000126753 001__ 126753
000126753 005__ 20241125101134.0
000126753 0247_ $$2doi$$a10.1016/j.cattod.2023.114220
000126753 0248_ $$2sideral$$a134134
000126753 037__ $$aART-2023-134134
000126753 041__ $$aeng
000126753 100__ $$aBu, Enqi
000126753 245__ $$aEffect of the TiO2-carbon interface on charge transfer and ethanol photo-reforming
000126753 260__ $$c2023
000126753 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126753 5203_ $$aCarbonaceous materials have been widely used in photocatalysis to solve the drawback of rapid electron-hole recombination rate of semiconductors such as titania. To further understand the charge separation mechanism and its effect on the ethanol photoreforming hydrogen production, two types of carbon-titania hybrid material systems were studied. One of them is multi-walled carbon nanotube-titania nanoparticles (MWCNT-TiO2) prepared by a sol-gel synthesis method, which according to previous studies should facilitate the migration of electrons from TiO2 to MWCNT. The second system is based on a two-dimensional carbon (exfoliated carbon, 2DC) and titania nanosheet (TNS), synthesized through a hydrothermal route that enabled the formation of strong interaction between the carbon and the {001} facets of the TNS. Our results demonstrate that this unique design promotes the migration of the photogenerated holes from the TNS to the expanded carbon. Steady state photoluminescence studies indicate that the recombination rate in both cases decreases benefiting from the spatial separation of photogenerated carriers, resulting in enhanced photocatalytic activity. The present study provides a comprehensive understanding of the charge separation mechanism and its effect on ethanol photoreforming hydrogen production in carbon-titania hybrid material systems and clearly highlights the need for further research to investigate the charge transfer in these kinds of hybrid materials.
000126753 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113809RB-C31/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113809RB-C33
000126753 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000126753 590__ $$a5.2$$b2023
000126753 592__ $$a1.022$$b2023
000126753 591__ $$aCHEMISTRY, APPLIED$$b13 / 74 = 0.176$$c2023$$dQ1$$eT1
000126753 593__ $$aChemistry (miscellaneous)$$c2023$$dQ1
000126753 591__ $$aENGINEERING, CHEMICAL$$b35 / 170 = 0.206$$c2023$$dQ1$$eT1
000126753 593__ $$aCatalysis$$c2023$$dQ2
000126753 591__ $$aCHEMISTRY, PHYSICAL$$b60 / 178 = 0.337$$c2023$$dQ2$$eT2
000126753 594__ $$a11.5$$b2023
000126753 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126753 700__ $$aChen, Xiaowei
000126753 700__ $$aLópez-Cartes, Carlos
000126753 700__ $$aCazaña, Fernando
000126753 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, Antonio$$uUniversidad de Zaragoza
000126753 700__ $$aMartínez-López, Javier
000126753 700__ $$aDelgado, Juan José
000126753 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000126753 773__ $$g422 (2023), 114220 [14 pp.]$$pCatal. today$$tCatalysis Today$$x0920-5861
000126753 8564_ $$s8299336$$uhttps://zaguan.unizar.es/record/126753/files/texto_completo.pdf$$yVersión publicada
000126753 8564_ $$s2409354$$uhttps://zaguan.unizar.es/record/126753/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126753 909CO $$ooai:zaguan.unizar.es:126753$$particulos$$pdriver
000126753 951__ $$a2024-11-22-11:59:57
000126753 980__ $$aARTICLE