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The magneto-optical Kerr effect (MOKE) is widely exploited in laboratory-based setups for the study of thin
films and nanostructures, providing magnetic characterization with good spatial and temporal resolutions. Due
to the complex coupling of light with a magnetic sample, conventional MOKE magnetometers normally work
by selecting a small range of incident wave-vector values, focusing the incident light beam to a small spot,
and recording the reflected intensity at that angular range by means of photodetectors. Using this approach,
additional methodologies and measurements are required for full vectorial magnetic characterization. Here,
we computationally investigate a Fourier-space MOKE setup, where a focused beam ellipsometer using high
numerical aperture optics and a camera detector is employed to simultaneously map the intensity distribution
for a wide range of incident and reflected wave vectors. We employ circularly incident polarized light and no
analyzing optics, in combination with a fitting procedure of the light intensity maps to the analytical expression
of the Kerr effect under linear approximation. In this way, we are able to retrieve the three unknown components
of the magnetization vector as well as the material’ s optical and magneto-optical constants with high accuracy
and short acquisition times, with the possibility of single-shot measurements. Fourier MOKE is thus proposed as
a powerful method to perform generalized magneto-optical ellipsometry for a wide range of magnetic materials
and devices.

DOI: 10.1103/PhysRevB.107.174420

I. INTRODUCTION

Many novel spintronic systems currently under investiga-
tion present complex magnetic states with three-dimensional
spatial dependence [1], making necessary the development
of robust characterization techniques able to perform vector
magnetometry or magnetic microscopy [2,3] where all three
components of the magnetization can be determined.

Magnetometry methods based on the magneto-optical Kerr
effect (MOKE) are flexible, accessible, laboratory-based tech-
niques widely used for the characterization of magnetic
materials. The MOKE has excellent magnetic sensitivity, as
well as very good spatial and temporal resolutions [4–6],
and is usually employed in either MOKE magnetometers or
Kerr microscopes. In MOKE magnetometers, a focused laser
is used to probe a small area [7–9] of the sample, which
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also allows one to perform scanning Kerr microscopy us-
ing either mobile stages or beams [10]. A Kerr microscope,
on the contrary, uses a modified full field-of-view polariza-
tion microscope for the direct imaging of magnetic domains
[4,11–14].

Despite its popularity and the relative ease of use of MOKE
systems, the Kerr effect, which describes the coupling of light
and a magnetic material under reflection, is far from trivial.
Even in the simplest case, where only the linear Kerr effect is
considered, the complex nature of the refractive index n and
Voigt constant Q (the latter describing the magneto-optical
response of the material), added to the tensorial relationship
between electric field and the magnetization, gives rise to a
mixture of Kerr signals coming from different components
of the magnetization. This generally complicates obtaining
a quantitative solution for the evolution of the three compo-
nents of the magnetization under external stimuli, typically
magnetic fields.

Over the years, different approaches have been followed to
perform vectorial MOKE, in order to obtain a quantitative pic-
ture of the evolution of the magnetization three-dimensional
(3D) vector field during a hysteresis loop. The quantitative
determination of magnetic and optical properties of a ma-
terial is highly attractive; however, it generally requires a
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combination of measurements taken under different magneto-
optical conditions. For instance, in cases where only in-plane
(IP) magnetization is present, the use of polarizing optics
and the fact that longitudinal and transverse Kerr effects
manifest differently, either as a rotation/ellipticity or as a
change in relative intensity, makes it possible to perform
vector magnetometry [8]. In cases where the magnetization
has an arbitrary orientation, generalized vector magnetometry
becomes necessary, which may be achieved by exploiting
symmetry arguments of the Kerr effect, e.g., performing
differential analysis of the signal at two symmetric inci-
dent wave vectors (�k), which allows the decoupling of the
IP and out-of-plane (OOP) components [15]. This can also
be achieved by advanced light modulation schemes under
reasonable approximations of the Kerr signal [16]. Simi-
lar approaches are followed for vector MOKE microscopy,
where specific ranges of �k are selected via apertures in the
back focal plane and subsequently combined for sensitivity
to different components of the magnetization [17]. Finally,
generalized magneto-optical ellipsometry (GME) is a vec-
tor magnetometry technique where not only the components
of the magnetization, but all optical and magneto-optical
constants of a system are obtained. This approach gives a
complete quantitative magneto-optical characterization of a
material, as initially demonstrated by Berger et al. [18].
So far, the implementation of GME consists of systemati-
cally measuring the reflected signal as a function of different
polarizer-analyzer angles, which are fitted to the Kerr effect
formalism under linear approximation [18]. A second ap-
proach, where a rotating quarter-wave plate is added before
the analyzer, is also reported in the literature [19]. Using
either of these configurations, GME has been employed for
vector magnetometry and spectroscopy with in-depth studies
[20–23].

In this work, we computationally investigate a Fourier-
space-based MOKE magnetometry technique for GME. For
this, a setup based on focused beam ellipsometers [24–26]
is proposed. Here, light is sent and collected from a metallic
magnetic material at a wide range of �k using high-numerical-
aperture optics. The reflected beam is collected by means of
an area detector, providing a map of recorded intensities as
a function of different incident �k values. This contrasts with
standard MOKE approaches where the �k that are employed are
not spatially resolved. This approach resembles the “Bragg-
MOKE” [27], where a single incoming wave vector is used
to record the spatially resolved intensities for all the scat-
tered �k (specular and off-specular components) from magnetic
grating structures. Here, instead, we map the magneto-optical
intensity distribution due to purely specular reflection. We
thus obtain a magneto-optical intensity map in the Fourier
space, corresponding to a 3D magnetic state in the sample.
The resulting intensity pattern is fitted to the analytical ex-
pression of the linear Kerr effect [18], which allows us to
obtain the three components of the magnetization, as well as
the optical and magneto-optical constants of the material. We
find that this technique works best when employing circularly
incident polarized light without analyzing optics. This ap-
proach is similar to the one recently discussed in [28], where a
detailed description of the type of attainable magneto-optical

signals under analyzer-free conditions is investigated for real-
space domain imaging. Here, instead, this approach is used
for Fourier-space magnetometry.

We showcase our proposed technique “Fourier MOKE”
presented here by studying how our fitting protocol performs
in retrieving the GME parameters for various intensity maps,
computationally generated to represent different magnetic
materials and single magnetic states. These maps are also
modified to include different sources of noise and camera
characteristics, which allows us to test the robustness of our
procedure under more realistic experimental conditions. We
observe that the technique provides a robust reconstruction of
the three components of the magnetization, as well as opti-
cal and magneto-optical constants. Remarkably, we find that
similar precision to conventional GME [18] can be obtained
with relatively low statistics. Furthermore, with single-shot
measurements, it is possible to obtain the magnetization vec-
tor orientation with an angular error of 5◦, making possible
the study of, e.g., domain-wall dynamics and stochastic pro-
cesses, with high precision. Finally, we apply this procedure
to the case of a magnetic loop, where the magnetization vector
evolves over time along the whole space. We exploit the fact
that all the maps in a loop correspond to the same material by
employing a self-consistent algorithm which simultaneously
fits all maps corresponding to the different magnetic states
in the loop. We further demonstrate how this additional layer
of complexity in the data analysis protocol improves the ac-
curacy in the determination of optical and magneto-optical
constants. We thus propose the Fourier MOKE technique as
a simple but powerful method for the advanced characteri-
zation of magnetic systems with three-dimensional magnetic
states, extending the capabilities of focused beam ellipsome-
ters which have been previously used solely for nonmagnetic
materials.

II. THEORY

Although initially observed by the Scottish physicist Kerr
in 1876 [29], the MOKE was not successfully explained un-
til the development of quantum mechanical theory. Hulme,
Kittel, and Argyres [30] related a change in refractive index
for both circular eigenmodes of light propagation to changes
in the electron’ s spin-dependent part of the wave function
due to the spin-orbit interaction, which average to nonzero
in a magnetic material [31]. This difference in refractive in-
dex yields different propagation velocities [magnetic circular
birefringence (MCB)] and different absorptions [magnetic cir-
cular dichroism (MCD)] for both circular eigenmodes. MCB
and MCD, respectively, cause Kerr rotation (θK ) and Kerr
ellipticity (εK ) on linearly polarized light since this can be
expressed as the superposition of both circular eigenmodes
(Fig. 1).

Solving Maxwell’ s equations and applying the appropriate
boundary conditions yields Fresnel’ s reflection coefficients
ri j , which represent the ratio of reflected (Er) i-polarized
electric field component with respect to the incident (Ei) j-
polarized component. These are given in expressions (1)–(4)
[32] and expressed in the p − s polarization basis, respec-
tively, denoting the directions parallel and perpendicular to
the optical plane. The frame-of-reference (FOR) basis for the

174420-2



FOURIER-SPACE GENERALIZED MAGNETO-OPTICAL … PHYSICAL REVIEW B 107, 174420 (2023)

FIG. 1. Interaction of linearly polarized incident light Ei at inci-
dence angle θ0 with a magnetic medium acquiring Kerr rotation θK

and Kerr ellipticity εK .

magnetization vector ( �m) is given by the optical plane and
sample relative orientations [32], as shown in Fig. 1. The
�x direction lies on the optical plane and orthogonal to the
surface’ s normal vector, the �y direction is orthogonal to both
the optical plane and the surface’ s normal, whereas the �z
direction lies within the optical plane and is parallel to the
surface normal,

rss = n0 cos θ0 − n1 cos θ1

n0 cos θ0 + n1 cos θ1
, (1)

rpp = n1 cos θ0 − n0 cos θ1

n1 cos θ0 + n0 cos θ1
+ 2iQmy

n0n1 cos θ0 sin θ1

(n1 cos θ0 + n0 cos θ1)2
,

(2)

rsp = iQ
n0n1 cos θ0(mx sin θ1 + mz cos θ1)

(n1 cos θ0 + n0 cos θ1)(n0 cos θ0 + n1 cos θ1) cos θ1
,

(3)

rps = −iQ
n0n1 cos θ0(mx sin θ1 − mz cos θ1)

(n1 cos θ0 + n0 cos θ1)(n0 cos θ0 + n1cos θ1) cos θ1
,

(4)

where n0 and n1 correspond, respectively, to the refractive
indices of the incident and reflective mediums, Q is the mate-
rial’ s complex Voigt constant describing the magneto-optical
response, and θ0 and θ1 represent, respectively, the incident
and transmitted complex angles.

Jones’ formalism [33], combined with Fresnel’ s coeffi-
cients, allows one to derive the final polarization state of
a beam passing through the different optical components in
any setup, by multiplying each element’ s associated (2 × 2)
matrix with the polarization vector in the appropriate order.
For a generalized system, the final polarization state given in
the p − s basis is determined by(

E f
p

E f
s

)
= A · O︸︷︷︸(

rpp rps

rsp rss

) ·�b, (5)

where �b is the incident polarization state Jones vector de-
termined by the optical components before reflection, O is
the sample’ s reflection matrix constituted of Fresnel’ s re-
flection coefficients, and A denotes the product of matrices

(a) (b)

FIG. 2. Schematics of the Fourier-space-resolved Kerr magne-
tometer diagram, split into (a) sample illumination and (b) light
detection path.

for the analyzing optics. The intensity associated to the final
electric field vector ( �E f ) is calculated as given in expression
(6). This quantity has two distinct contributions: nonmagnetic
and magneto-optical or Kerr signal. The nonmagnetic part is
solely dependent on the optical properties of the material,
i.e., the refractive index, and it is represented by INM . The
Kerr contribution is dependent on both the optical and the
magneto-optical properties; it can be of first and/or second
order with the magnetization (respectively scaling with Q or
Q2) depending on the magnetic configuration and the optical
elements in the system. Its contribution to the total signal is
denoted by IK . We restrict our discussions in this work to the
first-order Kerr effect,

I = ∣∣E f
p

∣∣2 + ∣∣E f
s

∣∣2 = INM + IK . (6)

III. FOURIER-SPACE-RESOLVED MOKE

To perform Fourier MOKE magnetometry, we employ
a focused beam ellipsometer [24], schematically shown in
Fig. 2. A light source providing a collimated homogeneous
intensity profile is used for illumination. The polarization
state of the beam is determined by the relative combination
of a polarizer and a quarter-wave plate, providing any polar-
ization state ranging from linear to circular, the latter being
the one exploited in this work. As in other magneto-optical
setups [10,34], a high-numerical-aperture (NA) objective lens
is utilized to focus the incoming beam onto the sample’
s surface down to a diffraction-limited spot size (s) given
by s = 1.22λ/NA, where λ is the light’ s wavelength. The
full entrance pupil of the objective is illuminated, providing
a wide range of incident �k on the sample’ s surface. The
reflected beam is collected and collimated by the objective
lens before being recorded by a 2D area imaging device with
high signal level resolution (i.e., a CCD/CMOS camera). No
analyzing optics are included, resulting in a system which
provides solely intensity-based measurements. Although it
may be counterintuitive at first for those familiar with Kerr
magnetometry, this analyzer-free approach will be justified in
the following sections.

Each pixel in the intensity map recorded on the detector
corresponds to a particular incident �k on the sample’ s surface,
belonging to a given incidence angle with an associated opti-
cal plane. Both of these quantities may be described by a 2D
coordinate system (θ, ϕ) to map each pixel in the camera to
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(a) (b)

FIG. 3. (a) Incoming collimated beam reaching the objective lens
entrance pupil and focused on the sample’ s surface. (b) Reflected
beam collected by the objective lens and reaching the detector, where
the optical plane ϕ and incidence angle θ coordinates are sketched for
a single wave vector �k. Two orthogonal optical planes are shaded in
red and blue for illustration purposes.

each �k in a more evident way (Fig. 3). θ , analogous to the polar
angle in spherical coordinates, describes the incidence angle
on the sample’ s surface with respect to normal incidence (0◦).
The value of θ can range between [0◦, θMAX], where θMAX

is determined by the NA of the lens. Its value for any pixel
is given by θ = tan−1(D/ f ), with D being the distance from
the pixel of interest to the center of the detector, coinciding
with the optical axis, and f the focal length of the objective.
ϕ, analogous to the azimuthal angle in spherical coordinates,
describes the projection angle of a given optical plane on the
detector with respect to a previously defined in-plane external
laboratory reference direction (xL). ϕ ranges from [0◦, 360◦]
and a single optical plane corresponds to the pair of values ϕ

and ϕ + 180◦.
For the computational modeling of this system, the po-

larization state, optical elements matrices, and magnetization
vectors are all expressed in the external laboratory FOR. How-
ever, the light-sample interaction is computed after expressing
equations (1)–(4) and the polarization vector in the FOR of the
optical plane, in order to properly compute this interaction.
After reflection, the resulting polarization state is reexpressed
back into the external laboratory FOR by applying the inverse
operation. These changes in FOR are achieved by applying
two 2D rotation matrices to the (xL, yL ) components of the
vectors, whose rotation angles are, respectively, ϕ and −ϕ.
The final polarization vector is thus obtained by including
these matrices represented by R(α) (with α being a rotation
angle) into expression (5), resulting in(

E f
XL

E f
YL

)
= A · R(−ϕ) · O · R(+ϕ) · �b. (7)

The intensity for each pixel in the camera I (θ, ϕ) is thus
computed by applying expression (6) to the final polarization

TABLE I. Summary of simulation parameters for each of the
different maps shown in Fig. 4.

Map Map type Polarization n Q mXL mYL mZL

(a) Nonmagnetic CR 2.25 + i3.7 0.006–i0.011 0 0 0
(b) MOKE CR " " 1 0 0
(c) MOKE CR " " 0 0 1
(d) Nonmagnetic CL " " 0 0 0
(e) MOKE CL " " 1 0 0
(f) MOKE CL " " 0 0 1

state derived in (7), properly taking into account its associated
(θ, ϕ) values.

IV. FOURIER-SPACE-RESOLVED INTENSITY MAPS

Prior to showing and discussing the procedure for GME,
a summary describing the optical and magneto-optical sig-
nals generated for given material parameters is shown in
this section. This step provides a first look at the intensity
profiles recorded by the camera and its evolution for various
scenarios.

Figure 4 shows intensity maps for characteristic permalloy
optical and magneto-optical values (800 nm wavelength) [35],
for different orientations of the magnetization vector �m under
macrospin approximation and for both circular eigenmodes,
i.e., circularly left (CL) and circularly right (CR). The case
of a thick film with thickness significantly greater than the
light penetration depth (40 nm [36]) is considered. Each map
consists of 201 × 201 pixels and a value of θMAX = 65◦,
corresponding to a typical commercial objective NA. The
remaining parameters utilized in the simulations are summa-
rized in Table I. In all the maps, the central pixel corresponds
to normal incidence (θ = 0◦), and the concentric rings rep-
resent pixels with identical θ values evenly spaced by 10◦
intervals. Each radial line corresponds to a different optical
plane, given by ϕ and ϕ + 180◦.

In the nonmagnetic maps [Figs. 4(a) and 4(d)], the 2D
angular intensities INM (θ, ϕ) solely depend on θ , but not
on ϕ. This occurs because circular incident polarization is
invariant upon projecting onto different optical planes, i.e.,
there is no azimuthal symmetry breaking. The nonmagnetic
intensities satisfy INM (θ, ϕ) = INM (θ, ϕ + 180◦), and revert-
ing the helicity (represented by the sense of rotation of the
circular arrow within the map insets) leaves the maps unal-
tered. The radial intensity decay is exclusively determined by
the material’ s real and imaginary nonmagnetic parts of the
refractive index via Fresnel’ s reflection coefficients, yielding,
as a consequence, a unique 2D angular intensity distribution
for each material.

The magneto-optical intensity maps, or MOKE maps IK ,
are shown in Figs. 4(b), 4(c) 4(e), and 4(f) for permal-
loy with either fully IP or OOP magnetic configurations
(the nonmagnetic contribution is subtracted from the total
intensity, yielding a purely magneto-optical signal). These
proposed magnetization configurations are selected to demon-
strate the quantitative vector sensitivity of the method, without
considering the feasibility of this material to present these
configurations from a physical point of view. The total
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(a) (b) (c)

(d)

(g)

(e) (f)

FIG. 4. (a),(d) Nonmagnetic signal maps for CR and CL incident polarized light without analyzing optics. (b),(e) and (c),(f) show,
respectively, the magnetic signal maps for CR and CL incident polarization for �m = (1, 0, 0) and �m = (0, 0, 1) magnetic configurations.
(g) Evolution of normalized magnetic signal for rotating IP magnetization under CL incident light.

magnetic signal for an arbitrary 3D configuration may be
understood as the weighted sum of the intensities for these two
orthogonal and independent bases, whose weights depend,
respectively, upon the amount of IP or OOP magnetization.
Within this formalism, there is no longer a distinction between
the traditional IP longitudinal and transverse configurations,
and IP magnetization becomes a single configuration on its
own.

MOKE maps for a particular IP direction of the mag-
netization, given by the arrow, are shown for both circular
eigenmodes in Figs. 4(b) and 4(e). The magnetic intensity 2D
angular dependence becomes more complex than in Figs. 4(a)
and 4(d), due to the azimuthal symmetry breaking of the IP
component when projected onto a given optical plane direc-
tion. As expected for a system with an IP magnetized state,
the Kerr signal is maximum at θ away from normal incidence
(50–60◦) and satisfies I (θ, ϕ) = −I (θ, ϕ + 180◦). The maps
show a smooth variation of the intensity pattern as a function
of ϕ, which in this case has its maximum (in magnitude) at
a value of ϕ corresponding to an optical plane in between
the ones parallel and perpendicular to the �m vector. This
particular value of ϕ is exclusively determined by the optical
and magneto-optical constants and the magnetization vector.
See Sec. SM1 of the Supplemental Material [37] for maps
generated with other material values, and also a discussion of
the effect of these on the value of ϕ which maximizes the IP
Kerr signal. Reverting the incident helicity inverts the sign of
the signal along the optical plane parallel to the magnetization
direction, whereas the signal in the orthogonal optical plane
remains the same, in agreement with [28]. This explains the

difference in the intensity distribution for both circular eigen-
modes. Lastly, upon rotation of the IP direction, the magnetic
pattern rotates by the same amount as �m about the normal
incidence point, as shown in Fig. 4(g) for CR polarized light.

This behavior contrasts with the one observed for the
MOKE maps for the OOP component, as shown in Figs. 4(e)
and 4(f). These are radially symmetric, i.e., IK (θ, ϕ) =
IK (θ, ϕ + 180◦), peaking at θ = 0◦. Unlike for IP compo-
nents, varying ϕ does not alter the magneto-optical intensity
since the projection of OOP magnetization onto any optical
plane direction does not break the azimuthal symmetry. This
yields an OOP signal which is only dependent on θ , providing
a radial intensity decay. Under helicity reversal, the OOP
signal changes sign.

Although linearly polarized light in combination with an-
alyzing optics is more common in MOKE, here, the use of
circular light without analyzing optics offers a significant
advantage. As just shown, within this approach, variations
in magnetic intensity from pixel to pixel occur only due to
changes in θ and ϕ for a given �m, unaffected by the inci-
dent polarization state. In contrast, linearly polarized light
and analyzing optics add an additional azimuthal dependence
between the signal and the orientation of the optics involved.
This approach would thus require fine tuning of the optical
elements in order to maximize magnetic contrast for each
�m, making the use of circular incident polarization without
analyzing optics more advantageous. Examples of intensity
maps under linearly incident polarized light where this ef-
fect is observed are shown in Sec. SM2 of the Supplemental
Material [37].
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V. METHOD FOR GENERALIZED
MAGNETO-OPTICAL ELLIPSOMETRY

In this section, the Fourier MOKE technique is exploited
to perform GME by applying a least-squares fitting algorithm
to the full intensity maps. Utilizing the full maps enable one
to very efficiently identify the material optical and magneto-
optical parameters as well as the 3D magnetization vector,
given the strong and unique dependence that exists between
these and the 2D angular intensity distribution I (θ, ϕ). The
validity of the procedure is first demonstrated by applying
the algorithm to single magnetic state intensity maps, test-
ing the accuracy of the results for different optically and
magneto-optically active materials and magnetic configura-
tions. Second, this procedure is applied to a magnetic loop
where the magnetization evolves over time.

A. GME for a single magnetic state

The algorithm used here consists of simultaneously fitting
the total signal, i.e., nonmagnetic plus Kerr signal [expression
(6)], for all pixels within the map and for both circular eigen-
modes, to the intensity model previously described. Maps for
both circular eigenmodes are included in the fitting in order to
exploit the helicity-dependent magneto-optical coupling de-
scribed in the previous section. Additional effects contributing
to the total intensity detected in the camera are taken into
account by introducing a global offset and a scaling factor.
The fit parameters are the normalized magnetization vector
components plus the optical and magneto-optical constants.
The incident helicity (CL/CR) and the optical plane (ϕ) and
incidence angle (θ ) coordinates, whose values are known at
each pixel, serve as independent variables. Refer to Sec. SM3
of the Supplemental Material [37] for more details on the
algorithm.

In order to test the accuracy of the fitting algorithm in the
most general way possible, here it is individually applied to
intensity maps generated from a set of 40 different material
parameter values, i.e., different optical and magneto-optical
constants, as well as single 3D magnetic state configurations.
The values for each set of parameters are sampled from a
random uniform distribution after setting lower and upper
boundaries, in order to preserve their physical meaning. From
typical values found in the literature [29], these are cho-
sen as nr = [1.75, 2.75], ni = [3.2, 4.2], Qr = [0.002, 0.02],
Qi = [0.002, 0.02], with the magnetization vector randomly
oriented in 3D space. The values for these randomly generated
parameters are displayed in Fig. 5(a). Each of the maps ob-
tained for each dataset has the same size and maximum angle
of incidence as the ones shown in the previous section.

The case of zero-noise maps is first considered, i.e., com-
puted directly from the intensity model. When fitting the maps
associated to a particular set of material parameters, the fit
variables are initialized as completely random before applying
the least-squares minimizer, as would be done experimen-
tally where no prior knowledge about the sample’ s magnetic
configuration or optical and magneto-optical properties would
exist. For further details on the algorithm, refer to Sec. SM3
of the Supplemental Material [37]. By applying this procedure
to each dataset, it is found that the algorithm succeeds in

retrieving all the parameter values with precision up to the nu-
merical computer tolerance. An analysis based on numerical
methods has been carried out in Sec. SM4 of the Supplemental
Material [37], which proves that the best fit provides unique
values for these desired parameters.

After showing the validity of the method for a zero-noise
case, we now consider some key experimental factors which
would make the acquired signals deviate from their ideal val-
ues in a real experiment. In particular, the generated maps are
modified for a more realistic modeling of the data acquisition
process which takes place in a CCD/CMOS camera.

Among these sources, signal level resolution is a key fac-
tor since the magnetic signal is small in comparison with
the dominating large nonmagnetic background. For scientific
cameras, this is determined by the dynamic range of the
device and the analog-to-digital converter (ADC) resolution.
The dynamic range is modeled by imposing a finite full well
capacity (FWC) for the generated photoelectrons combined
with a given read noise, and the ADC resolution is modeled by
registering the intensity values into a total number of discrete
levels given in bits, i.e., the number of levels is 2bits. Pho-
ton shot noise due to the discrete nature of photon emission
from the light source, as well as the photoelectron genera-
tion process described by the quantum efficiency (QE), have
also been modeled, following a similar approach as the one
described in the PYTHON Pyxel package [38]. The values for
these parameters have been selected based on a typical 16 bit
CMOS commercial midrange scientific camera: QE = 61%,
FWC = 40000e−, and read noise of 1.5e− rms.

Figure 5(b) shows the nonmagnetic and MOKE maps for a
particular set of parameters, dataset no. 1, marked by the black
dashed vertical line in Fig. 5(a), as a function of the image
average number after having included these sources of noise
and discretization (the zero-noise maps are also included for
direct comparison). As expected, the single-shot (1 average)
images are highly affected by noise, with the magneto-optical
intensity map being more affected by Poisson shot noise than
the nonmagnetic.

An identical fitting procedure as in the zero-noise case
is followed for these datasets, obtaining for each file and
number of image averages a set of best-fit parameters. The
relative error for the optical and magneto-optical constants
is determined by comparing those obtained from the fitting
with their input values. The error in the determination of
the magnetization vector is given by the angular separation
between input ( �mI ) and fitted ( �mF ) vectors.

Figure 5(c) shows the average error per parameter for all
the files as a function of the image average number. For the
single shot, the error obtained in the magnetization vector is
around 15◦, and 30% for the magneto-optical constants, which
contrasts with the under 5% error in the optical constants. This
is because the magnetization vector and magneto-optical con-
stants only affect the magneto-optical signal, which is much
more influenced by the inclusion of noise than the optical
constants, these fully determining the higher signal-to-noise
ratio nonmagnetic intensity. The error as a function of the
image average number shows a decreasing trend, on which the
optical parameters maintain a relative error between one and
two orders of magnitude smaller than the one corresponding to
the magnetization vector and the magneto-optical parameters
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FIG. 5. (a) Values for random optical, magneto-optical, and magnetization vector parameters utilized as input for generating the intensity
maps. (b) Evolution of the optical and magneto-optical signal as a function of the image average number when including sources of noise and
discretization. The parameters utilized for these maps correspond to the ones highlighted by the black dashed vertical line in (a). (c) Average
relative error in the fitted parameters for the intensity maps generated with the parameters in (a) as a function of the image average number.

for this explored range of averages. From approximately 500
averages onwards, the error falls below 1% for all parameters
for this camera specification.

Other commercial camera characteristic values have also
been tested in the fitting algorithm (not shown here), con-
cluding that it is crucial for the camera to have a signal
level resolution of at least 16 bits for such great accuracy

in determining the magnetic parameters. For lower bit lev-
els, the magneto-optical intensity becomes indistinguishable
when noise of this magnitude is added, as a consequence
giving a significantly larger relative error.

These results thus demonstrate the validity of this pro-
cedure for performing GME without the need to perform
reference measurements [16].
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(a) (b)

FIG. 6. (a) 3D representation of the magnetization (red arrow) precessing reversal process, and (b) discretization represented in the
laboratory FOR.

B. GME applied to a magnetic loop

The algorithm presented in the previous section is now ap-
plied to a typical experimental case where the magnetization
vector evolves over time. For this, permalloy characteristic
optical and magneto-optical parameters [35] are chosen to
generate the data (values displayed in Table I). The macrospin
vector describes the precessing reversal process shown in
Fig. 6(a), where the magnetization transits from +mzL to
−mzL via multiple rotations in a helical fashion through the
(mxL , myL ) plane. The discretization of the input magnetization
vector evolution, in 50 field points, is shown as a scatterplot
in Fig. 6(b). At each field point, intensity maps with the same
pixel size and for the same maximum angle of incidence as
in the previous section are generated for both circular eigen-
modes.

For the data analysis, together with the single magnetic
state methodology from the previous section, here we em-
ploy a self-consistent fitting algorithm which simultaneously
takes into account all the field points. For this self-consistent
fitting, the fit parameters are the normalized magnetization
vector components for each of the field points, plus the optical
and magneto-optical constants. Whereas the magnetization is
allowed to vary at each field point, the two sets of constants
share the same value among all the intensity maps, given that
these are material constants and thus do not vary.

This procedure is run after including noise and signal
discretization, as before, here applied to all intensity maps
considered. Further details about the computational imple-
mentation of the self-consistent fitting algorithm are given in
Sec. SM3 of the Supplemental Material [37].

The median relative errors for the fitted parameters are
displayed for different number of image averages in columns
S and SC of Table II, corresponding, respectively, to single
state and self-consistent fitting procedures. These show that
for a given number of averages, the relative error in the
self-consistent case is significantly reduced in all parameters
in comparison with the single state fitting. The general im-
provement is the result of simultaneously fitting multiple field
points, which effectively acts like averaging of the signals.
The self-consistent approach is hence a promising strategy
in Fourier MOKE when performing magnetic loop measure-
ments.

Furthermore, as shown in the previous section, the accu-
racy on the fitted GME parameters can be further increased
by averaging the intensity maps at each field point. Indeed,
we observe that a few averages are sufficient to obtain errors
in S and SC comparable to those obtained with conven-
tional GME [18]. The accuracy of the reconstruction of the
three-dimensional magnetization vector orientation is also
comparable to those obtained with x-ray techniques such as
laminography and tomography [39–41]. These results show
Fourier MOKE as a technique with great potential for fast and
precise GME experiments. The single-shot (1 average) results
also suggest the possibility of expanding GME to dynamic
magnetic processes, e.g., domain-wall motion which could
include stochastic processes [42,43].

VI. CONCLUSION AND OUTLOOK

In this paper, we propose and computationally investigate
the Fourier MOKE technique, based on utilizing a focused

TABLE II. Median relative errors for optical and magneto-optical constants, and angular error on the magnetization vector obtained for
single magnetic state fitting (S), and self-consistent approach (SC). Next to each average number, the time per field point necessary to acquire
that number of averages is shown, assuming a 50 frames per second acquisition time for the scientific camera.

1 avg (0.02 s) 10 avgs (0.20 s) 20 avgs (0.40 s) 250 avgs (5.00 s)

Parameter S SC S SC S SC S SC

nr 1.333% 0.137% 0.359% 0.058% 0.189% 0.118% 0.083% 0.003%
ni 0.562% 0.065% 0.148% 0.026% 0.090% 0.048% 0.038% 0.002%
Qr 21.641% 2.145% 5.867% 0.435% 3.499% 0.231% 1.265% 0.127%
Qi 10.541% 0.954% 2.842% 0.121% 2.034% 0.013% 0.594% 0.042%
�m 6.33◦ 4.16◦ 2.52◦ 1.41◦ 1.15◦ 0.94◦ 0.41◦ 0.26◦

174420-8



FOURIER-SPACE GENERALIZED MAGNETO-OPTICAL … PHYSICAL REVIEW B 107, 174420 (2023)

beam ellipsometer for spatially resolving the magneto-optical
signal in Fourier space. We investigate the types of optical
and magneto-optical maps recorded by a camera using cir-
cularly incident polarized light and no analyzing optics for
different magnetic states, considering the Kerr effect under
linear approximation. By fitting the total intensity maps to
this model, we show how we can determine the magnetization
vector, as well as the optical and magneto-optical constants,
with high precision. We envision Fourier MOKE to repre-
sent several advantages with respect to conventional GME
[44]. First, by resolving the Kerr signal in the Fourier space
for a wide range of �k, a very accurate fitting of the GME
parameters is achieved. Second, our methodology does not re-
quire reference measurements (typically taken at saturation).
Third, the usage of only two incident polarization states, no
modulation optics, and the high accuracy in determining the
sample parameters for a small number of image averages
would greatly reduce the time of measurement. An added
advantage is that our methodology can be implemented not
only for a single magnetic state, but for a range of magnetic
states which improves the accuracy in the determination of
the optical and magneto-optical constants. The demonstrated
ability to perform single-shot GME could be of great use for
the study of dynamic magnetization effects compatible with
camera acquisition rates.

The methodology shown here is directly applicable
to optically thick single-layer films and could be read-

ily extended to thin and ultrathin films, as well as to
multilayers [31].

The raw data supporting the findings of this study are
openly available at the DIGITAL.CSIC repository [45].

ACKNOWLEDGMENTS

This work was supported by UKRI through an EP-
SRC studentship, Grants No. EP/N509668/1 and No.
EP/R513222/1, the European Community under the Horizon
2020 Program, Contract No. 101001290 (3DNANOMAG),
the MCIN with funding from European Union NextGen-
erationEU (PRTR-C17.I1), and the Aragon Government
through the Project Q-MAD. A.H.-R. acknowledges the
support by Spanish MICIN under Grant No. PID2019-
104604RB/AEI/10.13039/501100011033 and by Asturias
FICYT under Grant No. AYUD/2021/51185 with the sup-
port of FEDER funds. D. S.-H. acknowledges funding from
ANR/CNRS under the French “Plan Relance de l’ etat” for
the preservation of R&D. L.S. acknowledges support from
the EPSRC Cambridge NanoDTC Grant No. EP/L015978/1.
C.N.C. acknowledges the UK EPSRC Centre for Doctoral
Training in Sensor Technologies for a Healthy and Sustainable
Future. C.D. acknowledges funding from the Max Planck
Society Lise Meitner Excellence Program.

[1] B. Göbel, I. Mertig, and O. Tretiakov, Beyond skyrmions: Re-
view and perspectives of alternative magnetic quasiparticles,
Phys. Rep. 895, 1 (2021).

[2] A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P.
Fischer, and R. Cowburn, Three-dimensional nanomagnetism,
Nat. Commun. 8, 1 (2017).

[3] C. Donnelly and V. Scagnoli, Imaging three-dimensional mag-
netic systems with x-rays, J. Phys.: Condens. Matter 32, 213001
(2020).

[4] J. McCord, Progress in magnetic domain observation by ad-
vanced magneto-optical microscopy, J. Phys. D 48, 333001
(2015).

[5] W. Kleemann, Perspective: Tools of modern magnetic mate-
rials research: Vector and Bragg magneto-optical Kerr effect
for the analysis of nanostructured magnetic arrays [Rev. Sci.
Instrum. 78, 121301 (2007)], Rev. Sci. Instrum. 78, 120901
(2007).

[6] R. Schäfer and J. McCord, Magneto-optical microscopy, in
Magnetic Measurement Techniques for Materials Characteriza-
tion, edited by V. Franco and B. Dodrill (Springer International,
Cham, 2021), pp. 171–229.

[7] J. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro,
J. Araujo, J. Sousa, S. Cardoso, and P. Freitas, Versatile, high
sensitivity, and automatized angular dependent vectorial Kerr
magnetometer for the analysis of nanostructured materials, Rev.
Sci. Instrum. 82, 043902 (2011).

[8] E. Jiménez, N. Mikuszeit, J. Cuñado, P. Perna, J. Pedrosa, D.
Maccariello, C. Rodrigo, M. Niño, A. Bollero, J. Camarero
et al., Vectorial Kerr magnetometer for simultaneous and

quantitative measurements of the in-plane magnetization com-
ponents, Rev. Sci. Instrum. 85, 053904 (2014).

[9] D. Allwood, G. Xiong, M. Cooke, and R. Cowburn, Magneto-
optical kerr effect analysis of magnetic nanostructures, J. Phys.
D 36, 2175 (2003).

[10] L. Flajšman, M. Urbánek, V. Křižáková, M. Vaňatka, I. Turčan,
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