Interspecific competition shapes the structural stability of mutualistic networks
Resumen: Mutualistic networks, such as plant–pollinator networks, have attracted increasing attention in the ecological literature in the last decades, not only because of their fascinating natural history, but also because mutualistic interactions have been shown to play a key role in the maintenance of biodiversity. Although inter-specific competition has long been known to be a crucial driver of species coexistence as well, there is a lack of theory investigating the interplay between the structures of competitive and mutualistic networks when jointly considered. Here, we develop an analytical framework to study the structural stability — the range of conditions under which all species coexist stably, i.e. where the community is both feasible and stable — of ecological communities in which both mutualistic interactions between plants and pollinators and competitive interactions among plants and among pollinators are present. Using the structure of 50 real networks for mutualistic interactions, combined with analytical and numerical analyses, we show that the structure of the competitive network radically alters the necessary conditions for species coexistence in these communities. Our mathematical framework also allows to accurately characterize the structural stability of these systems. Moreover, we introduce a new metric that accurately links the network structures of competitive and mutualistic interactions to species coexistence. Our results highlight the joint role of the structures of different interaction types to understand the stability of ecological communities and facilitate the analysis of similar natural and artificial systems in which mutualism and competition coexist.
Idioma: Inglés
DOI: 10.1016/j.chaos.2023.113507
Año: 2023
Publicado en: Chaos, Solitons and Fractals 172 (2023), 113507 [9 pp.]
ISSN: 0960-0779

Factor impacto JCR: 5.3 (2023)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 2 / 60 = 0.033 (2023) - Q1 - T1
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 7 / 135 = 0.052 (2023) - Q1 - T1
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 17 / 110 = 0.155 (2023) - Q1 - T1

Factor impacto CITESCORE: 13.2 - Physics and Astronomy (all) (Q1) - Mathematical Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Applied Mathematics (Q1)

Factor impacto SCIMAGO: 1.349 - Applied Mathematics (Q1) - Mathematical Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E36-20R
Financiación: info:eu-repo/grantAgreement/ES/MCIN-AEI-FEDER/PID2020-115800GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-09:55:13)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-07-28, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)