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a b s t r a c t

In robotic systems, perception latency is a term that refers to the computing time measured from
the data acquisition to the moment in which perception output is ready to be used to compute
control commands. There is a compromise between perception latency, precision for the overall
robotic system, and computational resource usage referred to here as the latency-precision trade-off.
In this work, we analyze a robot model given by a linear system, a zero-order hold controller, and
measurements taken by several perception mode possibilities with different noise levels. We show
that the analysis of this system is reduced to studying an equivalent switching system. Our goal is to
schedule perception modes such that stability is attained while optimizing a cost function that models
the latency-precision trade-off. Our solution framework comprises three main tools: the construction
of perception scheduling policy candidates, admissibility verification for policy candidates, and optimal
strategies based on admissible policies.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the key ingredients to achieving autonomy of mobile
obots is the perception task, which consists of using sensors to
btain an estimate of the state of the robot and the environment.
hen, the state of the system can be used to close a feedback loop
n order to make the robot follow the desired behavior (Siegwart
Nourbakhsh, 2004). The term perception latency has been

sed in Falanga, Kim, and Scaramuzza (2019) to refer to the
erception computing time, measured from the data acquisition
o the moment in which perception output is ready to be used
o compute control commands. In general, using high-resolution
mages, a large number of features, and robust feature extraction
ethods will result in a better perception quality at the ex-
ense of larger computing times. This trade-off has been verified
xperimentally for visual odometry, localization, and mapping
n Pant et al. (2021) and Strasdat, Montiel, and Davison (2012).
n addition, it has been shown that deep learning models used
or perception share this type of trade-off as well (Forster, Zhang,
assner, Werlberger, & Scaramuzza, 2017). However, increasing
he perception latency might be undesired since long sampling
ntervals can prevent the control commands from stabilizing the
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system (Pant et al., 2021). In contrast, a smaller latency may be
harmful since low-quality measurements lead to faster sampling,
which can negatively impact the performance from energetic or
CPU load points of view.

Hence, there is a practical compromise between perception
latency and the performance of the overall robotic system, from
now on referred to as the latency-precision trade-off. The most
basic approach in this setting is the following: given a maximum
sampling time Ts driving a stable behavior to the robot, use the
largest perception latency possible (Pant et al., 2021). In other
words, Ts poses a real-time constraint on the perception task of
the robot. This approach has been used repeatedly in the robotics
literature, e.g. for multi-rotor control using onboard vision sen-
sors (Campos-Macías, Aldana-López, de la Guardia, Parra-Vilchis,
& Gómez-Gutiérrez, 2021; Fraundorfer et al., 2012; Oleynikova,
Taylor, Siegwart, & Nieto, 2018). As studied here, a different
approach to overcoming the latency-precision trade-off involves
using different perception modes at different moments.

In this work, we analyze a robot model given by a linear sys-
tem, a zero-order hold controller, and measurements that can be
taken using several perception mode possibilities with different
noise levels. The perception latencies chosen through time dictate
the sampling instants for perception and control. We show that
the analysis of this system is reduced to studying an equivalent
switching system. Moreover, we construct a cost function that
includes a control precision term as well as a perception latency
penalty which can be used to incorporate the energetic and CPU
load points of view. Our goal is to schedule perception modes
such that asymptotic stability for the expected value of the state
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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f the system is attained while optimizing for the proposed cost
unction. Our solution framework is composed of three main
ools. First, we propose a class of perception scheduling policy
andidates for optimizing the cost of interest. Second, we devise
procedure for checking if policy candidates are admissible from
stability point of view. Third, we propose and study the per-

ormance of optimal strategies based on previously constructed
cheduling policies.

.1. Related work

Scheduling between different sensor configurations was stud-
ed in van der Weijst, van Loon, Heertjes, and Heemels (2018)
or linear control systems. However, the trade-off between mea-
urement quality and latency was not considered. This trade-off
as been studied for state estimation in Ballotta, Schenato, and
arlone (2020). In addition, Gatsis, Hassani, and Pappas (2021)
tudied another related type of latency trade-off arising from
he quality of a communication channel in networked systems.
onetheless, these approaches are mainly focused on the re-
ulting estimation quality rather than the overall performance
f a closed-loop system using such an estimation framework.
n Pant et al. (2021), a control-estimator co-design is proposed
n a periodic setting, where the relationship between latency
nd estimator quality is modeled and taken into account in a
odel Predictive Control (MPC) strategy. Thus, more emphasis is
iven to the feasibility of an optimization program rather than
n ensuring some form of stability outside the sliding window
sed in the MPC, which is particularly important when switching
etween different perception modes.
The problem of perception latency scheduling is quite close to

he notion of scheduling sampling instants for which some works
ave used event-triggered and self-triggered sampling (Anta &
abuada, 2010). In these sampling schemes, a state-dependent
riggering rule for sampling is obtained by employing sufficient
tability conditions. In particular, Ristevski, Yucelen, and Muse
2021) study variable sampling intervals to model information ex-
hange instants in networked control systems and schedule them
ccordingly using an event-triggered approach. However, these
ethods do not use a latency model in which shorter sampling

ntervals lead to poor state estimates as in the latency-precision
rade-off.

Another approach is to model the effect of variable sampling
ntervals as a time-varying delay (Hetel et al., 2017). However,
hese works mostly study robustness against arbitrary sampling
equences. On the other hand, as mentioned before, variable sam-
ling problems can be studied using switching systems theory.
witching systems stability results may be divided into two cat-
gories. The first one studies stability under arbitrary switching
ignals. Examples of this type of analysis can be found in Liberzon
2003) and Shorten, Wirth, Mason, Wulff, and King (2007) for
ontinuous-time and in Ahmadi, Jungers, Parrilo, and Roozbehani
2014) and Ding, Peres, Ranade, and Zhai (2016) for discrete-time.
he switching signal can be considered a state-dependent input
n the second category. Examples of the study of stability under
tate-dependant switching signals can be found in Blanchini and
avorgnan (2008) and Griggs, King, Shorten, Mason, and Wulff
2010) for continuous-time systems and in Antunes and Heemels
2017), Blanchini and Savorgnan (2008), Fiacchini and Jungers
2014), Fiacchini, Jungers, and Girard (2018) and Geromel and
olaneri (2006) for discrete-time systems. However, as we show
ater, the connection between stability and optimality may not
e evident, particularly with the cost function considered in this
ork. To this regard, the works (Antunes & Heemels, 2017; Wu &
e, 2020) deal with the optimality of state-dependent switching
ignals for some particular forms of cost functions that do not ex-
end to the cost function modeling the latency-precision trade-off
s we propose.
2

1.2. Notation

Through this work, x(t) ∈ Rn represents a continuous-time
signal evaluation at t ∈ R. Moreover, x[k] := x(τk) stands for the
iscrete-time signal obtained by evaluating x(t) under a particular
equence of time instants {τk}∞k=0 with τk ∈ R and τk < τk+1.
urthermore, tr(•) stands for the trace of a matrix. Let z ∈ Rn,
hen diag(z) ∈ Rn×n represents the diagonal matrix with the
omponents of z as the diagonal elements. The symbol N (x̄, P)
tands for a multi-variate Gaussian distribution with mean x̄ ∈ Rn

nd covariance matrix P ∈ Rn×n. For any finite set S we denote
ts cardinality with |S|, and for any finite sequence a = {ai}mi=1,
e denote with len(a) = m its length. Let ∂S and int(S) = S \ ∂S
e the boundary and the interior operators for any set S ⊂ Rn. In
ddition, given a finite set Γ , we usually denote with Γ ′ ⊆ Γ an
rbitrary element of the power set P(Γ ).

. Problem statement

Consider a mobile robot described by the model

x(t) = (Ax(t)+ Bu[k]) dt + dw(t) (1)

or intervals of the form t ∈ [τk, τk+1) where x(t) ∈ Rn is the robot
tate (e.g. position and velocity for a particle robot), u[k] ∈ Rnu

s a zero-order hold input (e.g. representing the actuator forces
nduced to the system by the robot) and a sequence of instants
= {τk}

∞

k=0 with τk ∈ R, τk < τk+1 and τ0 ≡ 0. In addition, w(t)
s an n-dimensional stochastic process capturing disturbances and
on-modeled dynamics.

ssumption 1. The initial condition of (1) satisfies x(0) ∼
(x̄0, P0). Moreover, w(t) is a Wiener process with covariance

unction E{w(s)w(r)T } = W0 min(s, r) and W0 positive semi-
efinite (Åström, 1970, Page 63).

We are interested in studying the error dynamics of the actual
obot state with respect to a desired behavior. Hence, to simplify
he exposition, x(t) will represent such error which is desired
o be maintained as close as possible to the origin. However,
otivated by the perception latency problem, we consider that at
= τk a state estimate cannot be obtained directly. Instead, indi-
ect information is obtained (e.g. an image captured by a camera)
hat has to be processed through a perception procedure. To do
o, there are D available perception modes where the quality of
heir estimates depends on the perception latency ∆1, . . . , ∆D for
ach perception mode.

ssumption 2. Let C ∈ Rnz×n be the measurement matrix
or the perception setting with the pair (A, C) observable and
k ∈ {1, . . . ,D} be the perception mode chosen at t = τk. Then,
he output of the perception method is z[k] = Cx[k] + n[k],
vailable at t = τk + ∆pk , with noise n[k] ∼ N (0, Σpk ). Here,
1, . . . , ΣD capture the different noise levels of the accuracy of
ethods 1, . . . ,D.

The setting in which different perception modes are avail-
ble, achieving different noise levels and perception latency, cap-
ures the actual practical behavior of usual perception algorithms
hen different configurations are available (Ballotta et al., 2020;
alanga et al., 2019; Pant et al., 2021; Strasdat et al., 2012). The
alues of the latency ∆pk and noise level Σpk for a concrete
erception method pk can be obtained offline through a statistical
nalysis of its performance. In practice, it is expected that a
onger latency ∆pk results in a more concentrated distribution
(0, Σpk ). For instance, in Ballotta et al. (2020), Σpk is modeled to
e inversely proportional to the latency, which is also supported
y the experimental data in Pant et al. (2021) and Strasdat et al.
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2012). However, to allow our methods to be tailored to any
atency-precision model, we do not assume a particular relation
etween the latency ∆pk and its corresponding noise level Σpk

but that these might be different between perception methods.
Due to Assumption 2 the only available information at t = τk

is {z[0], . . . , z[k − 1]}. Hence, a control is designed as u[k] =
Lpk x̂[k|k − 1] where x̂[k|k − 1] = E

{
x[k]

⏐⏐ z[0], . . . , z[k− 1]
}
is

the conditional mean of x[k] using old measurements as given
in Appendix A. Moreover, the gains L1, . . . , LD are assumed to
be given, which may have been designed for each latency by
separate, provided that the pair (A, B) is controllable. Further-
more, note that at t = τk + ∆pk the robot is ready to take a
new measurement, thus we set τk+1 = τk + ∆pk . Finally, any
(perhaps infinite) sequence of perception modes p is referred
to as a perception schedule. We refer to a rule that generates a
perception schedule p based on state information as a scheduling
policy.

In this context, the goal of this work is the following:

Problem 3 (Perception Scheduling Problem). Consider an interval
of interest [0, Tf ] and att(p; [0, Tf ]), referred to as the attention
of p, the amount of sampling instants in the interval [0, Tf ]
induced by a perception schedule p. Moreover, let 0 < rpk be
the associated penalty for each perception mode. Thus, given
Assumptions 1 and 2, and given λx, λr , Tf > 0 and Q ,Qf positive
semi-definite, the problem is to find a perception schedule p =
{pk}∞k=0 such that

J (p; x̄0, P0) =
λr

Tf

α−1∑
k=0

rpk

+ λxE
{

1
Tf

∫ Tf

0
x(t)TQx(t) dt + x(Tf )TQf x(Tf )

} (2)

with α = att(p; [0, Tf ]), is minimized for system (1). Moreover, if
there exists a stabilizing perception schedule for system (1) under
arbitrary Tf , then p must induce limt→∞ E{x(t)} = 0.

As usual in minimum variance control problems (Åström,
1970, Page 172) the persistent introduction of uncertainty origi-
nated from disturbances in the model, and measurement noise
prevents a linear controller from making x(t) converge to the
origin in the mean-squared error sense. Hence, to concentrate
our efforts on building a schedule p, it is more practical to
ensure convergence of E{x(t)} towards the origin, and deal with
the effect of the second order moment of x(t) during the finite
interval of interest [0, Tf ] by minimizing (2).

The cost in (2) is meant to model the latency-precision trade-
off we described before in the following way. The second term
in (2) is composed of an expected quadratic penalty for cost x(t)
of (1), which penalizes deviations from the origin. On the other
hand, the first term in (2) is the accumulation of the penalties
rp0 , rp1 , . . . over the interval [0, Tf ]. If rp0 = rp1 = · · · = 1, this
term is proportional to the attention of p. Keeping the number of
sampling events small is desirable both from an energetic point
of view and to minimize the use of I/O buses when using the
sensors. On the other hand, consider that the latency ∆pk is not
used exclusively for perception, but also that the method frees
the computing unit for an interval of length (1 − f pk )∆pk with
f pk ∈ (0, 1). Thus, the perception CPU load in the interval [0, Tf ] is
(1/Tf )

∑α−1
k=0 f pk∆pk and can be taken into account in (2) by using

rpk = f pk∆pk .
Consider the last requirement in Problem 3. Note that the

cost in (2) only penalizes the schedule during the interval [0, Tf ],
which can be used to penalize a transient response. In practice,
it may be beneficial to pose a similar problem once [0, Tf ] has
elapsed in a moving horizon fashion. However, this strategy will
3

not ensure asymptotic stability for E{x(t)} on the long run for
arbitrary values of λx, λr , Tf ,Q ,Qf since the individual terms in
(2) are often conflicting. As an example, take λx = 0 and λr > 0
in which the system’s error is not penalized and thus, minimizing
(2) will not ensure stability regardless of Tf or how often the
optimization problem is solved. Hence, a connection between
optimality and stability is not evident in general problem setting.

Our strategy is based on the following observation. Using
Proposition 24 in Appendix A, it is obtained that x̄[k] := E{x[k]}
is given by

x̄[k+ 1] = Λ(∆pk )x̄[k], x̄[0] = x̄0 (3)

where Λ(∆pk ) := exp(A∆pk ) +
∫ ∆pk

0 exp(Aτ )dτBLpk . As a re-
sult, (3) is a switched system which switches between matrices
{Λ(∆1), . . . , Λ(∆D)} according to the perception schedule p as
the switching signal. Hence, the asymptotic stability character of
Problem 3 is tied to the stability of the switching system in (3). In
this context, the outline of our solution has 3 main components:

• First, in Section 3 we analyze some results in the literature
regarding stabilizing switching signals for discrete-time sys-
tems. We provide an extension of the results found in the
literature to enable the construction of multiple schedul-
ing policy candidates for optimizing (2). These scheduling
policies are all stabilizing for (3) when an admissibility
condition is attained.
• Second, for completeness, in Section 4 we provide a new

algorithm to check if a scheduling policy candidate is ad-
missible.
• Third, in Section 5 we provide a new sub-optimal algorithm

for Problem 3 based on the multiple scheduling policies pre-
viously constructed. We analyze its theoretical performance
and discuss some heuristics and approximations.

3. Stability preserving perception schedules

In this section, we develop scheduling policies which en-
sure (3) is stable. In Fiacchini and Jungers (2014) an interesting
framework is proposed which provides sufficient and necessary
conditions for asymptotic stability of discrete-time switching lin-
ear systems as (3), and generates state-dependant switching laws
based on such conditions. In the following, we analyze some
related ideas and propose a framework suitable for Problem 3.
This is required since not only a single switching rule is needed,
but several switching rule possibilities have to be available as the
search space for the optimization of (2). First, let us introduce the
following concept:

Definition 4. A set of schedules is any set of the form Γ =

{γ 1, . . . , γ |Γ |} with |Γ | < ∞ where γ i
∈ {1, . . . ,D}len(γ

i) are
individual schedules with len(γ i) <∞, ∀i ∈ {1, . . . , |Γ |}.

We aim to construct stabilizing perception schedules by piec-
ng together individual finite-length schedules found in a set of
chedules. Up to this point, sets of schedules are arbitrary and can
e constructed randomly. However, stabilizing switching signals
annot arise for any set of schedules. In the following, we study
hich sets of schedules induce stability. Consider the following
bjects: the hyper-ellipse

0 := {x ∈ Rn
: xTM0x ≤ 1}

for some arbitrary positive definite matrix M0 and

S := {x ∈ Rn
: x = Λ(∆γ0 )−1 · · ·Λ(∆γℓ−1 )−1y, y ∈ S }
γ 0
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here γ := {γk}
ℓ−1
k=0 is a schedule of finite length len(γ ) = ℓ.

hus, by construction, for any x̄0 ∈ Sγ , then x̄[len(γ )] ∈ S0 for
uch schedule γ . This is verified as:

¯[len(γ )] = Λγ x̄0 ∈ Λγ Sγ

= {z ∈ Rn
: z = Λγ x, x = (Λγ )−1y, yTM0y ≤ 1}

= {z ∈ Rn
: z = Λγ (Λγ )−1y, yTM0y ≤ 1}

= {z ∈ Rn
: zTM0z ≤ 1} = S0

with Λγ
:= Λ(∆γℓ−1 ) · · ·Λ(∆γ0 ) as the multiplication chain in

(3) for the schedule γ . Moreover, note that Sγ has the shape of
an hyper-ellipse defined by the positive definite matrix Mγ =

(Λγ )TM0(Λγ ) as Sγ ≡ {x ∈ Rn
: xTMγ x ≤ 1}.

The key idea is the following. Consider Γ to be a set of
schedules γ . Thus, if the interior of the set

S⋆Γ :=
⋃
γ∈Γ

Sγ (4)

contains S0, it means that for each initial condition, there exists a
schedule γ ∈ Γ which contracts S⋆Γ into itself after len(γ ) steps.
This is, if x̄0 ∈ S⋆Γ , thus x̄[len(γ )] ∈ S0 ⊂ int(S⋆Γ ) for some γ ∈ Γ .

efinition 5 (Admissible Set Of Schedules). A finite set of schedules
is admissible if S0 ⊂ int(S⋆Γ ).

As we show in a subsequent result, if Γ is admissible, a
contracting schedule can be found ∀x̄ ∈ Rn as:

γ ⋆(x̄;Γ ) := arg min
γ∈Γ

{r ∈ R : r = x̄TMγ x̄} (5)

Using this switching rule for various admissible sets of schedules
Γ 1, . . . , Γ m, the following strategy can be used online to com-
pute a stabilizing perception method at each t = τk given x̄[k].

efinition 6. [Stability Preserving Scheduling] The SP2 (Stability
Preserving Scheduling Policy) strategy is defined by Algorithm 1.

Algorithm 1 SP2 strategy

Input: x̄0.
Output: Perception schedule p.
1: γ ← ∅.
2: i← 0
3: for each instant τk, k = 0, 1, . . . do
4: if (i < len(γ )) then
5: pk ← γi #For chosen schedule γ , traverse its elements

γ0, . . . , γlen(γ ).
6: i← i+ 1
7: else
8: Γ ← any set of schedules chosen from the admissible

options Γ 1, . . . , Γ m.
9: γ ← γ ⋆(x̄[k];Γ ) from (5). #Once previous schedule has

been consumed, choose a new schedule
10: i← 0
11: end if
12: end for

Remark 7. A similar rule to (5) was studied in Fiacchini and
Jungers (2014) for a particular fixed set of schedules Γ con-
structed through a combinatorial approach. This is, all possible
combinations of elements in {1, . . . ,D} up to the first length
at which admissibility is attained (Fiacchini & Jungers, 2014,
Algorithm 1). As a result, a single scheduling policy is considered
regardless of the choice of (2), and with no additional degrees of
freedom to improve performance. Unlike the previous approach,
4

Algorithm 2 Construction of a set of schedules

Input: ℓ,D.
Output: Γ .
1: Γ = ∅
2: repeat
3: if ({1, . . . ,D}ℓ \ Γ = ∅) then
4: # If all schedules have been evaluated
5: Increase ℓ

6: end if
7: # Generate a random sequence over {1, . . . ,D} with

random length ℓ′ ≤ ℓ.
8: ℓ′ ← randomSample({1, . . . , ℓ})
9: Γ ← Γ

⋃
randomSample({1, . . . ,D}ℓ

′

\ Γ )
0: until S0 ⊂ int(S⋆Γ ) # Using Algorithm 3

we introduce an extra degree of freedom by constructing mul-
tiple sets of schedules Γ 1, . . . , Γ m. Then, as explained in detail
n Section 5, a switching law of the form (5) is used for each
et of schedules as scheduling policy candidates to optimize for
2). This makes our approach more beneficial for the perception
cheduling problem since intuitively, given an initial condition
¯[0], the approach with a single set of schedules will result in
fixed schedule p, regardless of the cost (2) whereas our method
an adapt p to the cost.

In this sense, an alternative for the combinatorial approach is
iven in Algorithm 2 in which random schedules are appended
o Γ . These schedules are generated with length up to a given
alue ℓ, unless all schedules are contained in Γ , in which case
is increased. This procedure terminates once Γ is admissible
nd, similarly to the combinatorial approach, this must happen
f there exists a stabilizing schedule for (3). When compared to
he combinatorial approach, the advantage of using Algorithm 2
s two-fold. First, depending on the initial value of the length ℓ,
onger sequences can be tested earlier. This is complicated using
he combinatorial approach due to the combinatorial explosion
nvolved in such a strategy. Note that even if the combinato-
ial approach is used starting from an initial length ℓ > 1
o test longer sequences earlier, this strategy will neglect short
equences, which may also be useful for rapid decision-making
f available. Hence, Algorithm 2 covers short and long sequences
rom the beginning. Moreover, Algorithm 2 allows us to generate
ultiple admissible sets of schedules, namely Γ 1, . . . , Γ m useful

or our optimization strategy.
However, since in line 8 of Algorithm 1 we allow to change the

et of schedules Γ to any admissible one between the m options
Γ 1, . . . , Γ m

}, the scheduling policy in (5) may be different each
ime in line 9 of Algorithm 1 is executed. The following results
how that even in this case, Algorithm 1 manages to stabilize (3).

heorem 8. Assume that there exists at least one admissible
et of schedules and that the SP2 strategy is used in (3). Thus
imk→∞ x̄[k] = 0.

roof. All proofs are provided in Appendix C.

Checking if a set of schedules is admissible is not a trivial
ask. Fiacchini and Jungers (2014, Remark 6) propose to check
f there is at least one γ ∈ Γ such that S0 ⊂ int(Sγ ) as
a sufficient condition for admissibility. However, this is a very
conservative condition that will not be attained in general, even
when Γ is admissible. Motivated by this, in the following section,
we provide a novel analysis to check if a set of schedules is

admissible.
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. Non-conservative admissibility checking

The basis of a non-conservative admissibility checking is for-
ulated as a nonlinear program as follows.

heorem 9. Let

R := min
x̄∈∂S⋆Γ

x̄TM0x̄. (6)

Then, S0 ⊂ S⋆Γ if and only if R > 1.

Hence, under the light of Theorem 9, studying if Γ is admis-
sible is equivalent to solving the nonlinear program in (6) and
checking if R > 1. Note that the attempt to solve numerically for
local minima in (6) may fail since the condition R > 1 is only
useful when the global minimum is considered. To the best of
our knowledge, there is no previous work which solves for the
global minimum of a non-convex program of the form (6). Thus,
the following efforts are dedicated to this task.

Note that most of the theory presented up to now remains the
same even when S0 is not a hyper-ellipse. An arbitrary C⋆ set as in
Definition 25 in Appendix B can be used instead of a hyper-ellipse.
For example, polyhedral sets are also considered in Fiacchini and
Jungers (2014). However, note that the set ∂S⋆Γ may be non-
convex, implying that there might be many local minima for
(6), which complicates the analysis. Despite this, we show that
for the case where S0 is a hyper-ellipse, we can compute the
global minimum of (6). The strategy is the following: we split the
nonlinear program in (6) into subprograms of the following form:

min
x̄∈Rn

x̄TM0x̄

s.t. : hγ (x̄) := x̄TMγ x̄− 1 = 0, ∀γ ∈ Γ ′ ∈ P(Γ )
(7)

where Γ ′ is any subset of Γ , i.e. Γ ′ is in the power set P(Γ ).
Intuitively, the sub-program in (7) is useful since due to the shape
of ∂S⋆Γ , the global optimum of (6) must lie either in the boundary
of a single hyper ellipse Sγ for some γ ∈ Γ which has the form
hγ (x̄) = 0, or in the intersection of the boundaries of multiple
hyper-ellipses. As an example, consider Γ = {p, q} with arbitrary
chedules p, q. Hence, the global optimum of (6) must be the
global optimum of (7) with either Γ ′ = {p}, Γ ′ = {q}, which
correspond to checking points in ∂Sp, ∂Sq by separate or Γ ′ =

p, q} which corresponds to checking points in ∂Sp ∩ ∂Sq where
he two constraints hp(x̄) = 0, hq(x̄) = 0 are active. Therefore,
he solution for (6) comes from (7) for some Γ ′ ∈ P(Γ ) =
∅, {p}, {q}, {p, q}}. This idea is formalized in the following:

orollary 10. Let X̄Γ ′ be the set of all critical points (local minima
andidates) x̄∗ of (7) such that x̄∗ /∈ Sγ for any γ ∈ Γ \Γ ′ and any
′
∈ P(Γ ). Thus, the global minimum R of (6) can be obtained as

= min

⎧⎨⎩r = x̄TM0x̄ : x̄ ∈
⋃

Γ ′∈P(Γ )

X̄Γ ′

⎫⎬⎭ (8)

Corollary 10 implies that the solution of (6) can be obtained
y solving programs of the form (7), where critical points of (7)
re rejected if such points are contained in other hyper-ellipses
ot involved in (7) (written as x̄∗ /∈ Sγ ,∀γ ∈ Γ \ Γ ′ in
orollary 10). Moreover, all programs of the form (7) involve from
ne hyper-ellipse at the time, to all combinations of Sγ ,∀γ ∈ Γ .

emark 11. Note that if |Γ ′| = n in (7), the set of all points
¯ with x̄TMγ x̄ = 1,∀γ ∈ Γ ′ contains only isolated points for
lmost all {Mγ }γ∈Γ . Moreover, the set of equations x̄TMγ x̄ =
are n polynomial equations with n variables which have nn

omplex solutions due to the Bezout’s Theorem (Kubler, Renner,
 d

5

Schmedders, 2014, Theorem 4.14). Homotopy solvers such as
he one in Verschelde (1999) can track all such real solutions
or polynomial systems or obtained explicitly if n ≤ 2. Hence,
ll reals solutions can be checked directly to build the set X̄Γ ′ .
n contrast, the case with |Γ ′| > n can be ignored since those
olutions are either contained in the |Γ ′| = n case or are
onexistent.

In general, an optimization program of the form (7) can be
olved by the Lagrange multipliers method. However, depending
n the problem constraints, in this case, given in the form hγ (x̄) =
, not all local minima can be found through this method. Such
ocal minima are often called non-regular (Bertsekas, 1999, Page
79). Due to the fact that we look for the global optimum of (7),
e are forced to analyze both regular and non-regular points.
ormally, critical points in X̄Γ ′ for (7) in which |Γ ′| < n will be
lassified into regular or non-regular points for their analysis as
ollows:

efinition 12 (Bertsekas, 1999, Page 279). Acritical point x̄ for (7)
s said to be regular if the vectors ∇hγ (x̄) = 2Mγ x̄, γ ∈ Γ ′ are
inearly independent.

In the next section, we use the Lagrange multiplier method
o find the list of critical regular points for (7). Then, we use a
ailored analysis for the non-regular ones.

.1. Regular points analysis

We start the study of (7) with the characterization of regular
oints by means of the Lagrange multiplier theorem in Bertsekas
1999, Proposition 3.1.1).

heorem 13. Let λ := {λγ }γ∈Γ ′ be a solution to the system of
quations

r(G(λ)†(Mγ −Mν)) = 0, γ , ν ∈ Γ ′ (9a)

det G(λ) = 0 (9b)

here

(λ) := M0 +
∑
γ∈Γ ′

λγMγ (10)

nd G(λ)† is the adjugate matrix of G(λ) (Horn & Johnson, 2012,
age 22). Thus, all regular critical points x̄∗ of program (7) are in
he kernel of G(λ) for some λ. This is, there exists a solution λ of (9)
uch that G(λ)x̄∗ = 0 and have (x̄∗)TM0(x̄∗) = −

∑
γ∈Γ ′ λγ .

emark 14. Note that the number of equations in (9) are
vidently more than |Γ ′|. However, most of them are linearly
ependent. They can be arranged as |Γ ′| independent equations
ith |Γ ′| variables by using |Γ ′|−1 equations of the form (9a) in
ddition to (9b). These |Γ ′| equations are independent for most
hoices of {Mγ }γ∈Γ . Moreover, note that all equations in (9) are
olynomials in λ and therefore, the number of solutions can be
ounted by means of Bezout’s theorem and obtained similarly
s pointed out in Remark 11 using the algorithm in Verschelde
1999).

Moreover, the nullity (dimension of kernel) of the singular
atrix G(λ) may be of dimension up to n. However, among the
ossible singular matrices, ones with nullity greater than one lie
n a set of measure zero (with respect to the possible choices of
Mγ }γ∈Γ ). This fact is evidenced in the following result.

orollary 15. Let λ satisfy (9), assume that G(λ) has nullity greater
han 1, and let Gij(λ) be the sub-matrix obtained by deleting the ith
ow and jth column of G(λ). Then, λ complies with

2
et Gij(λ) = 0, ∀(i, j) ∈ {1, . . . n} (11)
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As a result of Corollary 15, the case in which G(λ) has nullity
greater than one is is not common in a general setting since
λ ∈ R|Γ

′
| would have to comply |Γ ′| − 1 equations of the type

(9a) in addition to n2 equations of the type (11). Henceforth, we
ignore such cases in our analysis. Now, for G(λ) with nullity 1,
let g be any vector in the kernel of G(λ). Thus, as a result of
Theorem 13 the critical regular points for such λ are parallel to
g, and can be uniquely computed by scaling g in order to comply
(x̄∗)TM0x̄∗ = −

∑
γ∈Γ ′ λγ as:

x̄∗ = ±g

√
−

∑
γ∈Γ ′ λγ

gTM0g
(12)

nd therefore, the condition x̄∗ ∈ Sγ for γ ∈ Γ \Γ ′ can be checked
y computing if (x̄∗)TMγ (x̄∗) > 1 in order to build the set X̄Γ ′ as
equired in Corollary 10.

.2. Non-regular points analysis

Non-regular points for program (7) are points x̄ which comply
¯TMγ x̄ = 1,∀γ ∈ Γ ′ and the vectors {Mγ x̄}γ∈Γ ′ linearly de-
endent. In general, linearly dependent vectors are rare among
ll possible vectors, and hence is not surprising that non-regular
oints will not exist in arbitrary settings. In the following result,
e characterize when they exist by obtaining what additional
oncrete conditions must be satisfied.

roposition 16. Let W (x̄) an n×|Γ ′|matrix whose columns are the
ectors Mγ x̄,∀γ ∈ Γ ′ and let Wα(x̄) be the |Γ ′| × |Γ ′| sub-matrix
f W (x̄) obtained by deleting n − |Γ ′| rows indexed in α ∈ A ⊂
1, . . . n}n−|Γ

′
| with A containing all elements in {1, . . . n}n−|Γ

′
| with

on repeating entries. Therefore, any non-regular point for program
7) must comply with

x̄TMγ x̄ = 1, ∀γ ∈ Γ ′ (13a)

et Wα(x̄) = 0, ∀α ∈ A (13b)

Note that the amount of equations of the type (13b) are equiv-
lent to the number of sub-matrices of size |Γ ′|×|Γ ′| insideW (x̄)

which is exactly n!/(|Γ ′|!(n−|Γ ′|)!) (Horn & Johnson, 2012, Page
21). Note that there are at least n−|Γ ′|+1 independent equations
of this type since that correspond to the number of |Γ ′|×|Γ ′| sub-
matrices of W (x̄) with consecutive rows. Hence, the number of
equations in (13) are |Γ ′| of the type (13a) and at least n−|Γ ′|+1
of type (13b). Equivalently, a non-regular point x̄ ∈ Rn would
ave to comply with at least n + 1 polynomial equations. One
ould solve n equations picked from (13) and check if the results
omply with the remaining equations. However, due to this over-
etermined feature of equations in (13) non-regular points will
ot exist in general.

.3. Admissibility checking algorithm

Using the results in the previous sections, we summarize the
ethodology for admissibility checking in the following. Consider
lgorithm 3 which takes as an input the dimension of the state
pace n, the matrix M0, the set of matrices M := {Mγ }γ∈Γ and
he set of schedules Γ . This function builds a set R of all global
inima candidates of (6) and checks minR > 1 as this condition

s equivalent to admissibility due to Theorem 9. In line 2, all
ubsets of schedules in Γ are checked, ranging from no schedules
t all, one schedule at the time, pairs of schedules, and so on. In
ine 3 we check if the constraint space is of dimension n, since
n such case the constraint space is comprised of just isolated
oints, and we obtain critical points as in Remark 11 by calling
solatedSolutions. Otherwise, we obtain regular values by
6

alling RegularSolutions. Cases in which the constraint space
s of dimension more than n are ignored. Algorithm 4 obtains
ritical objective values when the constraint space contains only
solated points. This algorithm looks for real solutions of the
ystem of n equations and n variables {x̄TMγ x̄ = 1,∀γ ∈ Γ } in
line 1. Then, for all solutions we check one by one if they are not
contained in other hyper-ellipses for γ ∈ Γ \ Γ ′. If any of those
conditions are complied we reject such points in line 3 in order
to build the set X̄Γ ′ required in Corollary 10. Algorithm 5 looks
for regular points of (6). We build a set of critical objective values
in R and then return r ← minR. First, we solve the system of
equations in (9). Then, for all real solutions λ of such polynomial
equations we compute G(λ) and the critical point as in (12). These
points are rejected if they are contained in other hyper-ellipses
Γ \Γ ′ in line 7. Then, the critical objective is given by−

∑
γ∈Γ ′ λγ

as obtained in Theorem 13.

Remark 17. Note that in Algorithm 3 we explicitly assumed that
G(λ) has nullity 1 and that there are no non-regular points. This
assumption is reasonable since the system of equations made by
(9a) in addition to (11) and the system of equations in (13) are
over-determined for almost any {Mγ }γ∈Γ .

Remark 18. Note that due to line 2 in Algorithm 3, the complex-
ity of the admissibility checking procedure grows as |P(Γ )| =
2|Γ |. Still, this procedure can be stopped as soon as some value
contained R is less than 1. Moreover, recall that checking for ad-
missibility is not required online for the SP2 strategy in Algorithm
1. Instead, this procedure is used to construct admissible sets of
schedules in Algorithm 2 offline.

Algorithm 3 Admissibility

Input: n,M0, {Mγ }γ∈Γ , Γ .
Output:

(
S0 ⊂ int(S⋆Γ

)
)?

1: Set R← ∅.
2: for Γ ′ ∈ P(Γ ) do
3: if |Γ ′| = n then
4: R← R ∪ {

IsolatedSolutions(n,M0, {Mγ }γ∈Γ , Γ , Γ ′)}
5: else
6: if |Γ ′| < n then
7: R← R ∪ {

RegularSolutions(n,M0, {Mγ }γ∈Γ , Γ , Γ ′)}
8: end if
9: end if

10: end for
11: return minR > 1

One important input for Algorithm 3 is the matrix M0 which
acts as an hyper-parameter for the overall system. Note that
admissibility of the set of schedules Γ only depends on some
arbitrary choice of M0 as long as it is positive definite. Hence,
setting M0 = I can be considered a systematic default option.
On the other hand, the choice of M0 may affect the time until
admissibility is concluded in Algorithm 3. However, optimizing
M0 to reduce such time is considered out of the scope of this work
but could be explored in future research.

5. Towards optimal scheduling

Up to this point, the analysis has been devoted to the stability
aspect of Problem 3. In this section, we focus on the optimality
aspect of the problem based on the stability results obtained so

far. First, we study the inherent complexity of Problem 3. Due to
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Algorithm 4 IsolatedSolutions

Input: n,M0, {Mγ }γ∈Γ , Γ , Γ ′.
utput: r .
1: X̄Γ ′ ← real solutions of {x̄TMγ x̄ = 1,∀γ ∈ Γ ′} as in

Remark 11.
2: for x̄ ∈ X̄Γ ′ do
3: if exists γ ∈ Γ \ Γ ′ such that x̄TMγ x̄ < 1 then
4: X̄Γ ′ ← X̄Γ ′ \ {x̄}.
5: end if
6: end for
7: return r ← min{x̄TM0x̄ : x̄ ∈ X̄Γ ′}

Algorithm 5 RegularSolutions

Input: n,M0, {Mγ }γ∈Γ , Γ , Γ ′.
utput: r .
1: Set Y ← real solutions of (9) as in Remark 14
2: R← ∅
3: for λ ∈ Y do
4: G(λ)← M0 +

∑
γ∈Γ ′ λγMγ .

5: g← any element of ker(G(λ)).

6: x̄← g
√
−

∑
γ∈Γ ′ λγ

gTM0g
.

7: if x̄TMγ x̄ > 1,∀γ ∈ Γ \ Γ ′ then
8: R← R ∪ {−

∑
γ∈Γ ′ λγ }

9: end if
10: end for
11: return r ← minR.

the possible conflicting objectives in (2), the most general setting
of Problem 3 is reduced to a combinatorial search between the
possible scheduling decisions. This makes it hard to expect that
exact and efficient solutions for Problem 3 exist except for very
particular cases. This issue is formalized in the following result.

Proposition 19. Problem 3 is NP-hard.

Henceforth, our approach from this point will be to obtain
approximate solutions to Problem 3 and study their performance
with respect to the optimal solution. Consider m > 0 sets of
schedules Γ 1, . . . , Γ m constructed using Algorithm 2, leading to
m scheduling policies. Theorem 8 ensures that it is
possible to choose between any of these scheduling policies
without compromising asymptotic stability. Hence, instead of de-
ciding between different perception configurations, a sub-optimal
schedule for Problem 3 will be constructed by an appropriate
decision sequence between the m scheduling policies induced by
Γ 1, . . . , Γ m.

Using the dynamic programming framework (Bertsekas, 2000),
Algorithm 6 aims to obtain an optimal schedule for Problem 3
when the schedule is constrained to be constructed using the
scheduling policies induced by Γ 1, . . . , Γ m. Note that this algo-
rithm proceeds to evaluate all scheduling policies for the current
state x̄0 as in line 3. Then, proceeds to compute x̄(t), P(t) in line
7 for t ∈ [τ ,min(τ+, Tf )] which is the interval in which the
schedule piece γ is active before t = Tf , as well as the cost for
such interval in line 8. Note that x̄(t), P(t) and the cost can be
computed explicitly as a result of Proposition 24 in Appendix A.
Then, τ+ < Tf it means that γ is not sufficiently long to fill the
entire window [0, Tf ]. Hence, the remaining cost to go J+ and
schedule p+ optimal for t ∈ [τ+, Tf ] is obtained by a recursive call
in line 10. Otherwise, the terminal cost is added in line 13. Once

all m options have been evaluated, dynprog returns the one with

7

the best cost as well as the optimal schedule as in line 16, where
⊕ means concatenation of schedules. The optimal properties of
this algorithm are detailed in the following.

Algorithm 6 dynprog

Input: Tf , τ , x̄0, P0.
Output: p∗, J∗, Γ ∗.
1: J∗ ←∞.
2: Γ ∗ ← ∅
3: for Γ in {Γ 1, . . . , Γ m

} do
4: γ ← γ ⋆(x̄0;Γ ) from (5).
5: τ+ ← τ +

∑len(γ )−1
k=0 ∆γk

6: α← att(γ , [τ ,min(τ+, Tf )])
7: Compute x̄(t), P(t) for schedule γ using x̄(τ ) = x̄0, P(τ ) =

P0 on (A.5) for t ∈ [τ ,min(τ+, Tf )]

8: J ← λx
Tf

∫ min(τ+,Tf )

τ

x̄(t)TQ x̄(t) + tr(QP(t))dt + λr
Tf

α−1∑
k=0

rγk

9: if (τ+ < Tf ) then
10: {p+, J+, Γ +} ←

dynprog(Tf , τ+, x̄(τ+), P(τ+))
11: J ← J + J+
2: else

13: J ← J + λx
(
x̄(Tf )TQf x̄(Tf )+ tr(QP(Tf ))

)
14: p+ ← ∅
15: end if
16: if J ≤ J∗ then
7: J∗ ← J

18: p∗ ← γ ⊕ p+
19: Γ ∗ ← Γ

20: end if
21: end for

Proposition 20. Calling dynprog(Tf , 0, x̄0, P0) obtains the optimal
schedule and cost p∗, J∗ for Problem 3 for the case when the schedule
is constrained to be constructed using the scheduling policies for
{Γ 1, . . . , Γ m

}. Moreover, the worst case complexity of Algorithm 6 is
O

(
m⌊Tf /c⌋

)
where c = min

{∑len(γ )−1
k=0 ∆γk : γ ∈ Γ 1

∪ · · · ∪ Γ m
}
.

Remark 21. Due to NP-hardness of Problem 3, it is not surprising
that the dynamic programming approach for this problem leads
to an algorithm that does not have a polynomial complexity
in Tf . However, these types of algorithms, in which unrolling
the recursive calls lead to an exponentially growing tree as in
Algorithm 6, are widely studied. Hence, some performance im-
provements in terms of complexity and run-time reduction can
be made to Algorithm 6 such as applying a branch-and-bound
technique (Bertsekas, 2000, Chapter 2.3.3). In addition, heuristics
and approximate solutions such as limited look-ahead policies,
roll-out algorithms, among others (Bertsekas, 2000, Chapter 6)
can be applied in practice. For instance, a balanced SP2 strategy
can be applied where the set of schedules Γ in line 8 of Algorithm
1 is selected by calling {−,−, Γ } = dynprog(T , 0, x̂[k|k −
], P̂[k]) as a moving horizon strategy with a look-ahead window
f size T .

Nevertheless, all heuristics and approximate approaches men-
tioned before will have a relative performance loss with respect
to the optimal schedule for Problem 3 only when the solution
is constrained to be constructed using the scheduling policies
induced by Γ 1, . . . , Γ m, and not necessarily the real optimum of
roblem 3. Despite this, in the following result, we show that the
olution of Algorithm 6 can approximate the optimal performance
or sufficiently large number of sets of schedulesm, increasing the
omputational power applied.
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Fig. 1. Set S⋆Γ for the set of schedules Γ described in Section 6.1 as well as S0
o show admissibility.

Fig. 2. Resulting histograms for the sample path cost Jsp for example of
Section 6.1 using the balanced SP2 strategy with m = 5,m = 10,m = 20
and static schedules {1, 1, . . . }, {2, 2, . . . }.

Theorem 22. Let p∗ be the optimal cost for the general setting of
Problem 3 and assume that (3) is stabilizable. Then, for any compact
sets Bx̄ ⊂ Rn, BP ⊂ Rn×n and any ε > 0 there exists Γ 1, . . . , Γ m

ith m <∞ such that

J (p∗; x̄0, P0)− J (p; x̄0, P0)| < ε

with p from by Algorithm 6, for any x̄0 ∈ Bx̄, P0 ∈ BP .

6. Simulation examples

6.1. Double integrator

As a first example consider system (1) with

A =
[
0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0], W0 = 1

as well as D = 2 with perception latencies ∆1
= 0.01, ∆2

= 0.1
with their corresponding covariances Σ1

= 0.5, Σ2
= 0.01. In
8

addition, consider

L1 = L2 = [−1.5− 3],M0 =

[
3.53 −1.10
−1.10 1.36

]
where M0 was chosen as an arbitrarily positive definite matrix.
To depict admissibility, Algorithm 2 was used with ℓ = 20
to generate a set of schedules Γ and Algorithm 3 was used to
check admissibility. Note that in Algorithm 3 the only meaningful
subsets of schedules Γ ′ in the power set P(Γ ) are Γ ′ containing
either a single schedule, or pairs of schedules as a result of the
discussion in Remark 11. Moreover, note that in the case of Γ ′

containing a single schedule γ , (10) results in G(λ) = M0 + λMγ

and therefore possible solutions of Lagrange multipliers λ ∈ R
are eigenvalues of M−10 Mγ . The resulting nullity of G(λ) for any
Γ ′ in this experiment was 1 and hence regular critical points
were computed as in (12). In this case, there are no non-regular
points, since for |Γ ′| = 1 there is a single vector ∇hγ (x̄). For the
case of |Γ ′| = n = 2 critical points were obtained by solving a
polynomial system of equations given by the intersection of the
two resulting ellipses as in Remark 11. Hence, in this setting the
admissibility value was obtained to be R = 1.142 which indicates
that Γ is admissible. Fig. 1 shows S⋆Γ and S0 for this example
where it shown that S0 ⊂ int(S⋆Γ ). Moreover, note that none of
the individual sets Sγ , γ ∈ Γ manage to cover S0 by separate.

Now, we show the performance of an heuristics implementa-
tion of the strategy presented in Section 5. To do so, we simulated
system (1) using explicit Euler–Maruyama method with time step
h = 10−5 over the interval [0, Tf = 100] for each experiment.
A balanced SP2 strategy as described in Remark 21 was used
with limited look-ahead window of size T = 2. The perfor-
mance is evaluated using the cost (2) for each sample path with
Q = Qf = diag([2, 1]), λx = 1, λr = 0.05. Moreover, r1 =
r2 = 1 such that the number of sampling events is penalized
in the cost. Furthermore, 400 sample paths where generated
with x̄0 = [1, 1], P0 = I for m = 5,m = 10,m = 20
respectively. For comparison, the same amount of sample paths
where obtained for schedules {1, 1, . . . }, {2, 2, . . . } respectively
to study the performance of the classical approach of maintaining
the same perception configuration during the whole experiment.
The resulting histograms for the sample path cost Jsp for the
whole interval [0, Tf ] are shown in Fig. 2 for each case. It can be
observed that the average cost of our approach is reduced when
compared to the static approaches. Moreover, the results suggest
that increasing the number of sets of schedules m improves the
cost Jsp and average attention att.

6.2. Particle mobile robot

Now consider a system with state x = [x1, . . . , x6]T , and
ynamics given ẋ1 = x2, ẋ3 = x4, ẋ5 = x6 as well as ẋ2 =
1/µ+w1, ẋ4 = u2/µ+w2, ẋ6 = u3/µ+w3 with µ = 0.1. This
ystem corresponds to the model of a particle mobile robot with
ass µ. This kind of system has been useful as a model for aerial
ehicles such as multi-rotors in Campos-Macías et al. (2021),
aessler, Franchi, and Scaramuzza (2018) and Mellinger and Ku-
ar (2011) were [x1, x3, x5]T is the position of the multi-rotor
nd [x2, x4, x6]T is the velocity. In fact, a common strategy for
he multi-rotor control is adopt a hierarchical control approach,
here control signals u1,u2,u3 are designed exclusively for po-
ition as a high-level controller. In a second stage, the resulting
osition controls are used to construct a low level controller
or the attitude of the multi-rotor. Moreover, measurements for
osition are taken as Cx = [x1, x3, x5]T using visual percep-
ion (Campos-Macías et al., 2021). In this example we adopt the
oise model from Ballotta et al. (2020, Equation (9)) such that
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Fig. 3. Resulting histograms for the sample path cost Jsp for the example of
Section 6.1 using the balanced SP2 strategy with m = 20 and static schedules
{1, 1, . . . }, {2, 2, . . . }.

given a perception latency ∆ the resulting measurement covari-
ance is Σ(∆) = (b/∆)I with b = 0.2. This model is reasonable
for demonstrative purposes in this work. However, in a more
practical setting, Σ(∆) must be characterized according to the
relation between latency and precision of the actual perception
algorithms and sensors used, following a similar procedure to
the one described in Pant et al. (2021). In this case, even when
the measurement covariance is reduced as ∆ is increased, the
disturbance covariance Wd(∆), given in (A.4) from Appendix A,
increases.

Now, we test our scheduling approach assuming only two
different latencies ∆1

= 1/30, ∆2
= 4/30 corresponding to

he frame-rate of a typical camera or 4 times the frame-rate. Let
1
= Σ(∆1), Σ2

= Σ(∆2) with the covariance model Σ(∆) de-
cribed before and W0 = 0.5I . Moreover, consider penalties r1 =
.9∆1, r2 = 0.2∆2 which correspond to CPU loads of 90% and 20%
espectively for each method. In addition, the parameters Q =
f = diag([2, 1, 2, 1, 2, 1]), λx = 1, λr = 0.1 were chosen. The
P2 strategy was tested similarly as in the example of Section 6.1
ith time step h = 10−5, Tf = 100 and limited look-ahead
indow length T = 10. Fig. 3 shows the resulting histograms for
ample paths with x̄0 = [1, 1, 1, 1, 1, 1], P0 = I for our approach
ith m = 20 and static schedules {1, 1, . . . }, {2, 2, . . . } with 400
ample paths in each case. It is observed that our approach out-
erforms the static approaches in the sample cost Jsp. Moreover,
he average CPU load LOAD is reduced with respect to the worst
case value of 90%.

7. Conclusion

This work studied a perception scheduling approach to tackle
the latency-precision trade-off, where measurements can be
taken using several perception mode possibilities with different
noise levels. It was shown that the stability of the closed-loop
model is tied to the stability of a switching system. Moreover,
the latency-precision trade-off was modeled by means of a cost
function taking into account control precision and a penalty for
each perception mode to incorporate energetic and CPU load
points of view. Three main tools were proposed in this context to
solve the problem: scheduling policy candidate construction us-
ing switching systems theory, an admissibility checking algorithm
for policy candidates, and sub-optimal strategies based upon the
scheduling policy candidates. Different from general switching
 P

9

systems theory, we take advantage of the particular structure
of the problem to provide new insights on the construction of
multiple scheduling policies for optimization purposes and on its
theoretical complexity. Finally, some illustrative examples were
provided, including one application for a mobile robot. These
results motivate future research on this problem with other noise
models for the perception method or imperfect timing in the
perception latency.
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Appendix A. Distribution, estimation and cost of x(t)

In this section, we obtain expressions for x̂[k|k − 1] :=
E{x[k]|z[0], . . . , z[k − 1]}, the distribution of x(t) as the closed-
loop solution of (1) and an expression for (2).

Proposition 23. Consider Assumptions 1 and 2. Then, given mea-
surements z[0], . . . , z[k− 1] and a perception schedule p, the value
of x̂[k|k−1] := E

{
x[k]

⏐⏐ z[0], . . . , z[k− 1]
}
is computed according

o:

H[k] = Ad(∆pk )P̂[k]CT
(
CP̂[k]CT

+Σpk
)−1

ˆ[k+ 1|k] = Ad(∆pk )x̂[k|k− 1] + Bd(∆pk )u[k]
+ H[k](z[k] − C x̂[k|k− 1])

P̂[k+ 1] = (Ad(∆pk )− H[k]C)P̂[k]Ad(∆pk )T

+ Wd(∆pk )

(A.1)

ith x̂[0| − 1] = x̄0, P̂[0] = P0, Ad(τ ) := exp(Aτ ), Bd(τ ) :=
τ

0 Ad(s)dsB,Wd(τ ) :=
∫ τ

0 Ad(s)W0Ad(s)Tds. Moreover, cov{x̂[k|k −
] − x[k]} = P̂[k].

roof. First, note that the explicit solution to (1) in the interval
− τk ∈ [0, ∆pk ) is given by

(t) = Ad(t − τk)x[k] + Bd(t − τk)u[k] +wd(t) (A.2)

ith wd(t) ∼ N (0,Wd(t − τk)) (Soderstrom, 2002, Section 4.5.2).
ote that evaluating (A.2) at t = τk+1 leads to the discrete-time
ystem which transitions from x[k] to x[k + 1]. Thus, the result
ollows by applying the estimator in Åström (1970, Theorem 4.1,
age 228).

roposition 24. Let p a perception schedule and Λ(t − τk) :=
d(t − τk) + Bd(t − τk)Lpk , t − τk ∈ [0, ∆pk ). Moreover, consider
ssumptions 1 and 2. Then, the solution x(t) of the SDE in (1) under
he controller u[k] = Lpk x̂[k|k−1] given samples {z[0], . . . , z[k−1]}
s

(t) = Λ(t − τk)x[k] +wΛ(t) (A.3)

or t − τk ∈ [0, ∆pk ) and wΛ(t) ∼ N (0,WΛ(t − τk)) with:

Λ(t − τk) = Bd(t − τk)Lpk P̂[k]Lpk
TBd(t − τk)T

+ Wd(t − τk)
(A.4)

oreover, x(t) ∼ N (x̄(t), P(t)) for t − τk ∈ [0, ∆pk ) with

x̄(t) = Λ(t − tk)x[k], x̄[0] = x̄0
T (A.5)
(t) = Λ(t − τk)P[k]Λ(t − τk) +WΛ(t − τk)
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ith P[0] = P0. In addition, with α := att(p; [0, Tf ]), cost (2) is

(p; x̄0, P0) =
λx

Tf

∫ Tf

0
x̄(t)TQ x̄(t) + tr(QP(t))dt

+ λx
(
x̄(Tf )TQf x̄(Tf )+ tr(Qf P(Tf ))

)
+

λr

Tf

α−1∑
k=0

rpk
(A.6)

Proof. Proposition 23 implies that x̂[k|k−1] = x[k]+ x̃[k] where
x̃[k] ∼ N (0, P̂[k]) given samples {z[0], . . . , z[k−1]}. Hence, using
u[k] = Lpkx[k] + Lpk x̃[k] in (A.2) leads directly to (A.3) with
wΛ = Bd(t−τk)Lpk x̃[k]+wd(t). Moreover, according to Soderstrom
(2002, Section 4.5.2) the process {wd[0], . . . ,wd[k],wd(t)} is a
white noise process and thus, its individual random variables are
uncorrelated. Therefore, x̃[k] and wd(t) are uncorrelated. Hence-
forth, computing the covariance of wΛ(t) leads to (A.4). Further-
more, direct computation of the expectation and covariance over
(A.3) leads to (A.5). Finally, (A.6) is computed as in Aldana-López,
Aragüés, and Sagüés (2020, Theorem 1).

Appendix B. C⋆ Sets and gauge functions

Definition 25 (Fiacchini & Jungers, 2014, Definition 1). A C⋆ set
S ⊂ Rn is a compact, star-convex set with the origin as a center
i.e., for any x ∈ S the whole line {xλ ∈ Rn

: xλ = λx, λ ∈ [0, 1]}
is contained in S and 0 ∈ int(S). Moreover, the gauge function of
a C⋆ set S is defined as

Ψ (x; S) := inf{α ∈ R : α ≥ 0, x ∈ αS} (B.1)

This is, Ψ (x; S) is the smallest scale α such that x is still
contained in αS. In the following, we enumerate some properties
regarding C⋆ sets and their gauge functions:

Lemma 26. Let S be a C⋆ set and Ψ (•; S) : Rn
→ [0,+∞) be its

gauge function. Then, the following statements are true:

(1) Let 0 < α < 1 and x ∈ S, then αx ∈ S.
(2) Let 0 < α < β , then αS ⊂ βS.
(3) Let α := Ψ (x; S), then x ∈ ∂(αS).
(4) Ψ (•; S) is homogeneous of degree one, i.e. Ψ (βx; S) =

βΨ (x; S), ∀β ≥ 0 and ∀x ∈ Rn.
(5) Let S′ be a C⋆ set with S′ ⊂ S. Thus Ψ (x; S′) > Ψ (x; S),∀x ∈

Rn.
(6) Let S0 = {x ∈ Rn

: xTM0x ≤ 1} for some positive definite
matrix M0. Then, Ψ (x; S0) =

√
xTM0x for any x ∈ Rn.

Proof. These properties can be verified equivalently as the prop-
erties of gauge functions of standard convex sets (Rockafellar,
1970, Page 28).

Appendix C. Proofs

C.1. Proof of Theorem 8

In order to show Theorem 8 we first provide 2 auxiliary
technical lemmas:

Lemma 27. Let Γ be an admissible set of schedules and let
γ ⋆
:= γ ⋆(x̄0;Γ ) be a schedule obtained from (5) for the initial

condition x̄0 ∈ S⋆Γ . Thus, if the SP2 strategy is used in (3) then
x̄[len(γ ⋆)] ∈ S ⊆ int

(
S⋆

)
.
0 Γ

10
Proof. Since x̄0 ∈ S⋆Γ then there exists a non empty set Γ ′ ⊆ Γ

such that x̄0 ∈ Sγ ∀γ ∈ Γ ′. Moreover, x̄T0Mγ x̄0 ≤ 1 for any γ ∈

Γ ′ and x̄T0Mγ x̄0 > 1 for γ ∈ Γ \ Γ ′. Hence, γ ⋆
= γ ⋆(x̄0;Γ ) ∈ Γ ′

and x̄0 ∈ Sγ⋆ . Therefore, by construction of the set Sγ⋆ , system
(3) after len(γ ⋆) steps will result in x̄[len(γ ⋆)] ∈ S0 ⊂ S⋆Γ .

Lemma 28. Let Γ be an admissible set of schedules, Ψ (•; S⋆Γ ) be its
corresponding gauge function and let γ ⋆

:= γ ⋆(x̄0;Γ ) be a schedule
obtained from (5) for the initial condition x̄0 ̸= 0. Thus, if the SP2

strategy is used in (3) then

(1) Ψ (x̄[len(γ ⋆)]; S⋆Γ ) < Ψ (x̄0; S⋆Γ )
(2) Ψ (x̄[len(γ ⋆)]; S0) < Ψ (x̄0; S0)

Proof. Note that by Lemma 26-(3) in Appendix B it is obtained
that x̄0 ∈ ∂(α0S⋆Γ ) with α0 := Ψ (x̄0; S⋆Γ ). Similarly, one can
obtain that x̄[len(γ ⋆)] ∈ ∂(αS⋆Γ ) with α := Ψ (x̄[len(γ ⋆)]; S⋆Γ ).
Moreover, since x̄0/α0 ∈ ∂S⋆Γ , then Lemma 27 implies that
x̄[len(γ ⋆)]/α0 ∈ S0 ⊆ int(S⋆Γ ). Hence, ∂(αS⋆Γ ) ⊂ int(α0S⋆Γ ) strictly,
unless α0 = 0 which is not possible since x̄0 ̸= 0. However, for
that to be true, we require α < α0 which is exactly item (1).
For item (2), since Γ is admissible then S0 ⊂ S⋆Γ and therefore
1 = Ψ (x0/α0; S⋆Γ ) < Ψ (x̄0/α0; S0) by Lemma 26-(5). Equivalently
α0 < Ψ (x̄0; S0). Recall that x̄[len(γ ⋆)]/α0 ∈ S0 and therefore
Ψ (x̄[len(γ ⋆)]/α0; S0) ≤ 1 or equivalently Ψ (x̄[len(γ ⋆)]; S0) ≤
α0 < Ψ (x̄0; S0).

Now, we are in position to prove Theorem 8. Note that as a
consequence of the previous lemma, both Ψ (•; S⋆Γ ) and Ψ (•; S0)
are Lyapunov function candidates for (3). Note that Ψ (•; S⋆Γ ) can
be used for a similar setting. However, we use Ψ (•; S0) instead
to take advantage of the fact that this Lyapunov function is
independent of the set of schedules used. Henceforth, switching
between admissible sets of schedules as in line 8 of Algorithm 1
is possible. Let {ℓκ}

∞

κ=0 be the sequence of switching time instants
obtained by using the strategy SP2 on (3). Moreover, define
y[κ] := x̄[ℓκ ] as the state at instants where the schedule changes.
Consider the Lyapunov function candidate V (y[κ]) := Ψ (y[κ]; S0).
Lemma 28 implies V (y[κ+1])−V (y[κ]) < 0 which in turn implies
limκ→∞ y[κ] = limκ→∞ x̄[ℓκ ] = 0. For any x̄[k] with k /∈ {ℓκ}

∞

κ=0,
i.e. values of x̄ not at schedule change instants, it can be obtained
from (3) that x̄[k] = Λ(∆pk−1 )Λ(∆pk−2 ) · · ·Λ(∆pℓ′ )x̄[ℓ′] with ℓ′ =
max{ℓ ∈ {ℓκ}

∞

κ=0 : ℓ < k}. Hence ∥x̄[k]∥ ≤ ρk∥x̄[ℓ′]∥ with ρk
the spectral radius of Λ(∆pk−1 )Λ(∆pk−2 ) · · ·Λ(∆pℓ′ ), which since
limℓ′→∞ x̄[ℓ′] = limκ→∞ y[κ] = 0 implies that limk→∞ x̄[k] = 0
too.

C.2. Proof of Theorem 9

First, note that due to Lemma 26-(6) in Appendix B, R > 1 if
and only if Ψ (x̄; S0) > 1,∀x̄ ∈ ∂S⋆Γ , where Ψ (•; ∗) is the gauge
function given in Definition 25 from Appendix B. Now, we show
that if R > 1 then S0 ⊂ S⋆Γ . We proceed by contradiction: let
us assume that there exists x̄ ∈ S0 such that Ψ (x̄; S⋆Γ ) > 1.
Let β := Ψ (x̄; S⋆Γ ) and thus x̄/β ∈ ∂S⋆Γ due to Lemma 26-(3).
Henceforth, since R > 1, then Ψ (x̄/β; S0) > 1 or equivalently
Ψ (x̄; S0) > β > 1 due to Lemma 26-(4) and due to the
assumption β = Ψ (x̄; S⋆Γ ) > 1. However, for x̄ to belong in S0 we
require Ψ (x̄; S0) < 1 which leads to a contradiction. Therefore,
β = Ψ (x̄; S⋆Γ ) ≤ 1 for all x̄ ∈ S0. Hence, x̄ ∈ ∂(βS⋆Γ ) ⊆ βS⋆Γ ⊆ S⋆Γ
due to Lemma 26-(3) and Lemma 26-(1) for any x̄ ∈ S0 and
thus S0 ⊆ S⋆Γ . Finally, note that since all points x̄ ∈ ∂S⋆Γ have
x̄TM0x̄ > 1 (by the assumption R > 1), then they do not belong to
S0. Thus, S0∩∂S⋆Γ = ∅ and then S0 ⊂ int(S⋆Γ ). Now, we show that
if S0 ⊂ int(S⋆Γ ), then R > 1. From here, note that S0 ⊆ int(S⋆Γ ). We
roceed by contradiction: assume that there exists x̄ ∈ ∂S⋆Γ such
hat x̄TM0x̄ ≤ 1. Hence, x̄ ∈ S0 ⊆ int(S⋆Γ ) which is a contradiction.
herefore, R > 1 for all x̄ ∈ ∂S⋆ which concludes the proof.
Γ
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.3. Proof of Corollary 10

Let x̄∗ be the critical point of (6) which leads to the global
inimum R and note that x̄∗ ∈ ∂S⋆Γ . Hence, x̄∗ ∈ ∂Sγ for at least
ne γ ∈ Γ and at most all γ ∈ Γ . Let Γ ′ be the set of all those
∈ Γ and note that Γ ′ ∈ P(Γ ). Therefore, (x̄∗)TMγ (x̄∗) = 1

or all γ ∈ Γ ′ and is a local minimum of (7) for such Γ ′. Since
¯∗ ∈ ∂S⋆Γ and x̄∗ ∈ ∂Sγ only for γ ∈ Γ ′, thus x̄∗ /∈ Sγ for
∈ Γ \ Γ ′, and thus x̄∗ ∈ X̄Γ ′ . Now, for x̄∗ to be the global
inimum, critical points x̄ comply (x̄∗)TM0(x̄∗) ≤ x̄TM0x̄ in (8).

.4. Proof of Theorem 13

In order to show Theorem 13 we proceed by duality analysis,
hich is summarized in the following two technical lemmas.

emma 29. Any x̄∗ which is a regular critical point of program (7)
omply with

G(λ)x̄∗ = 0

x̄∗)TMγ (x̄∗) = 1 ∀γ ∈ Γ ′
(C.1)

or some unique λ = (λγ )γ∈Γ ′ .

roof. Let L(x̄, λ) = x̄TM0x̄ +
∑

γ∈Γ ′ λγ (x̄TMγ x̄ − 1) be the
agrangian for (7) with Lagrange multipliers λ. Moreover, L(x̄, λ)
an be written as

(x̄, λ) = x̄TG(λ)x̄−
∑
γ∈Γ ′

λγ (C.2)

ccording to Bertsekas (1999, Propositon 3.1.1), all regular crit-
cal points x̄∗ must satisfy (x̄∗)TMγ x̄∗ = 1, ∀γ ∈ Γ ′ and
x̄L(x̄∗, λ) = 0 or equivalently G(λ)x̄∗ = 0 for some unique
agrange multipliers λ.

emma 30. Let λ∗ be any critical point of the dual problem
f (7) and g(λ) be its dual objective (in the sense of Boyd and
andenberghe (2004, Chapter 5)). Moreover, let (x̄∗)TM0(x̄∗)−g(λ∗)
e the duality gap between the primal in (7) and its dual. Then,
ny regular critical point x̄∗ of the primal has zero duality gap.
onsequently, the duality gap is zero if and only if λ∗ is also a critical
oint of

max
λ

⎛⎝−∑
γ∈Γ ′

λγ

⎞⎠
.t. det G(λ) = 0

(C.3)

roof. First, we compute the dual function (see Boyd and Van-
enberghe (2004, Page 216)) of the objective in (7) as g(λ) =
nfx̄∈Rn L(x̄, λ) =

(
infx̄∈Rn x̄TG(λ)x̄

)
−

∑
γ∈Γ ′ λγ where L(x̄, λ) is

he Lagrangian given in (C.2). Therefore, we conclude that

(λ) =
{
−

∑
γ∈Γ ′ λγ if G(λ) ⪰ 0 or det G(λ) = 0

−∞ otherwise

ince the infimum of the form x̄TG(λ)x̄ is either zero (for G(λ) ⪰ 0
r detG(λ) = 0 with x̄ in the kernel of G(λ)) or −∞ (see Boyd and
andenberghe (2004, Page 220)). Hence, the dual program results
n

ax
λ

⎛⎝−∑
γ∈Γ ′

λγ

⎞⎠
s.t. G(λ) ⪰ 0

(C.4)

aking the constraints explicit (see Boyd and Vandenberghe

2004, Page 224)), ignoring the case when g(λ) = −∞. Note that

11
ue to Lemma 29 it is true that G(λ∗)x̄∗ = 0 for some λ∗. Hence,
e can multiply

x̄∗)TG(λ∗)x̄∗ = (x̄∗)TM0(x̄∗)+
∑
γ∈Γ ′

λ∗γ (x̄
∗)TMγ (x̄∗)

= (x̄∗)TM0(x̄∗)+
∑
γ∈Γ ′

λ∗γ = (x̄∗)TM0(x̄∗)− g(λ∗) = 0
(C.5)

hich results in zero duality gap, only possible if λ∗ is a critical
oint of the dual problem by the definition of g(λ). Note that
ero duality gap plus the condition that (x̄∗)TMγ (x̄∗) = 1 implies
¯∗ ̸= 0. Then, G(λ∗)x̄∗ = 0 if and only if det G(λ∗) = 0 and x̄∗ in
he kernel of G(λ∗).

Using these results, we proceed to show Theorem 13. Build a
agrangian for (C.3) as L′(λ, µ) = −

∑
γ∈Γ ′ λγ +µ det G(λ) with

agrange multiplier µ ∈ R. Thus, λ∗ comply with ∇λL′(λ∗, µ) =
(Bertsekas, 1999, Proposition 3.1.1) and ∂L′/∂λγ = −1 +
tr(G(λ∗)†Mγ ) = 0 using Jacobi’s formula for the derivative of

he determinant (Horn & Johnson, 2012, Page 29). Thus,
tr(G(λ∗)†Mγ ) = 1/µ or equivalently

tr(G(λ∗)†Mγ ) = tr(G(λ∗)†Mν), ∀γ , ν ∈ Γ ′ (C.6)

his result, in addition to the condition det G(λ∗) = 0 result in
9). From Lemma 30 we can also conclude that any critical point
omplies with (x̄∗)M0(x̄∗) = −

∑
γ∈Γ ′ λ

∗
γ since this condition is

quivalent to the zero duality gap property of (C.3). Finally, due
o Lemma 29, we know that G(λ∗)x̄∗ = 0 and this is true only if
¯∗ is in the kernel of G(λ∗).

.5. Proof of Corollary 15

Recall that the rank of G(λ) is equivalent to the size of the
argest invertible sub-matrix G(λ) (Horn & Johnson, 2012, Page
2). We proceed by contradiction: assume that λ does not comply
ith at least one Eq. (11) for some pair (i, j). This would mean
hat Gij(λ) is invertible resulting in the rank of G(λ) to be n − 1.
owever, the nullity of G(λ) was greater than 1. Then, by the
ank-nullity theorem (Horn & Johnson, 2012, Page 6) the rank
hould have been less than n− 1 leading to a contradiction.

.6. Proof of Proposition 16

Let V = {v1, . . . , vr} be arbitrarily r = n − |Γ ′| vectors
v1, . . . , vr ∈ Rn. Build a matrix WV (x̄) = [W (x̄), v1, . . . , vr ]. The
vectors {Mγ x̄}γ∈Γ ′ are linearly dependent if and only if the matrix
WV (x̄) is singular for any choice of v1, . . . , vr . Using the Laplace
expansion of the determinant of WV (x̄) (Horn & Johnson, 2012,
Page 8) we obtain det WV (x̄) =

∑
α∈A qα(V )det Wα(x̄) where

qα(V ) are polynomials in the components of the vectors in V . In
rder to comply det WV (x̄) = 0 for any set of vectors V , then
et Wα(x̄) = 0 for all α ∈ A.

.7. Proof of Proposition 19

The proof follows by performing a Karp reduction (Korte &
ygen, 2012, Definition 15.15) of the 3-SAT problem, known to
e NP-complete (Korte & Vygen, 2012, Theorem 15.22), to an
nstance of Problem 3. First, consider an instance of Problem 3
ith A = 0, B = I and ∆1

= · · · = ∆D
= ∆, Tf = α∆, α ∈ N

with (I+ L1∆), . . . , (I+ LD∆) being 0− 1 left stochastic matrices.
oreover, let P0 = 0,W0 = 0, Σ1

= · · · = ΣD
= 0 as

well as Q = 0, λr = 0, λx = 1 and Qf = diag(c) for some
0 − 1 vector c. Finally, consider the initial condition x̄0 to be a
0 − 1 vector as well. This results in Λ(∆pk ) = I + Lpk∆ being
0− 1 matrices and as a consequence x̄[α] is a 0− 1 vector. Thus,
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J
 (p) = x̄[α]Tdiag(c)x̄[α] = cT x̄[α]. Hence, solving this instance
of Problem 3 requires to find a schedule p0, . . . , pα−1 such that
the linear function cTx[α] is minimized, or equivalently −cTx[α]
is maximized. Thus, the Problem (Wu & He, 2020, Problem (P)) for
stochastic matrices, initial condition and vector c all with 0 − 1
components can be reduced to Problem 3. Finally, the proof of Wu
and He (2020, Theorem 3.1) implies that the 3-SAT problem can
be reduced to this instance of Wu and He (2020, Problem (P)).

C.8. Proof of Proposition 20

The proof of correctness follows by a direct application of the
dynamic programming algorithm (Bertsekas, 2000, Page 23). For
the complexity, note that the largest amount of recursive calls in
Algorithm 6 is obtained when the schedule covering the smallest
amount of time c over [0, Tf ] is chosen repeatedly. In this case,
the depth of recursive calls to dynprog is ⌊Tf /c⌋. Hence, due to
line 2 in Algorithm 6, the total number of recursive calls is at most
m⌊Tf /c⌋.

C.9. Proof of Theorem 22

For the proof, for any matrix P let ∥P∥ denote its matrix
norm (Horn & Johnson, 2012, Section 5.6) induced by the Eu-
clidean norm. To show Theorem 22 we provide the following.

Lemma 31. Let p be a fixed perception schedule over [0, Tf ].
Moreover, let any compact sets Bx̄ ∈ Rn, BP ∈ Rn×n and any ε > 0.
Then, there exists δx̄, δP > 0 such that for any x̄0, x̄′0 ∈ Bx̄ and
any P, P ′ ∈ BP with ∥x̄0 − x̄′0∥ < δx̄ and ∥P − P ′∥ < δP implies
|J (p; x̄0, P0)− J (p; x̄′0, P

′

0)| < ε.

Proof. First, let rx̄ = sup{∥x̄∥ : x̄ ∈ Bx̄}. Then, we leverage
continuity of solutions of (A.5) with respect to initial conditions.
Concretely, using the bound in Khalil (2002, Page 356 - Equation
(9.28)) applied to (A.5) for the compact interval [0, Tf ] it follows
that ∥x̄(t) − x̄′(t)∥ ≤ ∥x̄0 − x̄′0∥ exp(cx̄Tf ) ≤ δx̄ exp(cx̄Tf ),∀t ∈
[0, Tf ] for some constant cx̄ ∈ R. A similar reasoning leads to
obtain ∥P(t)−P ′(t)∥ ≤ δP exp(cPTf ),∀t ∈ [0, Tf ] for some constant
cP ∈ R. Moreover, |x̄(t)TQ x̄(t)− x̄(t)′TQ x̄′(t)| = |(x̄(t) + x̄′(t))T
Q (x̄(t) − x̄′(t))| ≤ 2rx̄∥Q∥δx̄ exp(cx̄Tf ) using the matrix norm
properties in Horn and Johnson (2012, Section 5.6). Similarly,
|tr(QP(t))− tr(QP ′(t))| = |tr(Q (P(t)− P ′(t)))| ≤ n∥Q (P(t) −
P ′(t))∥ ≤ n∥Q∥δP exp(cPTf ). Hence, using these results on e :=
|J (p; x̄0, P0) − J (p; x̄′0, P

′

0)| which using (A.6) leads to conclude
that for appropriate (sufficiently small) δx̄, δP > 0: e ≤ 2λxrx̄δx̄
(∥Q∥ + ∥Qf ∥) exp(cx̄Tf )+ nλxδP (∥Q∥ + ∥Qf ∥) exp(cPTf ) ≤ ε

We proceed to show Theorem 22. First, given ε > 0 and
Bx̄, Bp choose δx̄, δP as in Lemma 31 and note that these values
are independent on initial conditions as long as they lie in Bx̄, BP .
Hence, there is N > 0 such that we can partition the compact
set Bx̄ into regions B1

x̄, . . . , B
N
x̄ which cover all Bx̄ and ∥x̄− x̄′∥ ≤

δx̄,∀x̄, x̄′ ∈ Bi
x̄,∀i ∈ {1, . . . ,N}. A similar partition of N sections

can be performed for BP as well. Now, choose any x̄i0 ∈ Bi
x̄, P

i
0 ∈ Bi

P
for partition i and denote with p∗i the optimal schedule in this
case for the general setting of Problem 3. As a consequence of
Lemma 31, the cost of p∗i for any x̄′0 ∈ Bi

x̄, P
′

0 ∈ Bi
P differs from

the optimal one in that partition by at most ε. Now, let Γ be any
admissible set of schedules. Moreover, since p∗i is a solution of
Problem 3, then it must be a stabilizing perception schedule for
x̄[0] = x̄i0. Thus, there exists ℓi < ∞ (sufficiently large) with
Tf ≤

∑ℓi−1
k=0 ∆p∗ik such that ∥x̄[ℓi]∥2 < ∥M0∥

−1 minγ∈Γ (x̄i0)
TMγ x̄i0

i ∗i ℓi−1
for the truncated schedule γ = {pk }k=0 . This last relation

12
implies (x̄i0)
TMγ i x̄i0 = (Λγ i x̄i0)

TM0(Λγ i x̄i0) = x̄[ℓi]TM0x̄[ℓi] ≤
∥M0∥∥x̄[ℓi]∥2 < minγ∈Γ (x̄i0)

TMγ x̄i0. Hence, Γ i
= Γ ∪ {γ i

} is
admissible and complies γ ⋆(x̄i0;Γ

i) = γ i by (5) and similarly for
any x̄0 ∈ Bi

x̄ and δx̄ sufficiently small. Therefore, the result follows
by choosing m = N and all Γ 1, . . . , Γ m constructed in this way,
one for each partition. The reason is that for any x̄0 ∈ Bx̄, P0 ∈ BP ,
a schedule with cost differing from the optimal one by at most ε

is always evaluated in Algorithm 6.
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