Analysis of photovoltaic plants with battery energy storage systems (PV-BESS) for monthly constant power operation
Resumen: Photovoltaic generation is one of the key technologies in the production of electricity from renewable sources. However, the intermittent nature of solar radiation poses a challenge to effectively integrate this renewable resource into the electrical power system. The price reduction of battery storage systems in the coming years presents an opportunity for their practical combination with utility-scale photovoltaic plants. The integration of properly sized photovoltaic and battery energy storage systems (PV-BESS) for the delivery of constant power not only guarantees high energy availability, but also enables a possible increase in the number of PV installations and the PV penetration. A massive data analysis with long-term simulations is carried out and indicators of energy unavailability of the combined system are identified to assess the reliability of power production. The proposed indicators allow to determine the appropriate sizing of the battery energy storage system for a utility-scale photovoltaic plant in a planning stage, as well as suggest the recommended operating points made for each month through a set of graphs and indicators. The presence of an inflection zone has been observed, beyond which any increase in storage does not generate significant reductions in the unavailability of energy. This critical zone is considered the sweet spot for the size of the storage, beyond which it is not sensible to increase its size. Identifying the critical point is crucial to determining the optimal storage size. The system is capable of providing reliable supply of constant power in monthly periods while ensuring capacity credit levels above 95%, which increases the penetration of this renewable resource. Despite the fact that the study focuses exclusively on the analysis from an energy perspective, it is important to consider the constraints associated to real storage systems and limit their oversizing.
Idioma: Inglés
DOI: 10.3390/en16134909
Año: 2023
Publicado en: Energies 16, 13 (2023), 4909 [22 pp.]
ISSN: 1996-1073

Factor impacto JCR: 3.0 (2023)
Categ. JCR: ENERGY & FUELS rank: 107 / 170 = 0.629 (2023) - Q3 - T2
Factor impacto CITESCORE: 6.2 - Engineering (miscellaneous) (Q1) - Control and Optimization (Q1) - Fuel Technology (Q2) - Energy (miscellaneous) (Q2) - Energy Engineering and Power Technology (Q2) - Electrical and Electronic Engineering (Q2) - Renewable Energy, Sustainability and the Environment (Q2)

Factor impacto SCIMAGO: 0.651 - Engineering (miscellaneous) (Q1) - Electrical and Electronic Engineering (Q2) - Energy (miscellaneous) (Q2) - Renewable Energy, Sustainability and the Environment (Q2) - Fuel Technology (Q2) - Control and Optimization (Q2) - Energy Engineering and Power Technology (Q2)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)
Área (Departamento): Área Técnica. Lab. y Talleres (Dpto. Ingeniería Eléctrica)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-09:51:18)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-07-28, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)