is lower.

Theoretically, a twofold speedup could be expected from working with 16-bit pre-

cision floats instead of 32-bit floats, however, this speedup is generally not reachable

as the number of operations is not the only limiting factor of many GPU kernels and

some half2 functions are not as fast as their equivalent single functions. Tables

3.4 and 3.5 show the speedup that our mixed precision implementation achieves for

several numbers of RIRs computed in parallel and several reverberation times. We

can see how the speedup is higher when the workload increases, especially for long

reverberation times where the operations per second are the main limiting factor of its

performance and how the speedup achieved with the mixed precision implementation

is always higher than the achieved with the LUTs.

The mixed precision support was introduced with the Pascal architecture, so it is

not available in older models like the GTX 980 Ti. The Tesla P100 achieves speedups

really close to 2 for high workloads and the Tesla V100 and the RTX 3090 also achieve

better speedups than with the use of LUTs although not as high as the Tesla P100.

3.3 Conclusions

Due to the difficulty of recording a hand-labeled dataset of moving sources large enough

to train a neural network, we have introduced a new procedure for generating random

trajectories and simulating them as they are needed for training. With it, we have

an infinite-size dataset whose parameters can be easily modified during training to

accelerate the convergence or during test to analyze the performance of the model

in specific scenarios. To reduce the simulation time and allow the generation of the

trajectories as they are needed during the training, we have implemented the image

source method (ISM) using CUDA so we can reduce the simulation time by two orders

of magnitude using GPUs.
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3.3 Conclusions

We have published our GPU implementation of the ISM as a free and open-source

library that has proven to be about one hundred times faster than other state-of-the-

art CPU libraries. To the best of our knowledge, it is the first library with these

features freely available on the Internet, and it could allow the acoustic signal pro-

cessing community, for example, to generate huge datasets of moving speaker speech

signals in a reasonable computation time or to compute the acoustics of a virtual

reality scene in real time.

We have studied different methods to increase the speed of our GPU implemen-

tation, concluding that the best strategy is using 16-bit arithmetic, but this is only

compatible with the newer GPUs. On the other hand, using LUTs stored in the GPU’s

texture memory, though it generates lower speedups, is compatible with most of the

CUDA GPUs, so we have chosen to use this implementation as our library default.
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4

Robust single source

localization

In this chapter we present two sound source localization (SSL) models for scenar-

ios with a single source, both using steered response power with phase transform

(SRP-PHAT) power maps as inputs and being completely causal; i.e. they could be

implemented in real-time and provide a new direction of arrival (DOA) estimate for

every new input map. Both are fully convolutional models, the first one is based on

a 3D convolutional neural network (CNN) and the second one combines icosahedral

convolutions with 1D temporal convolutions.

Using both synthetic scenarios and real recordings, we prove that the use of SRP-

PHAT power maps as input features of our models provides more robust estimations

under adverse conditions and that the use of network architectures that fit the sym-

metries of the problem allows us to improve the localization accuracy even reducing

the number of trainable parameters and the resolution of the input maps.

This chapter includes the reproduction of figures and text fragments from [V] and

[VI] with the permission of the copyright holders.
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4. ROBUST SINGLE SOURCE LOCALIZATION

4.1 Robust sound source localization using SRP-PHAT

and 3D convolutional neural networks

As explained in chapter 2, we can use the SRP-PHAT algorithm to compute acous-

tic power maps from the signals received by a microphone array. These maps have

traditionally been used for SSL by just choosing the position of their maximum as

the estimated DOA but, even being more robust than other classic techniques, they

still have some limitations especially when reverberation and noise increase. In this

section, we propose the use of CNNs over SRP-PHAT power maps, performing the

convolutions over the dimensions of the maps and the temporal dimension.

Any kind of SRP-PHAT power maps could be employed with this approach de-

pending on the geometry of the array but, as we focus on compact arrays, we use

2D spherical power maps and therefore, since we include the temporal dimension, 3D

CNNs. The extension to 4D CNNs over 3D SRP-PHAT maps to perform 3D SSL with

distributed arrays would be straightforward.

Using conventional CNNs over equiangular projections of spherical maps is not the

optimal solution since these projections generate deformations around the poles that

need to be learned by the network instead of just being part of the equivariances of its

architecture. However, this is still a good first approach to process this kind of maps

with neural networks due to its simplicity and efficient implementation. In section 4.2

we study the use of icosahedral convolutions as an extension of this work.

Many of the state-of-the-art CNN architectures include bidirectional recurrent

units at the last layers of the model. Recurrent neural networks (RNNs), as recurrent

linear filters, make the output at any time instant dependent on the values of the

input at every previous time instant and, therefore, applying them in the backward

direction is extremely non-causal. Obviously, any tracking system can greatly benefit

from the information on the future positions of the source but, in order to make our

system feasible for real-time applications, we opt for using only causal convolutional

layers. By using 3D convolutions, the localization is done including the information

of the previous time frames, which does not happen in most of the classical systems

where the localization is done using only the information of the current time frame
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and then the localization result is filtered in a posterior tracking stage considering the

localization results of the previous frames. Integrating the information in this way

should lead to more robust estimates since we do not lose any information between

the localization and tracking stages.

4.1.1 Preprocessing

The proposed model takes as input a 4-dimensional tensor (M) with size C × T ×

Nθ × Nφ, whose first channel M1,t,i,j contains SRP-PHAT power maps. In order to

compute them, we first window the signals of a microphone array sampled at 16 kHz

using Hanning windows of length K = 4096 samples (i.e. 256ms) with a hop size of

3K/4. After that, for the T resulting frames, we apply (2.3) at a rectangular grid

with Nθ equispaced polar angles in the range θ ∈ [0, π] and Nφ equispaced azimuth

angles in φ ∈ [−π, π) to obtain the power map of each window; for planar arrays,

the same model could be used sampling the polar angle only in θ ∈ [0, π
2 ]. Finally,

we normalize the maps by subtracting their mean and dividing them between their

maximum to approximately fit them to the range [-1,1]. For the sake of computational

efficiency, we do not perform any kind of interpolation in the computation of (2.3) and

just approximate the fractional delays to the nearest sample.

Although the model must learn more complex patterns in order to exploit all the

information available in the SRP-PHAT, it is obvious that one of the main sources of

information about the DOA of the source is the position of the maximum of each map.

Since it did not cause a significant increase in the computational complexity of the

system, we decided to explicitly indicate to the network the position of the maximum

of each map. After trying to introduce this information in different layers, we found

that the best results were obtained including it in the input of the network, using C = 3

with M2,t,i,j = θ̂SRP
t and M3,t,i,j = φ̂SRP

t for any t ∈ {1, ..., T}, i ∈ {1, ..., Nθ}, and

j ∈ {1, ..., Nφ}, where θ̂SRP
t and φ̂SRP

t are the polar and azimuth angles corresponding

to the position of the maximum of the map t normalized to be in the range [0,1].

Finally, we found that, since the synthetic dataset presented in chapter 3 does not

include any directional noise, the models trained with it are very sensitive to directional

noise sources. For example, in some of the recordings of the LOCATA dataset [137],
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the noise of a fan is present and, although its power is very low, the models tracked

it when it was the only active sound source. In order to avoid this issue, we use

the WebRTC voice activity detector (VAD) to determine in which frames the speech

source is active. We first tried to include the VAD information as an additional input

channel to the network. However, during the training, the VAD sometimes failed and

classified frames with speech information as silent so the network learned that even

frames classified as silent could contain useful tracking information as long as they

contained a directional source and, therefore, it ignored the VAD input. In order to

prevent the network from tracking directional noise sources, we finally opted to turn to

zero the maps corresponding to frames classified as silent by the VAD so no directional

information is seen by the network when no speech source is active.

4.1.2 Model architecture

The first layer of our model is a 3D convolutional layer with 32 kernels of size 5×5×5

and parametric rectified linear unit (PReLU) activations [164]. For the temporal

axis, we always use causal convolutions, so this model could be used in real-time

applications generating a new DOA estimation for each new power map available

without introducing any delay.

Pooling layers are typically used in CNNs to progressively reduce the size of the

input and make the model generalize; not using them, means that the fully connected

layers used at the end of most of the convolutional models would have a huge number

of trainable parameters which would surely overfit. When the desired output of the

CNN is a summary of the information of the whole input, e.g. in image classification

tasks, increasing the number of channels with convolutional layers and reducing their

size with pooling layers progressively reduces the spatial information and gets higher-

level representations of the input. However, since our desired output is not only related

to the presence of some patterns but especially to their position, we must be careful

when using them.

In order to get the benefits of pooling layers but allowing the spatial information

to reach the last layers of the model, we opted to, as shown in Fig. 4.1, split the

model into two branches and apply max pooling in a different dimension in each one.
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...

...

...

32 channels 5x3x3 conv
PReLU activation
1x1x2 max pooling{ {

x4

32 channels 5x3x3 conv
PReLU activation
1x2x1 max pooling{ {

x4

32x103x16x2

32x103x1x32

32x103x16x32

32 channels 5x5x5 conv
PReLU activation

1x103x16x32 }
Reshape,

concatenate
and transpose

...

2048x103

128x103

...

128 channels 5 length conv
PReLU activation
dilation factor 2

3x103

3 channels 5 length conv
tanh activation
dilation factor 2

...

...

Figure 4.1: Model architecture. The noted sizes correspond to a model for 16x32 maps
and an input sequence of length 103. For the sake of simplicity, we represented it with
only 1 input channel, although it actually has 3.

Working this way, the branch which pools the φ axis can retain positional information

about the θ coordinate of the maps and vice versa. Specifically, each branch has 4

layers with a convolution with 32 kernels of size 5× 3× 3, PReLU activations, and a

max-pooling with a kernel size of 1 × 1 × 2 and 1 × 2 × 1 respectively. If the input

power maps have less than 16 points in the θ or the φ axes, it would not be possible to

perform so many pooling layers; in those cases, we reduce the 4 layers to the maximum

number possible: log2 (min (Nθ, Nϕ)). Due to the use of 3D convolutional layers and

these perpendicular branches, we named this model Cross3D.

After the 3D convolutional layers, we concatenate the results of each branch and

reshape them so we have a temporal sequence of length T for each one of the elements

of each channel and spherical coordinates. Each one of these temporal sequences is

used as the input channels of a 1D causal convolutional layer with 128 kernels of

length 5 and PReLU activations. Finally, the resultant 128 time sequences are passed

through another 1D causal convolutional layer with only 3 kernels of length 5 and

tanh activations. These layers are similar to the fully connected layers that most of

the CNN architectures have, but we include a temporal convolution so they can still
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exploit the tracking information. We use a dilation factor of 2 in order to allow the

tracking to take into account a longer context without increasing the complexity of

the network. With all the temporal convolutions included in the model, each DOA

estimation is computed from the last 37 SRP-PHAT maps, i.e. the temporal receptive

field and the tracking memory is 7.17 s.

The result of this process are 3 time sequences of length T whose elements are in

the range (−1, 1), which are considered to be the XYZ coordinates of a unitary vector

pointing in the direction of the source in each time frame.

Tables detailing the network architecture of Cross3D for several SRP-PHAT map

resolutions can be found in appendix A.

4.1.3 Training

We trained our model to minimize the Euclidean distance between the output of the

network and the 3 time sequences obtained from the coordinates of the unitary vectors

steering at the direction where the sound source was simulated in each time window.

Similarly to the results reported in [14, 53, 54], we obtained better results using this

approach than trying to directly obtain the spherical coordinates from the network

even when using the great-circle distance between the output and the ground-truth

DOA angles as cost function.

Although using an infinite-size dataset the term “epoch” does not have the same

meaning as in most of the machine learning systems, we define an epoch as 585 tra-

jectories (the number of book chapters in the LibriSpeech train-clean-100 subset). We

employed 80 epochs with trajectories of 20 s, i.e. 103 SRP-PHAT maps, to train the

model with the Adam algorithm [165] using Pytorch [166].

As explained in chapter 3, the training dataset contains scenes with reverberation

times and signal-to-noise ratios (SNRs) uniformly distributed from 0.2 s to 1.3 s and

from 5dB to 30 dB respectively. However, we found that the training converged faster

with higher SNRs. Therefore, we followed a curriculum learning strategy [134] using

batches of 5 trajectories with SNR=30dB for the first 20 epochs and for the following

epochs we employed the full range of SNRs, increased the batch size to 10 trajectories,

and reduced the learning rate from 1× 10−4 to 1× 10−5.
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4.1.4 Evaluation

4.1.4.1 Baseline methods

In order to analyze the convenience of using SRP-PHAT maps as input features of

CNNs for DOA estimation, we developed some alternative CNNs to use them as base-

lines. We designed them to be as similar as possible to our proposed model and to

have the same temporal perceptive field so they have the same tracking information.

Since we are including the position of the maximum of each map into the input

of the network, we should verify if our model is actually exploiting the additional

information that is within the SRP-PHAT maps or if it is only using the position

of its maximums. To do that, we designed a 1D CNN which takes as input 2 time

sequences with the coordinates of the maximum of each map normalized to the range

[0,1] and applies to them 7 layers of 1D causal convolutions with PReLU activations

and without any pooling. All the layers had a kernel size of 5 and the last two layers

used a dilation factor of 2, so its temporal receptive field is 37 frames as in Cross3D.

The number of channels of each layer was {1024, 512, 512, 512, 512, 128, 3}. The results

shown in the following sections were obtained by training this network with the same

process described in section 4.1.3 and using the coordinates of maps with resolution

64× 128.

One of the most common input features employed by the first DOA estimation

techniques based on neural networks were the generalized cross-correlations (GCCs).

They typically employed fully connected perceptrons with not too many hidden layers

and, since they only used the GCCs computed in a temporal window, did not perform

any kind of tracking. Following this idea, but with the aim of including tracking

information into the network, we used the same 1D causal CNN that we used over the

map maximums but using as input sequences the temporal evolution of each element

of the GCCs which represented an inter-microphone delay lower than the maximum

inter-microphone distance divided by the speed of sound.

Although, as explained in chapter 1, the use of 2D CNNs over spectrograms may

not be optimal, we also implemented a model following this approach since it is quite

popular in the literature. For a fair comparison, we used causal convolutions with a
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Table 4.1: Models employed for the evaluation.

Model Input
Trainable
parameters

Temporal
perceptive field

Window
length

Causal

Cross3D Power maps

4× 8 526 372 5.63 s

4096 Yes
8× 16 946 340 6.40 s
16× 32 1 693 988

7.17 s32× 64 5 626 148
64× 128 21 354 788

1D CNN
GCCs 11 282 436

7.17 s 4096 Yes
Maximums (64x128) 6 899 716

2D CNN
Spectrograms

1 882 372 7.17 s 4096 Yes
SELDnet [14] 104 643 ∞ 512 No

similar architecture to Cross3D: one convolution with 256 5× 5 kernels, four convolu-

tions with 256 5× 5 kernels with 1× 4 pooling, a reshape to transform the remaining

features into temporal sequences and two 1D causal convolutions with kernel size 5

and dilation factor 2, the first one with 128 channels and the last one with 3. For com-

puting the spectrogram, we used the same windows as for computing the SRP-PHAT

maps, extracted the magnitude and phase of each frequency of the Fourier transform

(FT), and finally normalized the magnitude of each window to its maximum and the

phase to the range [-1,1].

Finally, we also trained with our simulation procedure a replica of SELDnet [14]

but without including the sound event detection (SED) output and with only a DOA

output since we were only interested in tracking one source. This model takes as

inputs the magnitude and phase of the spectrograms and has three 2D convolutional

layers followed by two bidirectional gated recurrent units (GRUs) [167] and two fully

connected layers. It is worth saying that this model, due to the bidirectional GRUs, is

non-causal and that it uses shorter analysis windows than the other analyzed methods.

For the models that use spectrograms as input features, we found that they did

not train properly with the full range of reverberations described in section 3.1, and

we got the best results training them with values of T60 randomly selected from the

range 0 s to 0.3 s.

All the models employed for the evaluation are summarized in Table 4.1 and tables

detailing their architectures can be found in appendix A.
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4.1.4.2 Simulated dataset

We trained different models for several power map resolutions with the whole range

of reverberation times and SNRs, and then we tested their performance for several

specific values of T60 and SNR in order to analyze the robustness of the proposed

tracking system.

Since we are using SRP-PHAT power maps as the input of our algorithm, we started

our evaluation by comparing our model with the classic SRP-PHAT algorithm. SRP-

PHAT does not perform any kind of tracking, so, for a fairer comparison, we did not

take into account the silent frames when computing the root mean squared angular

errors (RMSAEs) shown in Fig. 4.2. As we can see in this figure, when working with

high-resolution power maps in almost anechoic rooms with high SNR, using our 3D

CNN over the SRP-PHAT maps does not improve the results compared to just taking

the maximum of each map; actually, our system seems to slightly degrade the DOA

estimation, probably due to the effect of applying an unneeded tracking. However,

when the room conditions deteriorate, we can see how Cross3D is robust enough to

get its performance degraded in only 5◦ when the T60 increases to 1.5 s (which is higher

than any reverberation seen during the training) while the SRP-PHAT algorithm is just

unable to perform a proper estimation. They are also surprising the results obtained

with maps of only 4x8 resolution, which only perform a SRP-PHAT measurement each

45◦ in the azimuth and 60◦ in the elevation and, since P (θ, φ) = P (θ, 0) ∀φ ∈ [0, 2π)

if θ = 0 or π, only needs to perform 18 computations of (2.3).

Fig. 4.3 shows a couple of examples of simulated trajectories and their estimated

DOA. In Fig. 4.3a we can see how, for scenarios with high reverberation and low

SNRs, the maximum of the SRP-PHAT maps becomes really noisy but our proposed

system is able to maintain the estimated DOA quite close to the actual one. In linear

systems, robust tracking with noisy estimations usually comes with the cost of being

slow to track fast changes, at least with casual systems, but we can see how our model

was able to follow the sudden change in the azimuth of the source at the fifth second

of the trajectory. In Fig. 4.3b we can see how, when working with low-resolution

power maps, our system can predict the DOA with much higher precision than the
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Figure 4.2: Localization root mean squared angular error (RMSAE) for several power
map resolutions, SNR and reverberation times. The silent frames were not included in
the computation of the RMSAE
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(a) (b)

Figure 4.3: Examples of the DOA estimated in a scenario with T60=0.9 s and
SNR=5dB using maps with 32 × 64 resolution (a) and in a scenario with T60=0.3 s
and SNR=30dB using maps with 4 × 8 resolution (b). The solid line represents the
actual DOA of the source, the dashed line the estimated DOA and the crosses represent
the maximum of each SRP-PHAT power map. Grey segments indicate silent frames.

maximums of the maps. This could not be done with a two-step DOA estimation and

tracking algorithm that performed the tracking based only on the maximum of the

maps. Our system is able to analyze the whole maps and it was able to learn to exploit

the patterns in the SRP-PHAT maps to achieve higher resolution than the grid used

to compute the maps.

Finally, we also tested the baseline methods under different reverberations and

SNRs to compare the robustness of each model. In this case, since all the methods

include tracking capabilities, we did not exclude the silent frames when we computed

the RMSAEs shown in Fig. 4.4. We can see how the best results are obtained using

our method with high-resolution power maps but, even reducing the resolution, its

performance is still competitive. Using 1D CNN over the coordinates of the maximums

of 64×128 SRP-PHATs maps performs worse than using our 3D CNN over 4×8 maps,

so we can conclude that our model is exploiting the patterns present in the SRP-PHAT

maps and not only using the information of the position of its maximums (this was also

suggested by Fig. 4.3b). Using a 1D CNN over the GCCs —which is an approach, to

the best of the authors’ knowledge, unpublished— have a performance between using
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Figure 4.4: Tracking root mean squared angular error (RMSAE) of Cross3D with sev-
eral power map resolutions and the baseline methods for SNR=30 dB (a) and SNR=5dB
(b) and several reverberation times. The silent frames were also included in the compu-
tation of the RMSAE.

3D CNNs over 4×8 and 8×16 maps and may be an interesting approach when a lower

computational cost is needed. Finally, the models that use spectrograms as inputs

perform well in favorable scenarios (SELDnet even outperforms our proposal in low-

noise anechoic chambers) but they are not very robust against noise and reverberation.

4.1.4.3 LOCATA dataset

In order to confirm that, although it was trained with a simulated dataset, our system

is general enough to track sound sources recorded in real rooms, we tested it with

the LOCATA challenge dataset [137], which contains several recordings with the same

array that we had simulated to train the models. We used the development dataset

and we focused on tasks 1, 3, and 5 of the challenge: a static loudspeaker recorded

with a static array, a moving talker recorded with a static array, and a moving talker

recorded with a moving array; it is worth mentioning that the array was static in all the

simulations employed to train the model. For the robot head microphone array that

we simulated in the training dataset, the development dataset contains 3 recordings

for each task and its ground-truth positions.

90



4.1 Robust sound source localization using SRP-PHAT and 3D
convolutional neural networks

Table 4.2: RMSAE [◦] of the DOA estimated for the LOCATA dataset with Cross3D
using several map resolutions and the baseline tracking methods. The silent frames were
included in the computation of the RMSAE.

Model: Cross3D 1D CNN 2D CNN SELDnet

Input:
SRP-PHAT maps

GCCs Maximums Spectrograms
4x8 8x16 16x32 32x64 64x128

Task 1

Recording 1 17.93 11.92 8.30 4.62 5.16 16.18 7.54 93.76 29.70
Recording 2 18.90 7.68 6.68 4.90 3.91 12.60 5.19 64.18 38.44
Recording 3 10.35 6.34 2.98 3.25 2.24 11.57 5.09 140.21 54.81

Average 15.72 8.65 5.99 4.26 3.77 13.45 5.94 99.38 40.98

Task 3

Recording 1 23.06 18.11 13.79 12.43 9.92 13.59 14.04 70.86 50.57
Recording 2 20.97 13.71 10.01 8.36 9.22 14.17 12.02 83.42 48.71
Recording 3 21.05 12.74 9.83 7.69 6.60 15.21 13.29 82.48 57.29

Average 21.69 14.85 11.21 9.49 8.58 14.32 13.12 78.92 52.86

Task 5

Recording 1 11.93 10.83 7.25 5.74 5.49 10.93 10.53 58.33 37.24
Recording 2 20.92 16.16 16.08 12.18 13.59 17.33 17.42 41.98 73.17
Recording 3 23.57 18.25 13.58 15.64 15.49 20.14 23.58 66.91 66.50

Average 18.81 15.08 12.31 11.19 11.52 16.13 17.18 55.74 58.97

Average 18.74 12.86 9.83 8.31 7.96 14.64 12.08 78.01 50.94

The only modification to the proposed technique that we made after seeing its

performance with the LOCATA dataset was the use of a VAD. All the hyperparam-

eters of the model and the acoustical properties of the training dataset were selected

according only to the results obtained with simulated datasets. In other words, we

used simulated signals for training and validation and the LOCATA recordings only

for testing.

Table 4.2 shows the RMSAE of estimating the DOA of the source of each recording

using our technique and with the baseline methods. Although it is difficult to draw

conclusions from such a low number of recordings, we can see how the proposed track-

ing system clearly outperforms the baseline methods that use spectrograms as inputs

and that it also outperforms the 1D CNN methods when we use maps with at least

16× 32 resolution.

According to [137], the reverberation time of the room where the recordings were

performed was T60 ≈ 0.5 s, so we can observe some degradation in the performance

of Cross3D when it is used over low-resolution power maps compared with the results

obtained with the simulated dataset (see Fig. 4.4), but it disappears when the res-
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Figure 4.5: DOA estimated for the second recording of the second task of the LOCATA
challenge using maps with Cross3D over 32× 64 maps and the baseline methods.

olution of the maps increases; actually we even reach lower errors in the LOCATA

dataset than with the simulated test dataset. Using a 1D CNN also suffers a similar

degradation, but its most dramatic impact is on the methods which use spectrograms

as inputs. In contrast, the use of a 1D CNN over the coordinates of the maximums of

high-resolution SRP-PHAT maps does not suffer almost any degradation; but it may

not be an interesting approach since, having computed the 64× 128 resolution maps,

we can obtain far better results using the whole maps as inputs of Cross3D.

As an example, Fig. 4.5 shows the DOA estimation of the second recording of

the third task of the LOCATA dataset, where all the methods obtained an RMSAE

quite close to their average. We can see how Cross3D performs the best estimation

of the analyzed methods both for the elevation and for the azimuth. We can also see

that the LOCATA dataset has longer silences than the ones present in the simulated

dataset, which could also explain why some of the methods obtained lower results

with this dataset. In order to make the methods based on CNNs more robust against

longer silences, we should include them in the simulation of the training dataset and,

probably, increase the temporal receptive field of the models, which could be done by

increasing the number of layers, the temporal size of its kernels, or including longer

temporal dilations in the convolutions.
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4.2 A sound source localization model equivariant

to the rotations of the source and the array

In the previous section, we have presented a new model based on 3D CNNs applied

over SRP-PHAT power maps that has been proved to be more robust than other

state-of-the-art models for SSL. However, this model is not really equivariant to the

rotations of the source or the array, since the projection of the spherical SRP-PHAT

maps into the 2D equiangular grid employed as input of the convolutions generates

position-depending deformations that are not intrinsically compensated by the 3D

convolutions (though the model could learn to do it during the training). In addition,

this equiangular sampling is not the optimal way to sample the SRP-PHAT maps since

it oversamples the regions close to the poles.

Many new kinds of CNNs have been proposed in recent years to obtain equivariance

to spherical rotations. In [77] and in [168], it was proposed to perform the convolutions

in the spherical harmonic domain and then transform their result back to the spatial

domain to pointwise apply the nonlinear activations. Since then, several modifications

of this approach have been published, some of them proposing nonlinear activations in

the harmonic domain [169, 170]. Another approach is to analyze the spherical signal

as a graph where each point is connected to its neighbors [171, 172, 173]. By working

this way, they avoid the need to work in the harmonic domain, but, in most cases,

their kernels are restricted to being isotropic, i.e. to having circular symmetry.

In this section, we propose the use of a third approach: the icosahedral CNNs

presented in [76]. These networks are only strictly equivariant to the 60 rotational

symmetries of the icosahedron instead of the continuous space of spherical rotations,

but they have a much more efficient implementation based on standard 2D convo-

lutions. They have been proven to smoothly generalize to the continuous space of

spherical rotations when these rotations are shown during the training of the model

and their hexagonal kernels are not restricted to be isotropic thanks to saving the

results of every possible orientation as separate channels.

In addition, in order to preserve the equivariance of the whole model, we present

a new layer, which we call soft-argmax, to replace the fully connected layers that
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are usually employed at the end of the convolutional models. This layer interprets

the output of the last convolutional layer as the probability distribution of the source

position and computes its expected value, so allows us to convert a classification output

into a regression output in a differentiable and interpretable way without adding any

trainable parameters to the model.

4.2.1 Icosahedral CNNs

Several techniques have been recently proposed to extend the translation equivariance

of conventional CNNs to spherical rotations, most of them based on the spherical har-

monics domain. Although they are only equivariant to the 60 icosahedral rotations

instead of the continuous space of spherical rotations SO(3), in this work we use the

icosahedral CNNs proposed in [76] due to its efficient implementation based on con-

ventional bi-dimensional CNNs. The icosahedron is the platonic solid with the highest

number of faces and it allows us to approximate a sphere with lower error than other

geometric shapes with a lower number of faces while being able to define a convolution

operation on a hexagonal grid without needing any kind of interpolation and imple-

ment it using a conventional 2D convolution. The details of this implementation and

some experiments proving its good performance approximating spherical signals (and

its rotations) can be found in [76], but we summarize some of the main ideas in this

section.

The icosahedral grid used to sample the spherical signals is built recursively starting

from the vertices of the icosahedron (which we define as having a vertex in the south

and another in the north pole as shown in Fig. 4.7a) and then subdividing each

triangular face into 4 smaller triangles by introducing a new point in the center of

each edge as shown in Fig. 4.6. Repeating this process r times, we obtain a grid with

5 · 22r+1 + 2 points. As we can see in Figs. 4.7a and 4.7c, apart from the vertices of

the icosahedron, which only have 5, every one of these inner sampling points has 6

neighbors, so we can see them as hexagonal pixels. In [76], due to their pentagonal

shape, it is proposed to keep the corners values to 0 to preserve the equivariance of the

model but, in order to avoid artifacts around them after applying the convolutions,
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r = 0 r = 1 r = 2

Figure 4.6: Sampling points of a face of the icosahedron for different resolutions.

we replace that 0 with the average value of their 5 neighbors (which also preserves the

equivariance of the model).

Due to the hexagonal shape of the pixels defined this way, the icosahedral CNNs

use hexagonal kernels which can be stored in 3× 3 bi-dimensional kernels. If we want

the model to be equivariant to the icosahedral rotations without restricting the kernels

to be isotropic, we have to consider their 6 possible rotations so, for each kernel in

the convolution, we have to work with 6 channels instead of with just one as it is

done in conventional convolutions. Finally, in order to implement the icosahedral

convolutions using standard 2D convolutions, a projection of the whole icosahedral

grid into a 5 · 2r × 2r+1 rectangular grid (Fig. 4.7b) is presented in [76] along with a

way to circularly pad it into a 5 · (2r + 2) × 2r+1 + 2 extended grid to preserve the

equivariance of the model.

To sum up, we can apply a convolution with C kernels over an icosahedral grid

of resolution r using a conventional 2D convolutional layer with 3× 3 kernels and 6C

channels over a 5 · (2r + 2)× 2r+1 + 2 image.

In [76], it is not detailed how the pooling layers are implemented. In our imple-

mentation, an icosahedral pooling layer reduces an icosahedral grid of resolution r to a

new one of resolution r−1 where each new hexagonal pixel is computed as the average

of the pixel which has its same center and its 6 neighbors. This can be seen as the

icosahedral equivalent of a 2D pooling with kernel size 3× 3 and stride 2× 2.
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(a) (b)

(c)

Figure 4.7: Example of an icosahedral SRP-PHAT power map with resolution r = 3
in a high reverberation low noise scenario: T60=1.0 s and SNR=30 dB (a), the 2D rep-
resentation employed for the convolution implementation (b) and a spherical projection
for visualization purposes (c). The green sphere/circle indicates the actual DOA of the
sound source.
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4.2.2 Soft-argmax regression

In the model presented in the previous section using 3D convolutions, in order to

perform the regression of the source coordinates after the convolutional layers, we

flattened the activation maps of the last layer and fed it to several fully connected

layers (actually, we used 1D convolutions in order to allow the model to also take into

account the previous frames). Even when employing pooling layers along with the

convolutional layers to reduce the number of activations that reach the fully connected

layers, this approach has a high computational cost and highly increases the number

of trainable parameters of the model, which increases its memory consumption and

its risk of overfitting.

For our model based on icosahedral convolutions, we replace those fully connected

layers with a new soft-argmax function, where we use a soft-max layer to ensure

that the sum of the whole activation map is 1.0 and then we just sum the results

of multiplying each hexagonal pixel by the coordinates that they represent in the

icosahedral grid:

soft-max (P (x)) =
eP (x)∑

x∈X eP (x)
=

eP (x)−max(P (x))∑
x∈X eP (x)−max(P (x))

(4.1)

soft-argmax (P (x)) =
∑
x∈X

x soft-max (P (x)) , (4.2)

where P (x) is the output of the last convolutional layer of the model and x ∈ X

are the coordinates of the points of the icosahedral grid X where it is sampled. The

subtractions of max (P (x)) inside the exponential functions are done for numerical

stability reasons without affecting the analytical result.

This way, the output of the icosahedral convolutions, after being normalized with

the soft-max function, can be seen as the probability distribution of the coordinates of

the source and the output of the soft-argmax function as its expected value. Another

advantage of this approach, apart from the model interpretability and the reduction in

the computational and memory costs, is that we avoid introducing any non-equivariant

layer to the model.
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Although we could directly estimate the spherical coordinates of the source defin-

ing x in spherical coordinates, we estimate the 3D coordinates of the unitary vector

pointing at the direction of the source by defining x in 3D Cartesian coordinates. As

previously explained, it has been proven that this brings better results than directly

inferring the elevation and azimuth angles [53, 54] and, in addition, continuing with

the interpretation of the output of the CNN as a probability distribution function,

minimizing the mean squared error (MSE) of this vector does not only imply reducing

the distance between its expected value and the source position but also reduces its

variance, since a completely unitary vector would only be possible if only one pixel

is activated. Therefore, we can see the norm of the output vector as a measurement

of the confidence in the DOA estimation, being closer to 1 when the confidence is

higher as done with the activity-coupled Cartesian direction of arrival (ACCDOA)

representation [58].

In Fig. 4.8 we can see an example of the output of the last convolutional layer

of the trained model after being normalized with the soft-max function and how it

represents a probability distribution whose expected value accurately estimates the

actual DOA of the sound. It is worth noting how the precision of the estimated DOA

exceeds the grid used to sample the probability distribution, overcoming the main

issues of the classification approaches to SSL.

4.2.3 Proposed technique

4.2.3.1 Model architecture

Since the regression of the estimated DOA is performed with our soft-argmax layer,

which already integrates the coordinates of every map point, the input of the model

has only one channel with the SRP-PHAT map and it does not include the additional

channels that we used in section 4.1 to indicating the coordinates of the maximum of

every map. Including these channels would have broken the rotational equivariance of

the model and would have made it more difficult its extension to multi-source scenarios.

As shown in Fig. 4.9, we combine icosahedral convolutions with one-dimensional

convolutions operating in the time dimension in order to take the temporal context
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Figure 4.8: The output of the last convolutional layer after passing through the soft-
max function, corresponding to the input maps shown in Fig 4.7, and the result of the
soft-argmax function converted into spherical coordinates (red cross). The green circle
indicates the actual DOA of the source.

into account when performing the DOA estimation while being equivariant to both

icosahedral rotations and temporal translations. Each convolutional unit is composed

of an icosahedral and a temporal convolution followed by layer normalization [174]

and rectified linear unit (ReLU) activation. The temporal convolution has a kernel of

size 5 operating causally, i.e. its receptive field only includes past maps, and both the

icosahedral and the temporal convolution have 32 kernels. To preserve the equivariance

of the model, the 6 kernel-orientation channels of every icosahedral kernel are seen as

6 independent signals by the temporal convolutions. The impact of the number of

convolutional kernels in the performance of the model is analyzed in section 4.2.4.2.

In [174], it was hypothesized that layer normalization did not provide relevant

improvements in convolutional neural networks since the hidden units close to the

boundaries of the images did not follow the same distribution as the rest of the hidden

units. However, our inputs do not have boundaries and we found that, adding layer

normalization to our model, it converged faster and more robustly during the training.

To keep the model equivariant to the icosahedral rotations, we have implemented a

layer normalization that normalizes the inputs along the 32 channels and its 6 kernel

orientations but the scale weights are tied for the 6 kernel orientations in the affine

transformation.
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Figure 4.9: Architecture of the proposed model. B is the batch size, T is the number
of temporal frames of the trajectory, H = 2r and W = 2r+1 are the height and the width
of the projections of the icosahedral grid, and N = r−1 is the number of down-sampling
units used for that input resolution.
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We concatenate two of these convolutional units to an icosahedral pooling to build

a down-sampling unit and stack as many of these down-sampling units as needed to

get an r = 1 icosahedral map (in the case of using maps with r = 1 as input we do

not use any down-sampling unit). When we have a minimal-size icosahedral map, we

concatenate 5 convolutional units (the last one with only an output channel for the 1D

convolution and without layer normalization and the ReLU activation). This way, we

ensure that the receptive field of all the output cells of the icosahedral CNN includes

all the cells of the input map independently of its resolution. Finally, we use a max-

pooling layer over the 6 kernel-orientation channels and feed the resulting icosahedral

maps to the soft-argmax layer explained in section 4.2.2.

4.2.3.2 Training

For the training dataset, we used again the technique described in chapter 3 to generate

random source trajectories and simulated them using our GPU implementation of

the Image Source Method [61] at a sample rate of 16 kHz using utterances from the

LibriSpeech train-clean-100 dataset [135] as source signals. We simulated the same 12-

microphones array included in the LOCATA dataset [137, 138] as we did for Cross3D,

which has a minimum and maximum inter-microphone distances of 1.3 cm and 12.1 cm

respectively.

As done for the Cross3D models, we computed the SRP-PHAT maps using frames

of length K = 4096 samples (i.e. 256ms) with a hop size of 3K/4. We normalized

the maps by subtracting their mean and dividing them between their maximum and

used the Voice Activity Detector of the Web Real-Time Communication (WebRTC)

project [136] to turn to 0 the maps corresponding to silent frames.

As explained in the previous section, using this approach we have an infinite-size

dataset, but we define an epoch as 585 random trajectories of 20 s, each one with an

utterance randomly taken from one of the 585 chapters present in the LibriSpeech

train-clean-100 subset. We used Pytorch [166] to train the model using the Adam

algorithm [165] over 50 epochs. Similar to the curriculum learning [134] strategy

employed to train the Cross3D models, we keep fixed the SNR of the simulations to
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Table 4.3: Models employed for the evaluation.

Model Input
SRP-PHAT
computations

Trainable
parameters

Temporal
receptive field

IcoCNN
Icosahedral
SRP-PHAT
maps

r=1 30 193 441 4.10 s
r=2 150 289 953 5.63 s
r=3 630 386 465 7.17 s
r=4 2550 482 977 8.70 s

Cross3D
Equiangular
SRP-PHAT
maps

4× 8 18 526 372 5.63 s
8× 16 98 946 340 6.40 s
16× 32 450 1 693 988

7.17 s32× 64 1922 5 626 148
64× 128 7938 21 354 788

1D CNN GCCs 0 11 282 436 7.17 s

30 dB during the first 25 epochs and then we employed uniformly distributed random

values from 5dB to 30 dB in the following epochs.

4.2.4 Evaluation

4.2.4.1 Baseline techniques

Since, in the previous section, they were the techniques that proved to be the most

robust against reverberation, we compared the proposed technique with Cross3D and

the 1D CNN operating over the GCC coefficients.

As we can see in Table 4.3, the proposed model has a much lower number of

trainable parameters than the other models. This is because the final regression is

performed with the soft-argmax function (without trainable parameters) instead of

with fully connected layers.

4.2.4.2 Simulated dataset

In order to analyze the performance of the proposed model under different acoustic

conditions, we first evaluated our model using synthetic signals simulated following the

same procedure employed for the training dataset. We found that some utterances

included a short period of silence at the beginning which artificially biased the results,

so we have not taken into account the localization error of the first 5 frames, i.e. the
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Figure 4.10: Localization root mean squared angular error (RMSAE) under several
simulated conditions for the proposed and the baseline techniques.

first second, of each trajectory even if they were used to train the models. All the root

mean localization errors described in this section include the frames where the source

was silent, but the models are able to continue estimating its position thanks to the

temporal context included in their receptive fields through the temporal convolutions.

As we can see in Fig. 4.10, the proposed models clearly outperform the baselines

even using maps of lower resolution and having far less trainable parameters. To make

this even clearer, Fig. 4.11 plots the localization error represented as a function of the

number of computations of the SRP-PHAT functional (2.3), needed to compute the

input maps of each model. It is worth noting that the reverberation times T60 = 0.0 s

and T60 = 1.5 s are out of the range of reverberation times used during the training,

but the model generalizes well to them continuing with the same tendency shown with

the rest of reverberation times.

We can also see how using icosahedral maps with a resolution higher than r = 2

does not seem to improve the accuracy of the DOA estimations. Considering that those

models had a higher number of down-sampling units, and therefore more trainable

parameters and longer temporal receptive fields, we can conclude that the maps with

r = 2 already contain all the information useful for tracking. This limit is probably

determined by the size of the array we are using to compute the maps and that limits

their spatial bandwidth; using bigger arrays would probably allow us to obtain even

better results from higher-resolution maps.

In Fig. 4.12, we can see an example of a random trajectory in a scenario with
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Figure 4.11: Localization root mean squared angular error (RMSAE) vs the number of
computations of equation (2.3) needed to compute each input map. The semitransparent
area indicates the whole reverberation interval from T60 = 0.2 s to 1.3 s and the solid
line indicates its average value.

high reverberation time and low noise using maps with resolution r = 2. We can

see that the maximums of the SRP-PHAT maps are in spurious positions in many

frames and, even in those where they are in the grid position closest to the ground

truth, they are quite far due to their low resolution. However, we can see that the

estimation of the proposed model stays always closer to the actual DOA of the source

even during the silent frames since the icosahedral convolutions allow the model to

analyze the whole maps instead of just taking only the information of the position of

their absolute maximums and thanks to the temporal context provided by the temporal

convolutions.

In Fig. 4.8 we have seen the r = 1 probability distribution inferred by the model for

the r = 3 maps depicted in Fig. 4.7. We can see how the model is able to accurately

adjust the probability assigned to every hexagonal pixel around the pentagonal vertex

so the result of the soft-argmax function is precisely displaced from the center of the

closest hexagonal pixel to the actual DOA of the simulated source. It is worth saying

that, even if the vertex values were replaced by the average value of their neighbors

during the convolutional layers, they are turned to 0 before the soft-argmax function.

Since that was the only difference that we had introduced in our implementation

of the icosahedral convolutions with respect to the original implementation described

in [76], we also studied the effect of replacing the vertices of the icosahedron by zeros
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Figure 4.12: DOA estimation for a random trajectory simulated with T60=1.0 s and
SNR=30dB. The solid lines represent the ground-truth DOA and the dashed lines the
estimation performed by the proposed method using input maps of resolution r = 2.
The dots indicate the position of the maximum of those maps.

Table 4.4: Mean RMSE [◦] in the simulated dataset with the different strategies to
handle the vertices in the icosahedral convolutions.

Vertices values
Map resolution

r=1 r=2 r=3

zeros 11.02 7.81 7.31
neighbors’ average 10.89 7.81 7.57

instead of by the average of their neighbors. As we can see in Table 4.4, the difference

between both strategies is negligible but, considering that the impact of the averaging

in the computational cost of the model is also negligible, we still think that our strategy

is preferable since it reduces the artifacts around the vertices in the hidden layers of

the model.

In Table 4.5, we can see the mean RMSAE for all the reverberation times and

SNRs of the evaluation dataset for several numbers of convolutional kernels. It should

be noted that, if we need to reduce the computational complexity and memory con-

sumption of the model, we can reduce the number of convolutional kernels without

having a too large impact on the localization accuracy. This is possible thanks to the

equivariances of the model since, contrary to conventional 2D CNNs, the same kernel
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Table 4.5: Mean RMSAE [◦] in the simulated dataset with different numbers of con-
volutional kernels.

Convolutional
kernels

Map resolution

r=1 r=2 r=3

4 14.16 12.78 10.19
8 12.63 9.82 8.84
16 11.89 8.61 7.69
32 10.89 7.81 7.57
64 10.21 7.38 6.71

can model the different rotations of its pattern. This fact, combined with avoiding

the distortions that the 2D projection of the maps generated in Cross3D, allows the

proposed model to extract even more information than the previous model using less

convolutional kernels.

4.2.4.3 LOCATA dataset

To confirm that the models trained with simulated signals are general enough to work

with signals recorded in real environments, we have tested them using the recordings

of tasks 1, 3, and 5 (i.e. the tasks with only one source) of the evaluation partition

of the LOCATA dataset [137]. Table 4.6 and Fig. 4.13 show the average results for

every task and for the whole evaluation partition and we have included the root mean

squared error (RMSE) of every recording in appendix B.

As we can see in Fig. 4.14, some of the recordings of the LOCATA dataset include

long periods of silence when the sound source was moving. During these silent periods,

the models obviously cannot keep tracking the movements and if they constitute a

high percentage of a recording, its RMSAE will be strongly biased by them; therefore,

Table 4.6 also includes the RMSAEs without taking into account these silent frames.

In addition, it is worth mentioning that the size of the dataset is quite small, with

the 23 recordings used for this test adding less than 7 minutes after having removed

the initial silences, which makes it very sensitive to any anomalous circumstance that

could appear even if it is only present for a short period of time.

We can see that the difference between the model using icosahedral convolutions
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Table 4.6: Mean RMSAE [◦] of the DOA estimated for every task of the evaluation
partition of the LOCATA dataset with the icosahedral CNNs using several map res-
olutions and the baseline tracking methods. The second (gray) numbers indicate the
RMSAE without taking into account the frames when the sound source was silent.

Model: IcoCNN Cross3D 1D CNN

Input:
Icosahedral SRP-PHAT maps Equiangular SRP-PHAT maps

GCCsr=1 r=2 r=3 r=4 4x8 8x16 16x32 32x64 64x128

Task 1
8.04 5.88 5.57 5.25 28.62 22.47 13.89 9.84 5.28 12.54
8.34 6.08 5.78 5.23 27.09 22.16 14.32 8.51 5.48 12.80

Task 3
10.53 8.94 10.07 9.57 18.51 17.56 12.76 11.18 9.92 12.09
8.97 7.29 6.93 7.87 17.98 17.50 12.16 10.33 8.86 11.62

Task 5
15.48 11.13 11.54 10.95 19.13 17.49 13.03 12.20 12.49 16.47
13.03 8.87 9.66 8.49 15.82 13.38 10.75 10.63 10.73 13.31

Average
10.20 7.69 7.85 7.43 24.90 20.32 13.45 9.84 7.86 13.30
9.50 6.97 6.87 6.51 23.47 19.24 13.03 9.52 7.36 12.65

Median
9.91 7.17 6.66 6.60 18.51 15.32 9.90 7.58 5.97 12.72
9.94 6.79 6.53 6.45 18.25 14.43 7.65 7.09 5.74 12.00

Standard deviation
5.00 3.53 3.82 3.51 15.65 13.43 12.87 7.71 5.71 5.67
4.17 2.40 2.69 2.26 14.39 13.24 13.26 8.07 5.37 5.44
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Figure 4.13: Average localization root mean squared angular error (RMSAE) in the
LOCATA dataset vs the number of computations of equation (2.3) needed to compute
each input map, along the whole signal (a) and without taking into account the silent
frames (b). The semitransparent area indicates the average ± the standard deviation.
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Figure 4.14: DOA estimation for the third recording of task 5 of the LOCATA dataset.
The solid lines represent the ground-truth DOA and the dashed lines the estimation
performed by the proposed method using input maps of resolution r = 2. The dots
indicate the position of the maximum of those maps.

and Cross3D is not as great in this dataset as in the synthetic one, though the model

using icosahedral convolutions still clearly outperforms the baseline model, especially

when using low-resolution power maps. This could be due to the differences between

the signals simulated with the image source method (ISM) method used to train the

models and the signals recorded in a real room used for this test. It seems that we

might be approaching the accuracy limit imposed by this dataset difference, so the

accuracy with real recordings can not improve even when we improve the models. In

recent years, several domain adaptation techniques have been proposed to improve

the accuracy of models trained with simulated signals [46, 64, 65, 66] and it would be

interesting to conduct further studies along these lines.

In any case, as can be seen in Fig. 4.13, the proposed model working with maps

of resolution r = 2 still has in the LOCATA dataset an accuracy comparable with

Cross3D using maps of much higher resolution, reducing in almost two orders of mag-

nitude both the number of SRP-PHAT computations and the number of trainable

parameters, which might be crucial in applications where the sound source localiza-

tion must be done in low-cost devices in real time. We can also see how the proposed
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(a) (b)

Figure 4.15: Example of an input map from the 1st recording of the 5th task of the
LOCATA evaluation dataset (a) and the output of the last convolutional layer after
passing through the soft-max function and the result of the soft-argmax function con-
verted into spherical coordinates (red cross) (b). The green circle indicates the actual
DOA of the source.

model provides far more consistent results than the baseline (whose results have a

much higher variance), which also suggests a better generalization from the simulated

dataset used for training to the actual recordings of the LOCATA dataset.

Finally, Fig. 4.15 shows an example of an input SRP-PHAT map extracted from

the first recording of the fifth task of the evaluation partition of the LOCATA dataset

and its corresponding model output. As in Fig. 4.8, we can see how the energy of

output of the CNN is distributed in a way that, after normalized with the soft-max

function and interpreted as a probability distribution, its expected value approaches

the actual DOA of the sound.

4.3 Conclusions

In this chapter, we have presented two new models for sound source localization, both

of them using fully convolutional architectures over SRP-PHAT power maps. The first

one uses a 3D CNN and the second one uses an icosahedral CNN. Since they do not

use any non-causal element, such as bidirectional recurrent layers, they are feasible for

real-time applications and provide a new DOA estimate with every new input map;

i.e., every 192ms.
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4. ROBUST SINGLE SOURCE LOCALIZATION

The experiments performed show that the SRP-PHAT maps are a good input

feature to be used in tracking systems based on deep learning, being much more

robust to reverberation and noise than the use of spectrograms as proposed in most

of the recent literature. They also prove that it is possible to obtain a good tracking

performance using only causal convolutional layers and that non-causal recurrent layers

are not needed.

In addition, our second model also shows how using architectures that fit the equiv-

ariances of the problem that we want to solve allows us to increase the accuracy of the

models while reducing the number of trainable parameters. The model is completely

equivariant to time shifts and to the 60 rotational symmetries of the icosahedron,

which is a good approximation of the continuous space of spherical rotations. It can

be implemented using conventional 2D convolutional layers and has a low number of

trainable parameters thanks to replacing the fully connected layers that are typically

employed after the convolutional layers with a differentiable version of the argmax

function, which, in addition, allows us to interpret the output of the convolutional

layers as a probability distribution whose expected value is the DOA estimation.

Finally, it is worth mentioning that, even if we have focused on using SRP-PHAT

maps as inputs for our models, any other spatial pseudo-spectrum could also be used

(such as those computed using the MUSIC algorithm), so further studies comparing

different input features and even combining them as different input channels would

also be interesting.
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5

Permutation invariant

multi-source tracking

In this chapter we present our works on multi-source tracking. We first introduce

the tracking problem and its invariance to the permutations of the sources in section

5.1 and our attempts to develop an iterative multi-source localization system based

on source cancellation in section 5.2. Then we present our main proposals for sound

source tracking (SST): the permutation invariant gated recurrent units (PI-GRUs) and

the sliding permutation invariant training (sPIT) in sections 5.3 and 5.4 respectively.

Finally, we evaluate these proposals in section 5.5 and we end the chapter with some

conclusions in section 5.6.

This chapter includes the reproduction of figures and text fragments from [VII]

with permission of the copyright holders.

5.1 Sound source tracking (SST) and the permuta-

tion invariance

In the previous chapter, we focused on providing direction of arrival (DOA) estimates

as accurate as possible in scenarios where we knew that one and only one source was

always present. To train deep-learning models to do this in a supervised manner,

we could easily define loss functions by comparing the estimates of the model with
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the ground-truth DOAs. However, when moving from single to multiple sound source

localization (SSL), we need to assign every estimate to one of the ground-truth DOAs.

If there are no possible criteria to classify or order the sources, we cannot expect

the estimates to follow the same order as they have in the ground-truth labels and,

therefore, any permutation of the estimates is equally valid. If we do not take into

account this permutation invariance when defining our loss function, our models will

converge to useless solutions as estimating all the sources in the middle of the actual

DOAs since, not being able to match the order of the sources in the ground-truth

labels, this is the feasible solution that minimizes the average localization error of the

sources.

In addition, when moving from SSL to sound source tracking (SST), apart from

providing DOA estimates, we must also detect when a new source appears or disap-

pears and be able to associate every new estimation to the correct tracked trajectory

avoiding identity switches (IDSs). In classical tracking systems, this is typically solved

in two steps following what is usually called tracking-by-detection: they first try to

detect every source present in a time frame and then they filter these estimated DOAs

associating them to the tracked trajectories and determine if new sources have ap-

peared or some of the tracked sources have disappeared. Although the deep-learning

models for SST usually do not split the tracking into two completely separated steps,

many of them use recurrent convolutional neural network (RCNN) where, according

to the temporal receptive field of every layer and the information that they receive,

we can expect the convolutional layers of the model to specialize in the detection and

the recurrent layers in the tracking.

As shown in Fig. 5.1, we can see a tracking-by-detection system as a recurrent

process that, at every time frame, combines the new DOA estimates provided by the

detector with the last tracking output to update the tracked trajectories. Under this

model, we would expect the tracking system to be invariant to the permutations of

the DOA estimates generated by the detector (since they are an unordered set) and

equivariant to the permutations of the tracked trajectories (since they are also an

unordered set but the new estimates must be assigned to the correct trajectory).
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Figure 5.1: Diagram of a tracking-by-detection system seen as a recurrent process.

Table 5.1: Mean RMSAE [◦] simulating just one source and simulating two sources
and analytically canceling one of them.

Number of sources
Map resolution

r=1 r=2 r=3

One 11.02 7.81 7.31
Two (one analytically canceled) 31.49 26.96 26.03

5.2 Iterative multi-source localization through source

cancellation using deep learning

In order to build a tracking system following a tracking-by-detection approach, we first

need to have a detector that outputs a set of DOAs for every time frame. Having devel-

oped a technique that is able to cancel a source from the generalized cross-correlation

(GCC) functions of a microphone array and a deep-learning model for single-source

localization, we tried to combine both elements to design an iterative SSL system with

the structure shown in Fig. 5.2a.

We first tried to simply use the analytical cancellation technique presented in

chapter 2 to obtain the canceled maps. However, as can be seen in figures from

Fig. 2.16 to Fig. 2.20, this cancellation has a too aggressive effect on the steered

response power with phase transform (SRP-PHAT) maps when used in reverberant

environments, which leads to the very poor performance of the model presented in the

previous chapter even when trained using canceled maps (see Table. 5.1). Therefore,

we tried to use deep learning techniques to improve the cancellation technique.
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Figure 5.2: Structure of iterative multi-source localization systems using source can-
cellation over the GCCs (a) and over the SRP-PHAT maps (b).

The cancellation technique presented in chapter 2 computes the canceled GCCs

as a linear combination of time-shifted versions of the original GCCs, where the scale

coefficients applied to every GCC in the linear combination are constant and the time

shifts are calculated based on the array geometry and the DOA of the source we

want to cancel. Our first attempt to include neural networks into this process was

letting a multilayer perceptron (MLP) compute these coefficients and time shifts with

the idea of being able to apply multiple iterations of the cancellation technique using

different sets of coefficients and time shifts generated with a neural network for the

same canceled DOA.

First, in order to confirm that an MLP was able to, at least, replicate the analytical

solution, we trained an MLP to replicate it as shown in Fig. 5.3a and we found that

a small MLP with just one hidden layer was indeed able to easily replicate it. After

that, we implemented the cancellation technique in the frequency domain so it was

easier to track gradients through it but, when we tried to train the same MLP to

minimize the error of the canceled GCCs (Fig. 5.3b) or the SRP-PHAT maps (Fig.
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5.3c) generated using it, we found that the training did not converge to any useful

solution. We also tried to train the MLP to obtain the GCCs and the maps obtained

without including the source that we want to cancel into the acoustic simulation but,

as could be expected after having seen the previous results, this did not converge

either. We think this is due to the peaks of the GCCs being too narrow, especially

when using the phase transform (PHAT), which led to the GCCs with the random

time shifts generated by the MLP at the beginning of the training not having any

overlap with the GCCs needed for the cancellation and therefore not generating any

useful gradients to train the model.

After concluding that the previous approach was not feasible, we tried to use a

residual U-net [71] architecture over the SRP-PHAT maps to cancel the effect of a

source in order to develop an iterative system as the one represented in Fig. 5.2b. We

first tried to train it to replicate the maps obtained without including the canceled

source in the acoustic simulation, but then we found that we could obtain better results

by training it to generate maps whose maximum, using the soft-argmax layer presented

in section 4.2.2, was at the DOA of the remaining source. This led us to believe that,

especially if we use 3D convolutions in the U-Net to increase the temporal receptive

field of the model, finding the second source is easier for the models than canceling the

first one since the maps generated by this model did not have any similarity with the

original maps and looked as if the model had located the second source and created a

completely new map for it.

All these results dissuaded us from keep trying this iterative approach for multi-

source localization and we decided to move to models that could locate several sources

at the same time. Using the icosahedral convolutional neural network (icoCNN) pre-

sented in the previous chapter, this is easily done by just increasing the number of

output channels of the last convolutional layer from 1 to the maximum number of

sources that we want our model to be able to locate and then applying the soft-

argmax layer independently to every one of these channels so each one can provide a

different DOA for a different source.
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Figure 5.3: Experiments training an MLP to replicate the analytical coefficients and
time shifts of the source cancellation technique presented in chapter 2.

116



5.3 Permutation invariant gated recurrent units (PI-GRUs)

5.3 Permutation invariant gated recurrent units (PI-

GRUs)

Since tracking can be seen as a recursive process, using recurrent neural networks

(RNNs) at the end of our models seems to be a natural option, and this is indeed

what most of the state-of-the-art models do [14, 26, 38, 41, 42, 58, 62]. Conventional

RNNs, such as the long short-term memory (LSTM) layers [175] or the gated recur-

rent units (GRUs) [176], use a h(t) ∈ Rdh vector to store the tracking state, which

is updated at every time frame based on an input vector x(t) ∈ Rdx and, since these

updates are usually computed using fully connected perceptrons, their computational

complexity and their number of trainable parameters grow with the square of the

length of h(t). When applied to multi-object tracking (MOT), the information cor-

responding to all the tracked objects is stored in h(t) without any predefined order

or structure, which makes it hard to interpret and impose a compromise between the

number of tracked objects, the amount of information that is stored for every one of

them, and the computation complexity and the number of trainable parameters of the

model. Furthermore, in addition to this compromise, if we stack the information of

every object provided by the detector into a single vector, any change in the order of

these objects can dramatically change the network output, so the network needs to

learn the equivariance of the problem during the training.

In order to overcome the aforementioned issues of the conventional RNN for track-

ing applications, we propose, following the Geometric Deep Learning philosophy, the

design of a new kind of recurrent architecture that shares the permutation invariances

and equivariances of the tracking problem. As analyzed in section 5.1, if a tracking

system is taking as inputs the estimates of a SSL system, we can see these estimates as

an unordered set and therefore we should expect the tracking output to be the same

regardless the order in which they are presented; i.e., the tracking system should be

invariant to the permutation of its input estimates. On the other hand, if we want the

identities assigned to every trajectory to be consistent during the time, once a source

is randomly assigned to one of the tracking outputs, it should always be assigned

to the same output but, in the case of having being assigned to a different output,
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Figure 5.4: Architecture of the proposed permutation invariant gated recurrent unit
(PI-GRU).

the result should be exactly the same except for the output where that trajectory is

presented; i.e., the tracking system should be equivariant to the permutation of the

tracked trajectories.

In contrast to these conventional RNNs, we propose replacing the input and state

vectors x(t) and h(t) with sets of vectors X(t) = {x1(t),x2(t), ...,xMx
(t)} and H(t) =

{h1(t),h2(t), ...,hMh
(t)} where every element xi(t) ∈ Rdx and hi(t) ∈ Rdh contains

the information corresponding to only one input detection or one tracked trajectory

respectively. Since the most efficient way to computationally represent data for deep-

learning applications is in form of matrices, we can represent the input and state sets

as two Mx × dx and Mh × dh matrices as far as we ensure that every row of H(t)

is updated in a way that is invariant to the permutations of the rows of X(t) and

equivariant to the permutations of the rows of H(t − 1). For the sake of notation

simplicity, we will consider dx = dh = d in the remainder of this thesis, but the

proposed architecture could easily be adapted to use different embedding sizes for the

input and the state elements with just some minor modifications.

Interestingly, one of the most popular deep-learning modules nowadays already has

these desired symmetries: the multi-head attention employed in transformer architec-

tures [84]. The multi-head attention operation takes as input three matrices, typically
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called queries, keys and values, and its output, in the case of using the same matrix for

the key and the value inputs, is invariant to the permutations of the rows of the key

and value matrix and equivariant to the permutations of the rows of the query matrix.

In order to combine these properties with the gated structures that have been proved

to offer good results in conventional RNNs, we propose the architecture presented in

Fig. 5.4. This architecture is based on the conventional gated recurrent units (more

precisely, on a simplified version of the Minimal GRU presented in [177]), so we call

it permutation invariant gated recurrent unit (PI-GRU).

Instead of concatenating the input and the previous state as done in conven-

tional GRUs, the PI-GRU uses multi-head attention [84] to obtain a new set C(t) =

{c1(t), c2(t), ..., cNh
(t)} based on the input set and the previous state set:

C(t) = MultiHead(H(t− 1), X(t) ∪H(t− 1),X(t) ∪H(t− 1)) (5.1)

MultiHead(Q,K,V) = Concat(head1, ...,headNheads
) (5.2)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (5.3)

Attention(Qi,Ki,Vi) = soft-max

(
QiK

T
i√

dk

)
Vi (5.4)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , and WQ
i ∈ Rd×dc are learnable projection matri-

ces and the sizes of the keys and values dk and dc are hyperparameters of the model. It

is worth mentioning that (5.2) is typically defined including a linear output projection

[84] but we do not include it here since we are using the output of the multi-head

attention to directly feed fully connected perceptrons instead of a residual sum as is

done in transformer architectures.

Finally, after obtaining the set C(t), we use two fully connected perceptrons (or

gates) to update every element hi(t) of H(t) depending only on ci(t) and hi(t− 1):

hi(t) = [1− zi(t)]⊙ hi(t− 1) + h̃i(t) (5.5)

zi(t) = σ(ci(t)W
z) (5.6)

h̃i(t) = tanh(ci(t)W
h), (5.7)
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where Wz,Wh ∈ RNheadsdc×d are learnable projection matrices, ⊙ stands for point-

wise multiplication, and σ(·) is the logistic sigmoid function.

We can interpret the role of the multi-head attention in the PI-GRU as reordering

the information of the input set to make it match the order of the tracking trajectories

in the state set. Actually, QiK
T
i in (5.4) is the cross-correlation matrix between linear

projections of the elements ofH(t−1) (i.e., the information of every tracked trajectory)

and linear projections of the elements of X(t) ∪ H(t − 1) (i.e., the information of

every new detection and every tracked trajectory) and therefore we can expect it to,

after passing through the soft-max function, act as some kind of soft permutation

matrix that, when applied over Vi (i.e., linear projections of X(t) ∪H(t− 1) again),

generates a new set whose i-th element is built with the information of the elements

of X(t) ∪H(t− 1) most related to the i-th element of H(t− 1).

With this architecture, the computational complexity of the PI-GRU has a linear

dependency with the number of tracked objects M = Mh and new detections Mdet =

Mx and the number of trainable parameters does not depend on them and, since

every Rd vector in X(t) and H(t) only have to store information about one detection

or one tracked trajectory, we would expect to need lower values of dx and dh than in

conventional GRUs.

To the best of our knowledge, the PI-GRU is the first recurrent layer that works

with unordered sets instead of with ordered vectors. The closest proposal in the lit-

erature is probably the TrackFormer [178], a model for multi-object tracking (MOT)

on video signals that is based on the DETR transformer [179, 180], a model for object

detection on images. DETR uses a set of learnable object queries as input for their

transformer decoder that, through the multi-head attention layers of the decoder, be-

come the object detections. In the TrackFormer, a recurrent loop is built around the

decoder by using as object queries of every video frame the outputs of the decoder

in the previous frame, so it can track the objects that have already been detected.

Compared with the TrackFormer, the PI-GRU is not a model but a layer that can

easily be integrated into many different models and that is based on an architecture,

the conventional GRU, that, unlike the transformer, was designed to be used in recur-

rent loops. In addition, several PI-GRU layers can easily be stacked to build deeper
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models with more recurrent loops, while the natural way of increasing the depth of

the TrackFormer is increasing the number of layers of its transformer encoder and

decoder, which does not increase the number of recurrences of the model.

5.4 Permutation invariant training (PIT)

Regardless we are taking into account the permutation invariance of the problem in

the network architecture or not, we cannot ignore it during its training. When we

want to train a multi-source localization or tracking model in a supervised manner

and we cannot apply any criteria to classify and order the sources, we have to face

the permutation invariance of the sources; i.e., we cannot directly compare the m-th

trajectory estimated by the model ŷm(t) with the m-th trajectory of our ground-truth

dataset ym(t) since the model cannot infer the ground-truth order of the trajectories.

With the exception of [38], where a training strategy for MOT in computer vision

tasks [181] is adapted to SSL, most multi-source localization models are trained using

permutation invariant training (PIT). All the PIT strategies propose finding a permu-

tation σ : m → σm, ∀m ∈ {0, ...,M − 1} according to certain optimization criteria to

reorder the outputs of the neural network and then use it to compare the estimated

and ground-truth trajectories. When using activity-coupled Cartesian direction of ar-

rival (ACCDOA) vectors to represent the DOA and the activity of the sources, we can

use the mean squared error (MSE) as the loss function to train our models:

LPIT =
1

TM

T−1∑
t=0

M−1∑
m=0

∥ym(t)− ŷσm(t)(t)∥2, (5.8)

where M is the maximum number of trajectories that the model can estimate, T is

the number of time frames in the scene, and ∥·∥ is the Euclidean norm operator. In

the case of having a number of ground-truth trajectories lower than M , we can just

add as many 0-norm padding trajectories as needed.

5.4.1 Frame-level Permutation Invariant Training (fPIT)

The original PIT was first proposed for training speech separation models [182] but,

applied to SSL [13, 62], it proposes to find the permutation of the estimated sources
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a) fPIT:

b) uPIT:

c) sPIT:

Figure 5.5: Examples of 1D trajectories and the result of applying the different PIT
strategies. The dashed lines represent the estimates and their color how every PIT
pairs them with the ground-truth trajectories (solid lines). The red arrows represent the
gradients of the MSE of every pairing w.r.t. the first estimated trajectory.

that minimizes the matching error between the estimated and the ground-truth DOAs

for every time frame:

σf (t) = argmin
σ∈ΠM

M−1∑
m=0

∥ym(t)− ŷσm(t)∥, (5.9)

where ΠM is the set of all the permutations σ : i → σi of M elements. To solve

this optimization problem, we can compute the M ×M distance matrices D(t) with

elements dij(t) = ∥yi(t)− ŷj(t)∥ and apply the Hungarian algorithm [183] over them

to find the optimal permutation at every time frame.

We call this approach frame-level permutation invariant training (fPIT) and, al-

though it allows us to solve the permutation invariance problem, it does not penalize

at all the IDSs. Instead, as can be seen in Fig. 5.5a, its gradients push the model to

do these switches as fast as possible so the estimates are close to a ground-truth tra-

jectory at all time frames. Therefore, if we want to keep the identity of every output

stable during tracking, we need to add post-processing stages to fix the IDSs.
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5.4.2 Utterance-level Permutation Invariant Training (uPIT)

In order to penalize the IDSs, utterance-level permutation invariant training (uPIT)

[184] proposes finding the permutation that minimizes the error for a whole speech

utterance or some other longer recording unit of interest, instead of a different one for

every time frame:

σu = argmin
σ∈ΠM

T−1∑
t=0

M−1∑
m=0

∥ym(t)− ŷσm(t)∥, (5.10)

where T is the number of time frames of the acoustic scene. In this case, we only need

to apply the Hungarian algorithm once per acoustic scene after computing the time

average of the matrices D(t).

Replacing σf (t) by σu in (5.8) indeed penalizes the presence of IDSs since all

the frames where the output ACCDOAs do not follow the main identity assignation

compute as completely wrong estimates. However, as we can see in Fig. 5.5b, this

penalization is excessive, being able to penalize situations that can not be solved by

causal systems or generating gradients too much time after the IDS when, in most situ-

ations, it would be preferred to keep tracking the new identities rather than switching

them again. Our experiments in using uPIT for multi-source tracking showed that

it can easily generate a wide local minimum in the loss function that corresponds to

estimating all DOAs in the middle of the active sources. That effect makes effective

model training impossible, especially for long scenes of variable multiple sources.

5.4.3 Sliding Permutation Invariant Training (sPIT)

To overcome the limitations of both fPIT and uPIT, we propose a new PIT strategy

that we call sliding permutation invariant training (sPIT) which consists in choosing,

for every time frame, the optimal permutation for the last Tavg frames, i.e., for a causal

sliding window of length Tavg:

σs(t) = argmin
σ∈ΠM

Tavg−1∑
k=0

M−1∑
m=0

∥ym(t− k)− ŷσm(t− k)∥. (5.11)

In order to obtain σs(t) for every time frame, we can follow the same procedure

as in the fPIT but applying a causal moving average of length Tavg over the elements
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of D(t) before computing the Hungarian algorithm, so the computational complexity

is virtually the same. It is worth mentioning that, in the case of training non-causal

trackers, we could replace the causal moving window in (5.11) with a centered window.

As shown in Fig. 5.5c, the sPIT penalizes an estimation if it does not follow the

main source assignation of the last Tavg time frames, while it stops penalizing an IDS

after a maximum of Tavg frames and focuses on maintaining the new identities. Hence,

the global minimum of the loss function corresponds to a solution without any IDSs

but it also prevents the training from converging to the useless local minima generated

by uPIT, estimating all DOAs in the middle point of the active sources.

In addition, when used over ACCDOA vectors, if the number of estimated sources

is lower than the actual number, one of the estimated ACCDOA vectors whose norm

is lower than the detection threshold will be paired with the ground-truth ACCDOA

vector of the missed source and the gradients of (5.8) will pull that estimated ACC-

DOA towards it. Similarly, in the case of a false positive, the gradients will pull the

false-positive ACCDOA towards 0. Hence, sPIT is able to optimize both the source

detections and the consistent source assignments that we expect from a competent

SST system.

5.5 Evaluation

5.5.1 Experiment design

To evaluate the PI-GRUs and the PIT we used the dataset described in chapter 3 to

generate acoustic scenes with up to 3 simultaneously active sources. During the 20 s

of every scene, sources could appear and disappear, so the models do not only need to

estimate the DOA of the sources but also their onsets and offsets.

We used the icoCNN described in chapter 4.2 as the basis of our tracking models.

Since the output of this model was a 3D vector pointing towards the DOA of the source

and whose norm was proportional to the confidence of the model in the estimation, we

can already interpret it as an ACCDOA. We used the model for maps with resolution

r = 3 and modified it by increasing the number of kernels of the hidden convolutional
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MLP
BxMxTx3

BxMxTx128

PI-GRU Linear
BxMxTx128

PI-GRU
BxMxTx3

BxMxTx128

Figure 5.6: Architecture of the permutation invariant RNN used to evaluate the track-
ing capabilities of the PI-GRUs.

layers from 32 to 128 and the number of kernels of the last convolutional layer (and

therefore the number of output ACCDOAs) from 1 to Mdet.

After the convolutional part, and once generated Mdet permutation invariant AC-

CDOAs, we used a small MLP to project every 3D ACCDOA into a space with dx

dimensions that we used to feed 2 PI-GRUs and then applied a final linear projection

to convert every element of the output set into a 3D ACCDOA again as shown in Fig.

5.6. We used M = Mdet = 10 as the number of ACCDOA outputs since we observed

that it was beneficial to use a number higher than the maximum possible number of

active sources in the dataset (i.e., 3) and dx = dk = Nheadsdc = 128 and Nheads = 4.

With these hyperparameters, the permutation invariant RNN had 236 035 trainable

parameters.

As baseline models, we studied the performance of the same icoCNN model without

any RNN after it (so the tracking was done using only the temporal convolutions

included in the icoCNN) and we also trained a model replacing the PI-GRUs of our

permutation invariant RNN (Fig. 5.6) by conventional GRUs (Fig. 5.7). In order

to feed the conventional GRUs with the set generated by the MLP, we needed to

concatenate the M elements of the set into only one dimension and, to keep the

number of trainable parameters in a reasonable range, we needed to reduce the size of

the output of the GRUs. We used dh = 10·M = 100 as output size and, even if it meant

having a state vector smaller than the one used to represent just a single trajectory

with the PI-GRUs, it resulted in an RNN with 509 153 trainable parameters, more

than the double than with the PI-GRUs. Here, we can clearly see the compromise

explained in section 5.3 between the model complexity and the amount of information

that it can keep about every source and it would become even more extreme for higher

values of M .
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MLP Rearrange
BxMxTx3

BxMxTx128

BxTx128M

GRU GRU

Rearrange Linear

BxTx10M

BxTx10M

BxMxTx10

BxMxTx3

Figure 5.7: Architecture of the RNN used after the icoCNN as baseline in the evalua-
tion.

We trained the three models using both conventional fPIT and the proposed sPIT,

we did not include uPIT in the evaluation since it did not converge to any practical

solution. We found that the model including the PI-GRUs was especially hard to train

and in many cases it did not converge. Following some usual practices when training

recurrent models, we used the AdamW algorithm [185] with gradient clipping [186]

and reinitialized the state vectors to a learnable initial state every 25 time frames

during the first 50 epochs and then every 50 frames during the following 100 epochs.

For a fair comparison, we applied the same strategy when training the model with

the conventional GRUs and, to facilitate the training of the convolutional part of the

models, we also included a fPIT loss over the ACCDOAs generated by the icoCNN. All

the results shown in the following section were obtained using Tavg = 10 frames (i.e.,

2 s) for the sPIT, but no large changes were observed with longer or shorter windows.

5.5.2 Results

Fig. 5.8 shows the mean angular error (MAE), the identity switch (IDS) rate, and

the receiver operating characteristic (ROC) and detection error tradeoff (DET) curves

resulting from training each one of the three evaluated models. The MAEs and the

IDS, true positive, and false positive rates were calculated following a procedure similar

to the one defined by the CLEAR MOT metrics [187] typically used for multi-object

tracking in computer vision. In every time frame, each estimate was associated with

its closer ground-truth DOA and any estimate that could not be associated with a

ground-truth DOA closer to a threshold (which we set at 30◦ as done in the evaluation

of the results of the LOCATA challenge [188]) was considered a false positive. After
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that, in every ground-truth trajectory that had already been assigned to an estimated

trajectory in the previous time frame, an IDS was considered to have occurred if now

it had been assigned to a different estimated trajectory. Finally, the MAE was defined

as the sum of the angular distances of the true positives during the whole dataset

divided by the total number of true positives and the IDS, true positive, and false

positive rates, as the number of IDSs, true positives, and false positives in the whole

dataset divided by the total number of ground-truth DOAs. The MAE and the IDS

rate were computed considering a detection threshold of 0.5 over the norm of the

estimated ACCDOA vectors and for computing the ROC curve we analyzed the true

positive and false positive rates for a range of detection thresholds from 0 to 1.

As could be expected, the metric that is most affected by the PIT strategy is the

IDS rate. We can see how using the proposed sPIT we can train purely convolutional

models to obtain rates under 0.1 and how it reduces the number of IDSs of the model

using conventional GRUs by more than a factor 2. The model using the proposed

PI-GRUs had a quite high number of IDSs when trained with the fPIT, but when

trained with the proposed sPIT the number was reduced to the same level as the

model using conventional GRUs. Since the fPIT does not penalize the IDSs, the IDS

rate of the models trained with it depends only on their ability to generate abrupt

changes in their outputs because the switches are penalized only if they occur slowly

and generate a high localization error till they are completed.

In terms of localization error, all the evaluated models have similar performance,

with a difference of only 2◦ between the best and the worst MAE. For the model doing

the tracking using only temporal convolutions and for the one using conventional

GRUs the use of sPIT slightly degrades the localization accuracy but, in the case of

the model using PI-GRUs, the sPIT improves its localization performance.

Finally, we can see in the ROC and DET curves how the compromise between

the true and false positive rates for the models trained with sPIT are quite similar,

especially in the models using recurrent layers for tracking. Again, we can see how

sPIT slightly degrades the performance of the model using only convolutions and the

model using GRUs but improves the results of the model using PI-GRUs.
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As examples, figures 5.9, 5.10, and 5.11 show trajectories estimated by the evalu-

ated models in acoustic scenes with up to 3 concurrent sources. We can see how the

models trained with sPIT do not have the high number of IDSs that the models trained

with fPIT have, though the model without recurrent layers still has some switches even

when trained with sPIT. We can also see how the models using recurrent layers for

tracking clearly outperform the model using only temporal convolutions but there are

no clear differences between the model using conventional GRUs and the model using

the proposed PI-GRUs. Finally, it is worth mentioning that any of the models seem

to really be able to track three concurrent sources.

5.6 Conclusions

In this chapter, we have studied the permutation invariance of the multi-source track-

ing systems and proposed a new permutation invariant training (PIT) strategy to train

tracking models and a new recurrent layer that takes an unordered set as input and

that is invariant to the permutation of its elements.

We have proven how the proposed sPIT dramatically reduces the number of identity

switches (IDSs) compared with the state-of-the-art fPIT, avoiding the need for using

additional stages at the output of the tracking models to keep the identity of every

tracked trajectory stable. The loss function of sPIT and the gradients that it generates

are easy to interpret and it has a similar computational complexity to fPIT. When used

over ACCDOAs, sPIT also optimizes the detection accuracy of the model, improving

the ratio between the true and false positive rates and therefore optimizing all the

features that we would expect from a sound source tracking (SST) system.

About the proposed permutation invariant gated recurrent unit (PI-GRU), even if

we can argue that they outperformed the conventional GRUs since the models that

used them obtained the same IDS rate and ROC curve as the model with the con-

ventional GRUs and had a lower mean angular error (MAE), this difference probably

does not worth the increase in the computational complexity. However, we think that

the results obtained are promising since they represent the first attempt at developing
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a recurrent layer for unordered sets and there is still room for improving and opti-

mizing them. In the evaluated models, only geometrical information was provided to

the recurrent layers to perform the tracking, but using models that include spectral

information of every source would better exploit their ability to increase the size of

the vectors representing every detection and tracked trajectory without needing to

increase the number of trainable parameters in a quadratic way as happens with the

conventional GRUs. Some ideas about how to improve both the PI-GRUs and the

whole model are discussed in chapter 6.
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Figure 5.9: Example of the trajectories estimated by the evaluated models in an
evaluation acoustic with up to 2 concurrent sound sources. The solid lines represent the
ground-truth trajectories and the dashed lines the estimates.
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Figure 5.10: Example of the trajectories estimated by the evaluated models in an
evaluation acoustic with up to 3 concurrent sound sources. The solid lines represent the
ground-truth trajectories and the dashed lines the estimates.
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Figure 5.11: Another example of the trajectories estimated by the evaluated models in
an evaluation acoustic with up to 3 concurrent sound sources. The solid lines represent
the ground-truth trajectories and the dashed lines the estimates.
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6

Conclusions and future work

In this chapter, we first summarize the conclusions of the thesis (section 6.1) and

then we outline some of the research directions that we think have a greater potential

to improve the performance the sound source localization (SSL) and sound source

tracking (SST) systems based on deep learning in the near future (section 6.2).

6.1 Conclusions

• The signal processing community has studied the sound source localization (SSL)

problem for decades and the classical techniques that were proposed before the

emergence of the deep-learning solutions should not be neglected since they can

provide acoustic representations with a higher correlation with the direction

of arrival (DOA) of the sources and a better analytical understanding of the

problem that should guide the design of the new deep-learning solutions.

• We can eliminate the effects that a source in a given position generates in the

inter-microphone generalized cross-correlations (GCCs) by just doing a linear

combination of time-shifted versions of the original GCC.

• When using synthetic datasets to train SSL models, we can generate unlimited

different random trajectories and therefore we do not need to limit our datasets

to a finite number of trajectories. Although this should be used with caution,
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with the models employed in this work we have not observed signs of over-fitting

to the trajectory generation procedure even if it was analytically quite simple.

• Many of the stages of the image source method (ISM) for room acoustic sim-

ulation can be parallelized and efficiently implemented in graphics processing

units (GPUs). This is essential if we want to train our models with infinite-size

datasets simulated on the fly, since the ISM is computationally expensive and

its sequential implementation would slow down the trainings too much. The

proposed GPU implementation reduces the simulation time by two orders of

magnitude compared with other state-of-the-art implementations.

• The acoustic power maps generated with the classic steered response power with

phase transform (SRP-PHAT) algorithm are a robust input representation for

neural networks. Though their main source of information for one-source local-

ization is the position of their maximum, neural networks are able to extract

additional information from them.

• For one-source tracking, it is possible to obtain competitive results using only

causal temporal convolutions avoiding the use of recurrent layers. Bi-directional

recurrent layers should be avoided if we want our models to be useful for real-time

applications.

• Using models that exploit the rotational invariance of the DOA estimation prob-

lem allows us to reduce the size of our models. Several architectures are invariant

to the continuous space of spherical rotations, but the icosahedral convolutional

neural networks (CNNs) provide a good approximation with their 60 rotational

symmetries while having an efficient implementation based on conventional 2D

convolutional layers.

• The proposed soft-argmax layer can transform a classification output into a

regression one by interpreting the classification output as the probability distri-

bution of the DOA and computing its expected value. It strongly reduces the

number of trainable parameters of the model and avoids breaking its rotational

equivariance.
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• In permutation invariant training (PIT) strategies for multi-source tracking, the

temporal context that we consider when choosing the best permutation of the

estimated sources is crucial to reduce the number of identity switches (IDSs) in

the tracked trajectories. Using a sliding window as we have proposed with the

sliding permutation invariant training (sPIT) is a good trade-off between the high

number of IDSs obtained with the frame-level permutation invariant training

(fPIT) and the convergence issues presented by the utterance-level permutation

invariant training (uPIT) for long acoustic scenes.

• We can design permutation invariant recurrent layers for deep learning models

that operate over unordered sets instead of over ordered vectors by using a multi-

head attention module to match the elements of the input set with the elements

of the state set and then using element-wise gates to update the information of

every state element.

• The use of permutation invariant recurrent layers, such as the proposed permu-

tation invariant gated recurrent unit (PI-GRU), for SST of multiple sources is a

promising research direction, but further work is needed to make them compet-

itive with the traditional gated recurrent units (GRUs).

6.2 Future work

6.2.1 Training data

In section 4.1.4, we saw how all the evaluated models had a worse performance when

evaluated in the LOCATA dataset than when evaluated with the synthetic dataset used

to train them and the performance gap became ever wider in the case of the model

proposed in 4.2 using icosahedral CNNs. The optimal solution would be training the

models using actual recordings, but there are no multichannel-audio datasets with

ground-truth position labels large enough to do this. Contrary to image datasets,

position labels in audio datasets cannot be obtained after the signals are recorded and

special hardware is needed to accurately label the source position of moving sources

[138]. Therefore, it does not seem to be reasonable to expect the appearance of larger
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position-labeled datasets in the near future and techniques to improve the performance

of models trained with synthetic signals should be found.

There exist some datasets with recorded multichannel room impulse responses

(RIRs) and position labels (e.g., [189, 190, 191, 192]) that could be used to replace

the simulated RIRs and get more realistic synthetic training datasets, but they are

usually not large enough, especially in terms of acoustic conditions. Another approach

to improve the quality of the synthetic datasets would be improving RIRs simulated

with the ISM by including more acoustic effects [193] such as source directivity [194]

or acoustic diffraction on the walls or the array [195].

Finally, an approach that is in growing popularity is reducing the need for position

labels by using semi-supervised or weakly-supervised training strategies. For example,

some domain adaptation techniques have been proposed where the models are trained

with synthetic signals following a supervised approach but then actual recordings with-

out position labels are used to reduce the performance gap between the synthetic and

the recorded signals [46, 64, 65, 196]. A different approach is followed in [49, 50], where

a large dataset of unlabeled multichannel recordings is used to train an autoencoder

to reconstruct the phase of the relative transfer functions between microphones from

two latent variables while a smaller dataset with labeled recordings is used to train

one of those variables to be the DOA of the acoustic source.

6.2.2 Rotation-equivariant models for SSL

In this thesis, we have proposed an SSL model based on applying an icosahedral CNN

over SRP-PHAT power maps. However, other approaches could also be followed to de-

sign rotation-equivariant models. There are several signal processing techniques, such

as the multiple signal classification (MUSIC) algorithm, that can be used to extract

positional information of multichannel signals that can be computed on arbitrary grids

and that, therefore, could be used to replace the SRP-PHAT power maps as model

inputs or to complement them by stacking them as additional input channels. There

are also other network architectures designed to be equivariant to the spherical ro-

tations, such as those based on the spherical-harmonic domain [77, 168, 169, 170] or
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on graphs [171, 172, 173], so a study comparing the performance of different input

representations and network architectures would be interesting.

A more radically different approach would be finding other kinds of acoustic rep-

resentations where it is possible to exploit the rotational equivariance. For example,

a rotation-equivariant network is proposed in [197] that works over the ambisonic

representation of the audio signals.

6.2.3 Permutation invariant recurrent networks

In section 5.3, we introduced the PI-GRU, which is, to the best of our knowledge, the

first recurrent neural layer whose input and recurrent state are unordered sets and

which is invariant to the permutations of the elements of the input set and equivariant

to the permutations of the state set. We designed the architecture of the PI-GRU

based on a simplified version of the minimal GRU [177] but other architectures, such

as the ones shown in Fig. 6.1, could also be interesting. A further evaluation of

permutation invariant recurrent architectures would be interesting in order to analyze

the advantages and disadvantages of every one of them.

Actually, even with the proposed PI-GRU architecture, we did not conduct any

systematic analysis of how its hyperparameters (such as the number of heads or the

embedding sizes) affected the tracking performance of the model, so this would also

need further study in the future.

We also found that the PI-GRUs were considerably harder to train than the conven-

tional GRUs, exhibiting a slower convergence and even not converging to any solution

during some trainings. Therefore, it would be also interesting to study which opti-

mization algorithms, regularization techniques, and training strategies could facilitate

the training of these models.

Finally, it is worth mentioning that, during the experiments conducted in section

5.5, the recurrent state of the PI-GRUs (and also of the baseline GRUs) was initial-

ized to a learnable set of embedding (or to a learnable vector) at the beginning of

each training or evaluation acoustic scene and we let it to evolve during the scene

independently of whether new sources were found or not. A different approach that

would be worth studying would be, as done with the TrackFormer [178] for visual
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Figure 6.1: Different permutation invariant recurrent architectures. (a) is just a min-
imal recurrent unit, (b) is based on the minimal GRU and (c) is based on a complete
GRU.
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multi-object tracking (MOT) on videos, keeping always the learned embeddings in the

recurrent state set and, after every time frame, adding to it the elements of the output

that led to active sources in the previous frame. If the new elements are added to the

state set without removing the elements that had generated them as done in [178],

this would mean that the size of the state set varies over time, but this is compatible

with the PI-GRU architecture presented in section 5.3 and also with the alternative

architectures shown in Fig. 6.1.

6.2.4 Eliminating the information bottlenecks of the proposed

model

In section 4.1, we argued that combining localization and tracking into a single stage by

using 3D convolutions that extended their receptive field over the temporal dimension

was preferable to first doing the localization using the acoustic information of just

one time frame and then filtering this result with a tracking algorithm considering the

localization results of the previous frames. However, our models also present some

information bottlenecks where we could also be losing potentially useful information.

The first information bottleneck of our model happens at its very beginning: at

the input feature selection. By using SRP-PHAT maps as the only input of our model,

we are losing all the spectral information of the signals. This could be reasonable for

single-source localization since we wanted to locate the only directional source present

in the signals regardless of its spectral content, but for multi-source tracking, the

spectral information provides crucial information to, for example, avoid IDSs.

One of the easiest ways to integrate spectral information into the model proposed

in chapter 5 would be using classic beamformers to obtain the acoustic spectra at every

DOA estimated by the icosahedral CNN and then concatenate it to the corresponding

ACCDOA so every element in the input set of the PI-GRU contains both spatial and

spectral information. This way, the correlation matrix computed in the multi-head

attention module would match the elements of the input and state sets not only based

on geometrical information but also based on the similarities of their spectrum.

A different approach would be replacing the input power maps with another icosa-

hedral signal that, at every point of the grid, included spectral information obtained
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using a beamformer steered at the corresponding direction. Considering every fre-

quency bin as a convolution channel, the same convolutional architecture could be

easily used, though we would probably need to increase the number of channels in

the hidden layers to fully exploit the spectral information. However, feeding the PI-

GRU with the spectral information processed by the icosahedral CNN would be more

difficult, since every element of the input set should contain information from only

one of the detected sources. An option could be increasing the number of channels of

the last convolutional layer from M to M + S, so the first M channels could still be

processed with the soft-argmax layer to obtain the ACCDOAs of the detected sources

and filter each one of the remaining S channels with every one of the first M channels

to finally integrate the M×S resulting maps over their spatial dimensions so we would

obtain M vectors of length S and concatenate every one of them to the corresponding

ACCDOA.
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Appendix A

Network architecture of the

proposed and baseline models

The following tables, some of them extracted from the supplementary material of [V],

detail the network architecture of the proposed models and baseline models analyzed

along the thesis:
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A. NETWORK ARCHITECTURE OF THE PROPOSED AND
BASELINE MODELS

A.1 Cross3D models

Table A.1: Architecture of Cross3D for 4x8 power maps. The output sizes correspond
to a sequence of 103 maps, i.e. an input size of 3x103x4x8.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

Input
layer

3D causal conv 32 5x5x5 1x1x1 12 032 32x103x4x8
PReLU 32 32x103x4x8

θ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x4x8
Max pooling 1x1x2 32x103x4x4

PReLU 32 32x103x4x4

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x4x4
Max pooling 1x1x2 32x103x4x2

PReLU 32 32x103x4x2

Transpose 103x32x4x2
Reshape 103x256

φ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x4x8
Max pooling 1x2x1 32x103x2x8

PReLU 32 32x103x2x8

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x2x8
Max pooling 1x2x1 32x103x1x8

PReLU 32 32x103x1x8

Transpose 103x32x1x8
Reshape 103x256

Output
layers

Concatenate 103x512
Transpose 512x103

1D causal conv 128 5 2 327 808 128x103
PReLU 128 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A.1 Cross3D models

Table A.2: Architecture of Cross3D for 8x16 power maps. The output sizes correspond
to a sequence of 103 maps, i.e. an input size of 3x103x8x16.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

Input
layer

3D causal conv 32 5x5x5 1x1x1 12 032 32x103x8x16
PReLU 32 32x103x8x16

θ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x16
Max pooling 1x1x2 32x103x8x8

PReLU 32 32x103x8x8

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x8
Max pooling 1x1x2 32x103x8x4

PReLU 32 32x103x8x4

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x4
Max pooling 1x1x2 32x103x8x2

PReLU 32 32x103x8x2

Transpose 103x32x8x2
Reshape 103x512

φ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x16
Max pooling 1x2x1 32x103x4x16

PReLU 32 32x103x4x16

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x4x16
Max pooling 1x2x1 32x103x2x16

PReLU 32 32x103x2x16

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x2x16
Max pooling 1x2x1 32x103x1x16

PReLU 32 32x103x1x16

Transpose 103x32x1x16
Reshape 103x512

Output
layers

Concatenate 103x1024
Transpose 1024x103

1D causal conv 128 5 2 655 488 128x103
PReLU 128 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A. NETWORK ARCHITECTURE OF THE PROPOSED AND
BASELINE MODELS

Table A.3: Architecture of Cross3D for 16x32 power maps. The output sizes correspond
to a sequence of 103 maps, i.e. an input size of 3x103x16x32.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

Input
layer

3D causal conv 32 5x5x5 1x1x1 12 032 32x103x16x32
PReLU 32 32x103x16x32

θ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x32
Max pooling 1x1x2 32x103x16x16

PReLU 32 32x103x16x16

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x16
Max pooling 1x1x2 32x103x16x8

PReLU 32 32x103x16x8

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x8
Max pooling 1x1x2 32x103x16x4

PReLU 32 32x103x16x4

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x4
Max pooling 1x1x2 32x103x16x2

PReLU 32 32x103x16x2

Transpose 103x32x16x2
Reshape 103x1024

φ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x32
Max pooling 1x2x1 32x103x8x32

PReLU 32 32x103x8x32

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x32
Max pooling 1x2x1 32x103x4x32

PReLU 32 32x103x4x32

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x4x32
Max pooling 1x2x1 32x103x2x32

PReLU 32 32x103x2x32

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x2x32
Max pooling 1x2x1 32x103x1x32

PReLU 32 32x103x1x32

Transpose 103x32x1x32
Reshape 103x1024

Output
layers

Concatenate 103x2048
Transpose 2048x103

1D causal conv 128 5 2 1 310 848 128x103
PReLU 128 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A.1 Cross3D models

Table A.4: Architecture of Cross3D for 32x64 power maps. The output sizes correspond
to a sequence of 103 maps, i.e. an input size of 3x103x32x64.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

Input
layer

3D causal conv 32 5x5x5 1x1x1 12 032 32x103x32x64
PReLU 32 32x103x32x64

θ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x32x64
Max pooling 1x1x2 32x103x32x32

PReLU 32 32x103x32x32

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x32x32
Max pooling 1x1x2 32x103x32x16

PReLU 32 32x103x32x16

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x32x16
Max pooling 1x1x2 32x103x32x8

PReLU 32 32x103x32x8

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x32x8
Max pooling 1x1x2 32x103x32x4

PReLU 32 32x103x32x4

Transpose 103x32x32x4
Reshape 103x4096

φ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x32x64
Max pooling 1x2x1 32x103x16x64

PReLU 32 32x103x16x64

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x64
Max pooling 1x2x1 32x103x8x64

PReLU 32 32x103x8x64

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x64
Max pooling 1x2x1 32x103x4x64

PReLU 32 32x103x4x64

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x4x64
Max pooling 1x2x1 32x103x2x64

PReLU 32 32x103x2x64

Transpose 103x32x2x64
Reshape 103x4096

Output
layers

Concatenate 103x8192
Transpose 8192x103

1D causal conv 128 5 2 5 243 008 128x103
PReLU 128 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A. NETWORK ARCHITECTURE OF THE PROPOSED AND
BASELINE MODELS

Table A.5: Architecture of Cross3D for 64x128 power maps. The output sizes corre-
spond to a sequence of 103 maps, i.e. an input size of 3x103x64x128.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

Input
layer

3D causal conv 32 5x5x5 1x1x1 12 032 32x103x64x128
PReLU 32 32x103x64x128

θ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x64x128
Max pooling 1x1x2 32x103x64x64

PReLU 32 32x103x64x64

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x64x64
Max pooling 1x1x2 32x103x64x32

PReLU 32 32x103x64x32

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x64x32
Max pooling 1x1x2 32x103x64x16

PReLU 32 32x103x64x16

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x64x16
Max pooling 1x1x2 32x103x64x8

PReLU 32 32x103x64x8

Transpose 103x32x64x8
Reshape 103x16384

φ branch

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x64x128
Max pooling 1x2x1 32x103x32x128

PReLU 32 32x103x32x128

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x32x128
Max pooling 1x2x1 32x103x16x128

PReLU 32 32x103x16x128

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x16x128
Max pooling 1x2x1 32x103x8x128

PReLU 32 32x103x8x128

3D causal conv 32 5x3x3 1x1x1 46 112 32x103x8x128
Max pooling 1x2x1 32x103x4x128

PReLU 32 32x103x4x128

Transpose 103x32x4x128
Reshape 103x16384

Output
layers

Concatenate 103x32768
Transpose 32768x103

1D causal conv 128 5 2 20 971 648 128x103
PReLU 128 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A.2 icoCNN models

A.2 icoCNN models

Table A.6: Architecture of the icoCNN model for r=1 power maps. The output sizes
correspond to a sequence of 103 maps, i.e. an input size of 1x103x1x5x2x4.

Layer
Number
of kernels

Kernel size
Number of
parameters

Output size

icoConv 32 Hexagonal 256 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 1 5 161 1x103x6x5x2x4

R-pooling 1x103x1x5x2x4
soft-max 103x3
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A. NETWORK ARCHITECTURE OF THE PROPOSED AND
BASELINE MODELS

Table A.7: Architecture of the icoCNN model for r=2 power maps. The output sizes
correspond to a sequence of 103 maps, i.e. an input size of 1x103x1x5x4x8.

Layer
Number
of kernels

Kernel size
Number of
parameters

Output size

icoConv 32 Hexagonal 256 32x103x6x5x4x8
1D causal conv 32 5 5152 32x103x6x5x4x8
Layer norm 64 32x103x6x5x4x8

ReLU 32x103x6x5x4x8

icoConv 32 Hexagonal 43 040 32x103x6x5x4x8
1D causal conv 32 5 5152 32x103x6x5x4x8
Layer norm 64 32x103x6x5x4x8

ReLU 32x103x6x5x4x8

icoPooling Hexagonal 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 1 5 161 1x103x6x5x2x4

R-pooling 1x103x1x5x2x4
soft-max 103x3
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A.2 icoCNN models

Table A.8: Architecture of the icoCNN model for r=3 power maps. The output sizes
correspond to a sequence of 103 maps, i.e. an input size of 1x103x1x5x8x16.

Layer
Number
of kernels

Kernel size
Number of
parameters

Output size

icoConv 32 Hexagonal 256 32x103x6x5x8x16
1D causal conv 32 5 5152 32x103x6x5x8x16
Layer norm 64 32x103x6x5x8x16

ReLU 32x103x6x5x8x16

icoConv 32 Hexagonal 43 040 32x103x6x5x8x16
1D causal conv 32 5 5152 32x103x6x5x8x16
Layer norm 64 32x103x6x5x8x16

ReLU 32x103x6x5x8x16

icoPooling Hexagonal 32x103x6x5x4x8

icoConv 32 Hexagonal 43 040 32x103x6x5x4x8
1D causal conv 32 5 5152 32x103x6x5x4x8
Layer norm 64 32x103x6x5x4x8

ReLU 32x103x6x5x4x8

icoConv 32 Hexagonal 43 040 32x103x6x5x4x8
1D causal conv 32 5 5152 32x103x6x5x4x8
Layer norm 64 32x103x6x5x4x8

ReLU 32x103x6x5x4x8

icoPooling Hexagonal 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 32 5 5152 32x103x6x5x2x4
Layer norm 64 32x103x6x5x2x4

ReLU 32x103x6x5x2x4

icoConv 32 Hexagonal 43 040 32x103x6x5x2x4
1D causal conv 1 5 161 1x103x6x5x2x4

R-pooling 1x103x1x5x2x4
soft-max 103x3
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A. NETWORK ARCHITECTURE OF THE PROPOSED AND
BASELINE MODELS

A.3 Baseline models

Table A.9: Architecture of the 1D CNN for DOA estimation from 858 sequences of
GCCs. The output sizes corresponds to sequence of length 103, i.e. an input size of
858x103.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

1D causal conv 1024 5 1 4 393 984 1024x103
PReLU 1024 1024x103

1D causal conv 512 5 1 2 621 952 512x103
PReLU 512 512x103

1D causal conv 512 5 1 1 311 232 512x103
PReLU 512 512x103

1D causal conv 512 5 1 1 311 232 512x103
PReLU 512 512x103

1D causal conv 512 5 1 1 311 232 512x103
PReLU 512 512x103

1D causal conv 128 5 2 327 808 128x103
PReLU 512 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A.3 Baseline models

Table A.10: Architecture of the 1D CNN for DOA estimation from the coordinates of
the maximums of the SRP-PHAT maps. The output sizes correspond to sequences of
length 103, i.e. an input size of 2x103.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

1D causal conv 1024 5 1 11 264 1024x103
PReLU 1024 1024x103

1D causal conv 512 5 1 2 621 952 512x103
PReLU 512 512x103

1D causal conv 512 5 1 1 311 232 512x103
PReLU 512 512x103

1D causal conv 512 5 1 1 311 232 512x103
PReLU 512 512x103

1D causal conv 512 5 1 1 311 232 512x103
PReLU 512 512x103

1D causal conv 128 5 2 327 808 128x103
PReLU 512 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A. NETWORK ARCHITECTURE OF THE PROPOSED AND
BASELINE MODELS

Table A.11: Architecture of the 2D CNN for DOA estimation from the spectrograms
of the 12 microphone signals (window size K = 2048). The output sizes correspond to
spectrograms with 103 time frames, i.e. an input size of 24x103x2048.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

2D causal conv 128 5x5 1 76 928 1024x103
PReLU 128 128x103x2048

Max pooling 1x4 128x103x512

2D causal conv 128 5x5 1 409 728 128x103x512
PReLU 128 128x103x512

Max pooling 1x4 128x103x128

2D causal conv 128 5x5 1 409 728 128x103x128
PReLU 128 128x103x128

Max pooling 1x4 128x103x32

2D causal conv 128 5x5 1 409 728 128x103x32
PReLU 128 128x103x32

Max pooling 1x4 128x103x8

2D causal conv 128 5x5 1 409 728 128x103x8
PReLU 128 128x103x8

1D causal conv 128 5 2 163 968 128x103
PReLU 128 128x103

1D causal conv 3 5 2 1923 3x103
tanh 3x103
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A.3 Baseline models

Table A.12: Architecture of SELDnet for DOA estimation from spectrograms of the 12
microphone signals (window sizeK = 512). The output sizes correspond to spectrograms
with 833 time frames, i.e. an input size of 24x833x256.

Layer
Number
of kernels

Kernel
size

Dilation
Number of
parameters

Output size

2D conv 64 3x3 1 13 888 64x833x256
ReLU 64x833x256

Max pooling 1x8 64x833x32

2D conv 64 3x3 1 36 928 64x833x32
ReLU 64x833x32

Max pooling 1x8 64x833x4

2D conv 64 3x3 1 36 928 64x833x4
PReLU 64x833x4

Max pooling 1x2 64x833x2

GRU bi-directional 128 74 496 833x128
GRU bi-directional 128 74 496 833x128

Fully Connected 128 16 512 833x128
Fully Connected 3 387 833x3

tanh 128 833x3
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Appendix B

Results in every recording of

the LOCATA dataset

The following tables, extracted from the supplementary materials of [VI], show the

root mean squared angular error (RMSAE) obtained with the proposed models in

every recording of the single source tasks of the development and evaluation partitions

of the LOCATA dataset:
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B. RESULTS IN EVERY RECORDING OF THE LOCATA DATASET

Table B.1: RMSAE [◦] of the DOA estimated for the development partition of the
LOCATA dataset with the proposed models using several map resolutions. The second
(gray) numbers indicate the RMSAE without taking into account the frames when the
sound source was silent.

Model: IcoCNN Cross3D 1D CNN

Input:
Icosahedral SRP-PHAT maps Equiangular SRP-PHAT maps

GCCsr=1 r=2 r=3 r=4 4x8 8x16 16x32 32x64 64x128

Task 1

Recording 1
9.34 3.63 6.52 6.71 17.93 11.92 8.30 4.62 5.16 16.18
8.85 3.44 5.74 5.65 18.67 14.18 8.56 4.58 4.98 16.93

Recording 2
8.07 6.70 6.53 6.15 18.90 7.68 6.68 4.90 3.91 12.60
8.36 6.77 6.39 5.99 20.22 8.86 7.11 4.92 3.96 12.73

Recording 3
2.59 3.24 5.18 5.19 10.35 6.34 2.98 3.25 2.24 11.57
2.59 3.15 5.52 5.26 11.39 9.30 3.36 3.20 2.29 12.09

Average
6.67 4.52 5.74 6.02 15.72 8.65 5.99 4.26 3.77 13.45
6.60 4.45 5.88 5.63 16.79 10.78 6.34 4.23 3.74 13.92

Task 3

Recording 1
8.19 8.08 7.70 7.52 23.06 18.11 13.79 12.43 9.92 13.59
7.45 5.79 5.42 5.93 23.34 20.89 14.94 12.98 10.06 13.62

Recording 2
8.15 8.30 8.80 9.61 20.97 13.71 10.01 8.36 9.22 14.17
6.86 7.51 8.04 9.10 17.72 12.11 9.29 8.31 9.06 13.34

Recording 3
10.25 7.82 7.18 7.50 21.05 12.74 9.83 7.69 6.60 15.21
7.57 5.33 4.69 5.60 24.92 12.62 8.71 6.56 5.02 13.09

Average
8.86 8.07 7.89 8.21 21.69 14.85 11.21 9.49 8.58 14.32
7.29 6.21 6.05 6.88 21.99 15.21 10.98 9.28 8.05 13.35

Task 5

Recording 1
13.63 9.74 7.43 8.42 11.93 10.83 7.25 5.74 5.49 10.93
13.31 9.86 7.50 8.26 11.10 9.40 7.41 5.70 5.49 10.96

Recording 2
14.04 10.64 9.72 9.39 20.92 16.16 16.08 12.18 13.59 17.33
12.07 9.94 8.49 8.15 20.67 15.56 15.84 11.57 13.67 17.38

Recording 3
21.56 20.10 18.37 19.47 23.57 18.25 13.58 15.64 15.49 20.14
11.87 8.26 8.50 8.62 18.42 14.72 10.88 12.86 12.11 17.33

Average
16.41 13.49 11.84 12.43 18.81 15.08 12.31 11.19 11.52 16.13
12.42 9.35 8.16 8.34 16.73 13.23 11.38 10.04 10.42 15.22

Average
10.65 8.69 8.61 8.88 18.74 12.86 9.83 8.31 7.96 14.64
8.77 6.67 6.70 6.95 18.50 13.07 9.57 7.85 7.41 14.16

Median
9.34 8.08 7.43 7.52 20.92 12.74 9.83 7.69 6.60 14.17
8.36 6.77 6.39 5.99 18.67 12.62 8.71 6.56 5.49 13.34

Standard deviation
5.00 4.66 3.67 3.98 4.40 3.98 3.87 3.99 3.20 2.77
3.10 2.35 1.37 1.45 4.45 3.62 3.67 3.53 3.72 2.28
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Table B.2: RMSAE [◦] of the DOA estimated for the evaluation partition of the
LOCATA dataset with the proposed models using several map resolutions. The second
(gray) numbers indicate the RMSAE without taking into account the frames when the
sound source was silent.

Model: IcoCNN Cross3D 1D CNN

Input:
Icosahedral SRP-PHAT maps Equiangular SRP-PHAT maps

GCCsr=1 r=2 r=3 r=4 4x8 8x16 16x32 32x64 64x128

Task 1

Recording 1
12.24 7.17 5.87 5.67 23.78 19.62 5.46 4.45 3.37 6.43
12.05 7.64 5.76 4.63 22.31 18.75 5.17 4.42 3.33 6.78

Recording 2
2.33 3.74 5.43 5.30 8.55 6.64 2.70 2.14 1.75 6.25
2.26 3.75 5.63 5.32 8.69 6.56 2.76 2.18 1.70 6.29

Recording 3
10.70 3.78 5.11 4.41 14.65 10.78 7.32 8.45 5.17 27.04
11.75 4.04 5.52 4.42 13.99 10.64 7.60 8.52 5.17 27.44

Recording 4
4.73 3.85 4.74 3.68 15.53 9.83 6.25 4.45 3.23 4.42
4.92 3.78 4.70 3.63 15.52 9.91 6.21 4.45 3.25 4.50

Recording 5
8.09 4.92 4.99 4.80 77.58 53.83 22.18 6.55 4.84 9.34
8.17 4.89 5.13 4.73 62.77 43.74 24.82 7.27 5.35 9.27

Recording 6
3.25 3.33 3.67 3.58 17.19 8.52 5.47 3.82 2.92 14.11
3.27 3.34 3.71 3.61 17.48 8.61 5.50 3.87 2.95 14.30

Recording 7
11.38 12.00 8.29 7.01 18.39 15.61 7.59 3.80 4.14 19.30
11.59 11.80 8.03 7.04 18.57 15.75 7.58 3.77 4.14 19.43

Recording 8
11.40 6.36 6.16 5.35 48.34 44.39 9.97 6.42 4.55 7.19
11.40 6.79 6.04 5.37 50.26 46.88 10.45 6.72 4.74 7.49

Recording 9
6.36 5.37 5.08 5.96 12.15 7.44 2.50 3.91 1.85 8.60
6.58 5.58 5.26 5.94 11.77 7.21 2.40 3.85 1.92 8.38

Recording 10
4.61 4.21 6.66 7.79 41.80 38.27 42.57 25.79 16.32 19.87
4.51 4.56 7.48 7.41 44.21 40.17 44.44 27.74 17.52 21.11

Recording 11
4.43 5.47 4.49 3.70 52.15 49.90 58.48 31.99 14.92 20.95
5.00 6.13 4.83 4.17 52.11 51.77 58.92 33.24 15.44 21.25

Recording 12
8.35 7.31 4.38 4.36 23.10 11.80 5.04 2.98 3.07 11.91
10.21 7.27 5.32 5.04 20.82 12.36 5.35 3.08 3.20 12.34

Recording 13
16.72 8.95 7.65 6.60 31.34 15.53 4.98 4.74 2.50 7.58
16.66 9.52 7.79 6.71 32.23 15.72 4.94 4.93 2.52 7.86

Average
8.04 5.88 5.57 5.25 28.62 22.47 13.89 9.84 5.28 12.54
8.34 6.08 5.78 5.23 27.09 22.16 14.32 8.51 5.48 12.80

Task 3

Recording 1
9.91 7.68 7.92 10.28 19.66 15.32 12.92 9.04 7.40 12.18
7.35 6.95 6.53 7.82 19.59 14.91 11.97 8.16 6.91 11.62

Recording 2
16.10 15.62 14.57 15.58 17.43 14.49 11.99 12.41 14.19 13.47
10.32 9.44 7.82 9.58 13.11 11.70 7.53 8.14 8.94 11.46

Recording 3
8.92 8.29 14.39 7.71 23.34 26.86 17.65 16.77 11.88 13.71
9.27 7.50 7.52 8.13 24.39 28.12 18.50 17.57 12.34 14.23

Recording 4
8.28 6.78 6.99 7.84 14.63 14.45 9.90 8.21 7.95 12.10
7.99 6.24 6.64 7.48 14.59 14.43 9.83 8.10 7.87 12.00

Recording 5
9.45 6.31 6.47 6.43 17.49 16.68 11.36 9.49 8.16 8.98
9.94 6.34 6.14 6.33 18.22 18.36 11.99 9.70 8.26 8.78

Average
10.53 8.94 10.07 9.57 18.51 17.56 12.76 11.18 9.92 12.09
8.97 7.29 6.93 7.87 17.98 17.50 12.16 10.33 8.86 11.62

Task 5

Recording 1
25.15 15.72 19.45 17.29 25.87 28.02 24.08 24.94 25.31 22.27
21.33 12.80 18.26 14.31 22.16 24.93 21.08 24.58 23.87 16.83

Recording 2
12.47 10.02 8.97 9.08 12.86 9.74 8.01 7.58 7.77 14.40
11.47 8.62 7.53 7.59 12.78 9.54 7.65 7.09 7.02 14.70

Recording 3
14.30 13.20 12.11 11.90 17.07 14.80 14.51 11.73 12.45 15.41
9.42 8.52 7.79 7.50 12.30 10.07 8.79 6.22 6.67 10.65

Recording 4
12.55 9.53 9.47 9.31 18.51 11.66 9.91 9.42 10.96 12.72
10.65 7.65 7.30 6.45 18.25 11.48 9.60 8.92 10.34 12.06

Recording 5
12.91 7.19 7.71 7.17 21.32 23.21 8.62 7.33 5.97 17.57
12.30 6.77 7.43 6.62 13.60 10.88 6.63 6.33 5.74 12.29

Average
15.48 11.13 11.54 10.95 19.13 17.49 13.03 12.20 12.49 16.47
13.03 8.87 9.66 8.49 15.82 13.38 10.75 10.63 10.73 13.31

Average
10.20 7.69 7.85 7.43 24.90 20.32 13.45 9.84 7.86 13.30
9.50 6.97 6.87 6.51 23.47 19.24 13.03 9.52 7.36 12.65

Median
9.91 7.17 6.66 6.60 18.51 15.32 9.90 7.58 5.97 12.72
9.94 6.79 6.53 6.45 18.25 14.43 7.65 7.09 5.74 12.00

Standard deviation
5.00 3.53 3.82 3.51 15.65 13.43 12.87 7.71 5.71 5.67
4.17 2.40 2.69 2.26 14.39 13.24 13.26 8.07 5.37 5.44
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Appendix C

Conclusiones

Following the regulations of the University of Zaragoza, this appendix includes a trans-

lated version of the conclusions of the thesis presented in section 6.1:

• La comunidad del procesado de señal ha estudiado el problema de la localización

de fuentes sonoras durante décadas y las técnicas que fueron propuestas antes del

afloramiento de soluciones basadas en deep learning no debeŕıan ser ignoradas, ya

que aportan representaciones acústicas con una gran correlación con la dirección

de llegada de las fuentes sonoras y una mejor comprensión del problema que

debeŕıa guiar el diseño de las nuevas soluciones basadas en deep learning.

• Podemos eliminar el efecto que una fuente en una posición dada genera en las

funciones de correlación cruzada de los micrófonos de una agrupación mediante

una combinación lineal de las funciones originales con retardos temporales.

• Cuando usamos datasets sintéticos para entrenar modelos de localización de

fuentes sonoras, podemos generar trayectorias aleatorias ilimitadamente y por

tanto no necesitamos limitar nuestros datasets a un número finito de trayectorias.

Pese a que esto debeŕıa usarse con precaución, en los modelos entrenados con

esta técnica no se han observado indicios de over-fitting al procedimiento de

generación de las trayectorias pese a que este era bastante simple.

• Muchas partes del método de las imágenes para la simulación de acústica de

salas pueden ser paralelizadas e implementadas eficientemente en GPUs. Esto
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C. CONCLUSIONES

es esencial si queremos entrenar nuestros modelos con un dataset infinito si-

mulando las trayectorias conforme son necesarias, dado que el método de las

imágenes es computacionalmente costoso y su implementación secuencial ralen-

tizaŕıa demasiado los entrenamientos. La implementación propuesta reduce el

tiempo de simulación en más de dos órdenes de magnitud comparada con otras

implementaciones del estado del arte.

• Los mapas acústicos generados con el algoritmo SRP-PHAT son una represen-

tación robusta para ser usados como entrada de redes neuronales. Pese a que la

principal fuente de información para la localización de una fuente sonora está en

la posición de sus máximos, las redes neuronales son capaces de extraer infor-

mación adicional de ellos.

• Es posible obtener resultados competitivos en la localización de una única fuente

sonora usando únicamente convoluciones causales y evitando las redes recurren-

tes. Las redes recurrentes bidireccionales debeŕıan ser evitadas si se quiere que

los modelos sean útiles en aplicaciones en tiempo real.

• El uso de modelos que explotan la invariancia rotacional del problema de la es-

timación de la dirección de llegada nos permite reducir el tamaño de nuestros

modelos. Múltiples arquitecturas son invariantes al grupo continuo de rotaciones

esféricas, pero las convoluciones icosaédricas suponen una buena aproximación

con sus 60 simetŕıas y tienen una implementación eficiente basada en redes con-

volucionales 2D convencionales.

• La capa soft-argmax propuesta permite transformar una salida de clasificación

en una salida de regresión interpretándola como la distribución de probabilidad

de la dirección de llegada y calculando su valor esperado. Esto reduce conside-

rablemente el número de parámetros entrenables de los modelos y evita romper

su equivariancia a las rotaciones.

• En las estrategias de entrenamiento invariantes a las permutaciones para track-

ing de múltiples fuentes, el contexto temporal que consideramos para elegir la

permutación optima de las fuentes estimadas es crucial para reducir el número
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de cambios de identidad en las trayectorias estimadas. El uso de una ventana

deslizante presenta un buen compromiso entre el alto número de cambios de

identidad obtenido cuando se elige una permutación diferente para cada instante

temporal y los problemas de convergencia que se dan cuando se intenta entrenar

modelos usando una única permutación para cada escena acústica.

• Podemos diseñar capas recurrentes invariantes a las permutaciones que operan

sobre conjuntos en lugar de vectores mediante el uso de un módulo multi-head

attention para asignar cada elemento del set de entrada a los elementos del set

de estado y después actualizando cada elemento del conjunto de estado de forma

independiente.

• El uso de capas recurrentes invariantes a las permutaciones, como la PI-GRU

propuesta, para el tracking de múltiples fuentes es un campo de investigación

prometedor, pero aún necesita un mayor estudio para que sea competitivo con

las capas GRU convencionales.
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