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A B S T R A C T

Understanding the dynamic behavior of neuronal networks in silico is crucial for tackling the analysis of their
biological counterparts and making accurate predictions. Of particular importance is determining the structural
and dynamical conditions necessary for a neuronal network to activate spontaneously, transitioning from a
quiescent ensemble of neurons to a network-wide coherent burst. Drawing from the versatility of the Master
Stability Function, we have applied this formalism to a system of coupled neurons described by the Izhikevich
model to derive the required conditions for activation. These conditions are expressed as a critical effective
coupling 𝑔𝐶 , grounded in both topology and dynamics, above which the neuronal network will activate. For
regular spiking neurons, average connectivity and noise play a significant role in their ability to activate.
We have tested these conditions against numerical simulations of in silico networks, including both synthetic
topologies and a biologically-realistic spatial network, showing that the theoretical conditions are well satisfied.
Our findings indicate that neuronal networks readily meet the criteria for spontaneous activation, and that this
capacity is weakly dependent on the microscopic details of the network as long as average connectivity and
noise are sufficiently strong.
1. Introduction

Understanding the relationship between the structure and function
of neuronal networks is a fundamental goal of modern neuroscience.
To address this complex problem, researchers have combined insights
from various disciplines, from physiology and imaging techniques to
nonlinear and statistical physics tools [1,2].

A successful approach to studying neuronal networks involves com-
bining experimental data from biological neuronal cultures with theo-
retical modeling and numerical simulations. Cultures provide a simpli-
fied yet living system in which the neuronal network’s entire population
can be monitored and perturbed at both the neuronal and connectivity
levels [3–6]. Meanwhile, theoretical and numerical approaches utilize
experimental data to create in silico replicas of biological networks. This
allows researchers to identify the most important building blocks that
govern network behavior and formulate predictions [7–9].

Thanks to the above multidisciplinary approach, the mechanisms
underlying collective behavior in neuronal networks, e.g. spontaneous
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activity or synchronization, are being brought to light. Central mecha-
nisms include metric correlations inherited from the spatial embedding
of these networks [10–15], noise [16], and high-order organizational
traits such as modularity [17]. Altogether, these mechanisms are suffi-
cient to drive robust, nearly periodic episodes of collective spontaneous
activity whose spatiotemporal richness is highly tied to the under-
pinned structural connectivity that dictates the interaction between
neurons.

Numerical models of living neuronal networks are important not
only to shape biologically-realistic networks and mimic their spa-
tial constraints [7], but also to compare the possible benefits and
drawbacks of synthetic configurations, e.g., random geometric graphs
or well-known topologies such as the Erdös–Rényi, Barabàsi–Albert
or Watts–Strogatz network models. By comparing the behavior of
biologically-realistic networks with these models one can investigate
the importance of spatial constraints in shaping key topological features
and molding collective behavior [18].
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There are many models able to capture the intrinsic nonlinear
nature of neurons, from the highly accurate Hodgkin–Huxley and its
simplified Fitzhugh–Nagumo version to the highly-efficient quadratic
integrate-and- fire and Izhikevich models [19–23]. However, despite
the success of several studies in building suitable neuron network
models, an aspect that is still poorly explored is the interrelation be-
tween the dynamical model describing the neurons and the connectivity
established between neurons.

To explore this aspect, the present work investigates the relationship
between the dynamics of the simulated neurons and the connectivity of
the network they are embedded in. Such a relationship is conceived by
deriving the Master Stability Functions (MSFs) and Conditions (MSCs)
of such a dynamical system [24–26], thus providing general insights
on the dynamical behavior of the neuronal networks under study [27–
29]. The dynamical system that we analyze is the celebrated Izhikevich
model [21,22], which is able to capture several neuronal types and be-
haviors while maintaining mathematical simplicity and computational
efficiency [30]. Thus, here we unveiled the fundamental relationships
that govern the interplay between the connectivity layout among neu-
rons, their coupling strength, and noise, to later predict the spectrum
of activity regimes that the network can exhibit.

The article is structured as follows. In Section 2 we first analyze
the Izhikevich model, one of the most widely used models to describe
the behavior of in silico neuronal cultures [30]. In Section 3 we derive
he Master Stability Function and Condition for the stability of the
tationary state, and predict the critical value of the coupling between
eurons at which the stability of the quiescent state is lost. Finally,
n Sections 4 and 5 we test our results using realistic models for both
euronal dynamics and structural connectivity.

. Izhikevich model

We start by describing in detail the dynamical network model used
n this work. In particular, we consider a network of 𝑁 neurons whose
ynamics was described by the Izhikevich model [21,22]. In particular,
he dynamical evolution of a node, say 𝑖, of the network is given by:

�̇�𝑖 = 𝑎(𝑥𝑖 − 𝑥𝑟)(𝑥𝑖 − 𝑥𝑡) − 𝑦𝑖 + 𝜉𝑖 + 𝐼𝑖,
�̇�𝑖 = 𝑏(𝑥𝑖 − 𝑥𝑟) − 𝑦𝑖,

𝑥𝑖 ⩾ 𝑝 ⟶

{

𝑥𝑖 ⟵ 𝑐,
𝑦𝑖 ⟵ 𝑦𝑖 + 𝑑,

(1)

where 𝑥𝑖 and 𝑦𝑖 are the membrane potential and inhibitory current,
respectively, of a neuron 𝑖 in the network, and 𝑥𝑟 and 𝑥𝑡 are the
resting and threshold potentials (being 𝑥𝑟 < 𝑥𝑡). The parameters 𝑎
and 𝑏 account for the sensitivity to subthreshold fluctuations, 𝑐 and
𝑑 regulate the reset conditions after the neuron has fired an action
potential (spike), and 𝜉𝑖 and 𝐼𝑖 account, respectively, for the inputs that
neuron 𝑖 receives as noise from the environment and the input currents
that reach it through its synapses.

The term 𝐼𝑖 is particularly important since it depends on the arrival
of inputs from other neurons in the network, and is described as a
time-independent step function:

𝐼𝑖 = 𝑔
𝑁
∑

𝑗=1
𝐴𝑗𝑖𝛩(𝑥𝑗 − 𝑥𝑡), (2)

where 𝑔 is the strength of each synaptic input. Conceptually, 𝑔 describes
the coupling between neurons in the network, analytically captured
by the adjacency matrix 𝑨, which is assumed for simplicity to be
symmetric (𝐴𝑖𝑗 = 𝐴𝑗𝑖) and unweighted, i.e., 𝐴𝑖𝑗 = 1 if there is a
connection between neurons 𝑖 and 𝑗, and 0 otherwise.

The noise term 𝜉𝑖 in Eq. (1) is also important for it reflects the noisy
nature of biological systems. Following Ref. [7], we implemented two
sources of noise. The first source represents the fluctuations in neuronal
afferents (input connections) and that is modeled as a positive half-
Gaussian white noise, centered at 0 and with variance 𝑔2𝑊 . The second
2

source accounts for the spontaneous release of neurotransmitters in
Fig. 1. Dynamical behavior of the Izhikevich neuron model. (a) Evolution of the
membrane potential with time, 𝑥𝑖(𝑡). (b) Evolution of the inhibitory current with time,
𝑖(𝑡). (c) Network collective activity visualized as a raster plot. For this simulation,
n Erdös–Rényi network of 𝑁 = 2, 000 and ⟨𝑘⟩ = 25. In addition, the values of the
arameter of the Izhikevich model are 𝑎 = 7.5, 𝑏 = 0.5, 𝑐 = 0, 𝑑 = 3.5, 𝑝 = 6 as well as
𝑟 = 0 and 𝑥𝑡 = 1 for the rest and threshold values and 𝑔 = 2, 𝑔𝑊 = 2, 𝑔𝑆 = 0.2, 𝜆 = 0.5
or the current values.

resynaptic terminals, which induce small currents on the postsynap-
ic neuron and that occur independently of whether the postsynaptic
euron is active or not [31,32]. These small currents are usually called
inis and can be mathematically described as shots of characteristic

requency 𝜆 and strength 𝑔𝑆 .
Fig. 1(a)–(b) provides an example of the dynamics of a single Izhike-

ich neuron, characterized by the spiking behavior of the membrane
otential 𝑥 [Fig. 1(a)] and the fast activation of the inhibitory current 𝑦
s soon as the neuron has fired [Fig. 1(b)]. Let us note that the capacity
f the neuron to activate is tightly linked to the values of the resting
𝑟 and threshold 𝑥𝑡 potentials. Indeed, the membrane potential will
emain around its resting value when the number of external inputs
s insufficient to reach the threshold. However, as soon the inputs
uffice to pass the threshold the neuron will activate and transmit an
lectric pulse to its downstream postsynaptic neighbors. At this point,
euron’s membrane potential 𝑥𝑖 will grow up to a peak value 𝑝. Then,
he membrane potential as well as the inhibitory currents will be reset
o 𝑥𝑖 = 𝑐 (with 𝑐 < 𝑥𝑡) and 𝑦𝑖 = 𝑦𝑖 + 𝑑, and the neuron will gradually
eturn to its inactive state.

The coupling of neurons through a network leads to collective
ehavior whose structure depends on the connectivity among neurons.
n a typical scenario in which neuronal connectivity is similar and
arge enough across the network, network dynamics is characterized
y synchronous activity patterns in which all neurons activate during a
hort time window (network bursts) and remain quiescent in between
ursts [7,16]. This coherent dynamical is illustrated in Fig. 1(c).

It should be noted that, to favor mathematical analysis, the model
an be scaled (without loss of generality) by setting the resting and
hreshold potentials as 𝑥𝑟 = 0 and 𝑥𝑡 = 1. Additionally, time 𝑡 as well
s all other variables and parameters can be set dimensionless.
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Fig. 2. Analysis of stability. (a) Representation of the solutions 𝑥∗± and 𝑦∗±, since
𝑦∗± = 𝑏 ⋅ 𝑥∗±, from Eq. (3) as a function of the external input 𝜂. No fixed points exist
above the saddle-node bifurcation, for 𝜂 ⩾ 𝜂𝐶 ≈ 2.13. (b) and (c) correspond to the
flux maps of the dynamical system for different values of 𝜂 (1.0 and 2.5). Orange lines
and curves are the nullclines. The color scale and arrows represent the module and
direction of the velocities in each point. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

3. Derivation of the Master Stability Function

In order to derive a Master Stability Function, we first focus on
the behavior of a single neuron as a function of the external input
𝜂 = 𝜉 + 𝐼 , to study the existence and stability of the stable solutions of
the model. To this aim, we compute the fixed points as the intersection
between the nullclines �̇� = 0 and �̇� = 0 in Eq. (1) obtaining, for all
𝜂 ⩽ 𝜂𝐶 = (𝑎 + 𝑏)2∕4𝑎,

𝑥∗± =
(

𝑎+𝑏
2𝑎

)

(

1 ±
√

1 − 𝜂
𝜂𝐶

)

𝑦∗± = 𝑏𝑥∗±
. (3)

As shown in Fig. 2(a) the dynamical system experiences a saddle-node
bifurcation at a critical value 𝜂 = 𝜂𝐶 . For 𝜂 < 𝜂𝐶 there exist two fixed
points, a stable one corresponding to the negative branch, (𝑥∗−, 𝑦∗−), and
an unstable one corresponding to the positive branch, (𝑥∗+, 𝑦

∗
+). As 𝜂

increases and approaches 𝜂𝐶 from below these points becomes closer.
At 𝜂 = 𝜂𝐶 , the system undergoes a saddle-node bifurcation, i.e., the two
fixed points coalesce into a half-stable fixed point that vanishes as soon
as 𝜂 > 𝜂𝐶 .

Considering the former bifurcation for a single neuron it is clear
that, in order to be able to study the stability of a stationary state of an
ensemble of coupled neurons, we need an average input 𝜂 smaller than
the threshold 𝜂𝐶 . Hence, assuming that this condition is satisfied, we
can advance a step forward and derive the MSF of a networked system
of neurons whose interaction backbone is given by an adjacency matrix,
𝑨.

3.1. Derivation of the critical coupling

As usual in the derivation of the MSF of a networked system of
coupled dynamical units [25,26], we start by carrying a linear stability
analysis of the solution of interest that, in our case, is the fixed point
(𝑥∗−, 𝑦

∗
−). Taking into account that all the neurons in the system have

identical states, i.e. (𝑥∗𝑖 , 𝑦
∗
𝑖 ) = (𝑥∗−, 𝑦

∗
−) ∀𝑖 = 1,… , 𝑁 , we explore the

behavior of the system under a small enough perturbations. Thus, we
will assume the system is in the perturbed state (𝑥𝑖, 𝑦𝑖) = (𝑥∗−, 𝑦

∗
−) +

(𝜖𝑥𝑖 , 𝜖
𝑦
𝑖 ), with |𝜖𝑥𝑖 ∕𝑥

∗
−| ≪ 1 and |𝜖𝑦𝑖 ∕𝑦

∗
−| ≪ 1 ∀𝑖 = 1,… , 𝑁 .

To obtain the evolution of the perturbations (𝜖𝑥𝑖 , 𝜖
𝑦
𝑖 ) we make use of
3

a Taylor expansion of the system described in Eqs. (1) and (2) around
Fig. 3. Evolution of the eigenvalues 𝜆± as a function of the effective coupling 𝜈 for an
average input noise of 𝜂 = 2.0. The stable solutions to the master stability function are
Re(𝜆+) ⩾ Re(𝜆−), and thus Re(𝜆+). The value of 𝜈𝑀𝐴𝑋 corresponds to the intersection
of Re(𝜆+) = 0, shown with the orange line. Any other value of 𝜈 above it will take the
system out of the stable quiescent state into the active state. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

the fixed point solution. Identifying the functions describing the local
dynamics in Eq. (1) as 𝑓𝑥(𝑥, 𝑦) = 𝑎𝑥(𝑥− 1) − 𝑦+ 𝜂 and 𝑓 𝑦(𝑥, 𝑦) = 𝑏𝑥− 𝑦;
and the ones describing the interaction dynamics as 𝑔𝑥(𝑥) = 𝑔𝛩(𝑥 − 1)
and 𝑔𝑦 = 0, we arrive at:

�̇�𝑥 =
(

𝑎𝑥𝑥𝐈 + 𝑐𝑥𝑥𝑨𝑇 ) 𝝐𝑥 + 𝑎𝑥𝑦𝝐𝑦,
�̇�𝑦 = 𝑎𝑦𝑥𝝐𝑥 + 𝑎𝑦𝑦𝝐𝑦, (4)

where 𝑎𝛼𝛽 and 𝑐𝛼𝛽 for 𝛼, 𝛽 = 𝑥, 𝑦 are defined as:

𝑎𝛼𝛽 ∶=
𝜕𝑓 𝛼

𝜕𝛽
|

|

|

|(𝑥∗− ,𝑦∗−)
, 𝑐𝛼𝛽 ∶=

𝜕𝑔𝛼

𝜕𝛽
|

|

|

|(𝑥∗− ,𝑦∗−)
, (5)

With the former definitions, Eq. (4) can be written in a compact manner
as:

�̇�𝛼 =
∑

𝛽=𝑥,𝑦
(𝑎𝛼𝛽 𝐈 + 𝑐𝛼𝛽𝑨𝑇 ) 𝝐𝛽 . (6)

Now, assuming that the transpose of the adjacency matrix has 𝑁
distinct eigenvectors, 𝒘𝑛, with eigenvalues, 𝜆𝑛, ∀𝑛 = 1,… , 𝑁 , we can
expand the vector 𝝐𝛼(𝑡) as a linear combination of the elements of this
basis with components 𝝌𝛼(𝑡):

𝝐𝛼(𝑡) = 𝑾 𝑇𝝌𝛼(𝑡). (7)

Thus, in the new basis, Eq. (6) reads:

�̇�𝛼 =
∑

𝛽=𝑥,𝑦
(𝑎𝛼𝛽 𝐈 + 𝑐𝛼𝛽𝜦)𝝌𝛽 . (8)

This equation shows that the dynamics of the neuronal network are
(locally) asymptotically stable near the equilibrium (𝑥∗−, 𝑦

∗
−) if and only

if all real parts of the eigenvalues of the matrix 𝑴(𝜆) = [𝑎𝛼𝛽 + 𝜆𝑐𝛼𝛽 ]
are negative, denoted as Re(𝜆±) < 0 ∀𝑛 = 1,… , 𝑁 , especially the larger
one. Thus, by substituting the expressions of 𝑎𝛼𝛽 and 𝑐𝛼𝛽 into 𝑴 , we
derive the following equation:

𝑴 =
(

𝑎(2𝑥∗− − 1) −1
𝑏 −1

)

+ 𝜆𝑔
(

𝛤 (𝑥∗−) 0
0 0

)

, (9)

where 𝛤 (𝑥∗−) = 𝑑
𝑑𝑥𝛩(𝑥 − 1)||

|𝑥∗−
. Finally, by introducing the effective

coupling, given by 𝜈 ∶= 𝜆𝑔, and computing the eigenvalues of 𝑴 we
obtain:

𝜆± = 1
2

[

(𝑄 − 1) ±
√

(𝑄 + 1)2 − 4𝑏
]

,

𝑄 ∶= 𝑎(2𝑥∗− − 1) + 𝜈𝛤 (𝑥∗−).
(10)

We note that the interesting eigenvalue is 𝜆+, since Re(𝜆+) ⩾ Re(𝜆−)
∀𝜈, and thus the function Re(𝜆+)(𝜈) is our MSF.

From Eq. (10) we can analyze the shape of 𝜆± as a function of the
effective coupling 𝜈. As shown in Fig. 3, there exists a maximum value
of the effective coupling, 𝜈 , above which the system loses stability
𝑀𝐴𝑋
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and becomes active. Taking into account that 𝜆+(𝜈𝑀𝐴𝑋 ) = 0, we can
obtain the effective coupling threshold as:

𝜈𝑀𝐴𝑋 = 𝜆𝑀𝐴𝑋 ⋅ 𝑔𝐶 =
𝑏 − 𝑎(2𝑥∗− − 1)

𝛤 (𝑥∗−)
. (11)

The former equation allow us to provide the stability condition for a
given network of coupled neurons. In particular, given an adjacency
matrix with maximum eigenvalue 𝜆𝑀𝐴𝑋 and considering the estimation
𝑀𝐴𝑋 ≈ ⟨𝑘2⟩

⟨𝑘⟩ [33,34], we can finally derive the critical value of the
coupling strength 𝑔𝐶 above which the system becomes active as:

𝐶 =
⟨𝑘⟩
⟨𝑘2⟩

𝑏 − 𝑎(2𝑥∗− − 1)
𝛤 (𝑥∗−)

. (12)

It is important to note that the value of 𝑔𝐶 only depends on the intrinsic
parameters of the model, 𝑎 and 𝑏, the average level of inputs that each
node receives, 𝜂, which determines the fixed point, and the connectivity
structure of the system.

Finally, it is worth mentioning that, for analytical purposes, the
coupling function 𝑔(𝑥) in Eq. (2) must be continuous and differentiable.
or this reason, we approximated the step function 𝛩 to 𝛩(𝑥 − 1) ≈

1
2 {1 + tanh[𝛾(𝑥 − 1)]}. By doing so, a new parameter, 𝛾, is added to
he model. This parameter is related to the steepness of the coupling
unction, providing a measure of how much influence a neuron has
ver its neighbors when its membrane potential is around the activation
hreshold. This way, by tuning this parameter, our model can be
djusted so that the effective synaptic current the neurons receive is the
ame as when implementing more complex coupling functions [22,23].
t is important to note however, that even if the value of 𝛾 has to
e tuned, it is independent from any other parameter, structural or
ynamical, of the model.

. Advanced Izhikevich model

To further explore the relation between network activation and
ts underlying topological and dynamical traits, we now consider a
efinement of the Izhikevich model to be more biologically accurate.
n particular, we aim at incorporating synaptic depression, i.e., the
radual decay in synaptic efficiency as neurons elicit spikes. Such a
efinement was successfully introduced in Refs. [7,8] to mimic biologi-
al neurons in silico and, while the equations describing the dynamics of
he soma are the same as the ones introduced in Eq. (1), those capturing
he dynamics of synapses (initially described in Eq. (2)) now take the
ollowing form:

𝐼𝑗 (𝑡) =
∑𝑁

𝑖=1
∑

𝑡𝑚<𝑡
𝐴𝑖𝑗𝐸𝑖(𝑡, 𝑡𝑚),

𝐸𝑖(𝑡, 𝑡𝑚) = 𝑔𝐴𝐷𝑖(𝑡𝑚) exp
(

− 𝑡−𝑡𝑚
𝜏𝐴

)

𝛩(𝑡 − 𝑡𝑚),

�̇�𝑖 =
1−𝐷𝑖
𝜏𝐷

− (1 − 𝛽)𝐷𝑖𝛿(𝑡 − 𝑡𝑚),

(13)

where 𝐸𝑖(𝑡, 𝑡𝑚) is the current induced by the 𝑖−th neuron at a time 𝑡
as a result of the spike generated at time 𝑡𝑚. The parameters 𝑔 and
𝜏𝐴 correspond to the strength and decay time of the synaptic current,
respectively. 𝐷𝑖(𝑡) is the depression term that describes the efficacy
of the neuron’s presynaptic terminals. It has a resting value of 1 and
relaxes exponentially with a decay time of 𝜏𝐷. Finally, 𝛽 is a coefficient
related to the loss in efficiency that occurs whenever a synaptic pulse
is generated.

This detailed Izhikevich model can be numerically explored by con-
ducting simulations in synthetic networks. In particular, we can check
the validity of the critical value of the coupling strength 𝑔𝐶 derived by
the MSF, Eq. (12), by comparing with the numerical results obtained
for 𝑔𝐶 in the advanced Izhikevich model described above. To do so we
consider two of the most paradigmatic models of coupling networks,
Erdös-Rényi (ER) graphs [35,36] and Barabási–Albert scale-free (BA)
networks [37], and compute the theoretical and numerical values of
𝑔 when changing the average connectivity ⟨𝑘⟩ in both models.
4

𝐶

Fig. 4. Dependence of the critical coupling 𝑔𝐶 on the average connectivity ⟨𝑘⟩ for ER
and BA networks of 𝑁 = 2000 nodes. The dots correspond to numerical simulations of
ER and BA networks with an Izhikevich model that incorporates depression whereas
the solid lines corresponds to the theoretical predictions of 𝑔𝐶 given by Eq. (12). The
theoretical predictions for ER and BA have been obtained with 𝛾𝐸𝑅 = 4.7 and 𝛾𝐵𝐴 = 5.1
respectively. Numerical simulations were averaged over 𝑛 = 25 network realizations.
Error bars indicate standard deviation.

As shown in Fig. 4, despite of the approximations made to the
Izhikevich model to derive the MSF (and 𝑔𝐶 ), the numerical integration
(open circles) of the refined model follows the same theoretical trend
predicted by MSF, thus pinpointing that depression does not play an
important role in the activation of a neuronal network. Besides, the
trend 𝑔𝐶 ∼ ⟨𝑘⟩−1 observed in Fig. 4 for homogeneous networks can be
easily recovered from Eq. (12) considering that for ER graphs ⟨𝑘2⟩ =
⟨𝑘⟩(1 + ⟨𝑘⟩).

It is worth to remark that the 𝛾 parameter used to obtain the
theoretical predictions does not depend of ⟨𝑘⟩, i.e. it is the same for the
whole set of networks generated by each model. Moreover, the resulting
values after the calibration with numerical results are quite similar for
both models, being 𝛾𝐸𝑅 = 4.7 and 𝛾𝐵𝐴 = 5.1.

5. Stability in biologically-realistic networks

So far, we have explored the dependence of the critical coupling
𝑔𝐶 on connectivity in simple synthetic topologies, where the first and
second moments of the degree distribution are essentially linked to the
probability of any two neurons in the network to connect. However,
since the Izhikevich model is mainly implemented to describe the dy-
namic behavior of biologically-realistic neurons, it is also important to
study the accuracy of our theoretical predictions when the connectivity
layout incorporates biological traits, most notably spatial embedding,
anistropies, and distance-dependent connectivity.

To achieve this biologically-realistic connectivity, we implemented
the structural model developed in [7,8]. As sketched in Fig. 5(a), a
neuron is modeled with the following characteristics:

• Its cell body (soma) is circular with a fixed diameter 𝜙𝑠.
• Its dendritic trees is also circular with the soma at its center.

The diameter of the dendritic tree 𝜙𝑑 is drawn from a Gaussian
distribution with an average of 𝜇𝑑 and a standard deviation of 𝜎𝑑 :

𝑝(𝜙𝑑 ) =
1

√

2𝜋𝜎2𝑑

exp

[

−
(𝜙𝑑 − 𝜇𝑑 )2

2𝜎2𝑑

]

. (14)

• The axon of the neuron has a length 𝓁 given by a Rayleigh
distribution with a standard deviation 𝜎𝓁 :

𝑝(𝓁) = 𝓁
𝜎2𝓁

exp

(

− 𝓁2

2𝜎2𝓁

)

. (15)

The maximum axonal length allowed in the network is 𝓁𝑀𝐴𝑋 in
order to control the amount of long range connections in the syn-
thetic culture. In addition, the axon is modeled as a concatenation
of segments of fixed length 𝛥𝓁. The first segment is placed at
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Fig. 5. (a) Schematic representation of a neuron as well as the process of building the connections in a neuronal network according to a spatial model. In the figure a few neurons
are shown connected with each other. Each neuron is composed of a soma with diameter 𝜙𝑠, a dendritic tree modeled as a circle of diameter 𝜙𝑑 and an axon of length 𝓁 built as a
concatenation of segments, each with a length of 𝛥𝓁. The blue arrows represent the potential synaptic connection between these neurons. These potential connections correspond
to all the intersections between dendritic trees and axons of different neurons, and will take place with a connection probability 𝛼. (b) Evolution of the aggregation coefficient,
𝛬, as a function of the number of Gaussian centers 𝑛𝐺 used to built the spatial probability. As expected, the degree of aggregation of the networks decreases with the number of
Gaussian center used to build the spatial probability distribution of neurons. It is important to notice that, despite our best efforts, a perfectly homogeneous (𝜆 = 0) or a perfectly
aggregated (𝛬 = 1) networks are no computationally feasible (if not impossible) with this model. (c) and (d) show examples of the spatial distribution of the somas for aggregated
(𝛬 = 0.9 or 𝑛𝐺 = 50) and quasi-homogeneous (𝛬 = 0.3 or 𝑛𝐺 = 5, 000) networks. Green dots represent the somas, while the blue line would be the border of the circular culture with
diameter 𝜙. The values of the parameters implemented to create the networks are: 𝑁 = 2, 000 neurons, 𝜙 = 3 mm, 𝜙𝑑 = 15 μm, 𝜇𝑑 = 300 μm, 𝜎𝑑 = 40 μm, 𝜎𝓁 = 800 μm, 𝛥𝓁 = 10 μm,
𝜎𝜃 = 0.1 rad. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the end of the soma, with its orientation set randomly; and the
following segments are placed at the end of the previous one, with
their orientation 𝜃 given by a Gaussian distribution centered at
the previous segment and a standard deviation 𝜎𝜃 , as

𝑝(𝜃𝑖) =
1

√

2𝜋𝜎2𝜃

exp

(

−
(𝜃𝑖 − 𝜃𝑖−1)2

2𝜎2𝜃

)

. (16)

Considering the former neuronal description, a neuronal network
with 𝑁 neurons is constructed following these steps:

(i) The 𝑁 soma centers are laid down on a circular area with
open boundary conditions according to a spatial probability dis-
tribution and no overlap between neurons. In order to mimic
experimental observations [7,38], this spatial probability distri-
bution is chosen by linear summation of 𝑛𝐺 Gaussian functions
with random centers and variance 𝜎2𝐺. This allows a control for
the degree of aggregation in the network, measured through the
Gini coefficient [38], and termed 𝛬. In this way, the aggregation
of the network 𝛬 increases as 𝑛𝐺 decreases and viceversa, as shown
in Fig. 5(b).

(ii) Each neuron is then set with its dendritic tree and axon, placing
one segment after another until the total axonal length is reached.

(iiii) Finally, a connection 𝑖 → 𝑗 between neurons 𝑖 and 𝑗 is established
with probability 𝛼 whenever the axon of neuron 𝑖 intersects the
dendritic tree of neuron 𝑗, as sketched in Fig. 5(a).

We note that the connectivity probability 𝛼 is independent of the
overlapping length between the axon and the dendritic tree and there-
fore ⟨𝑘⟩ ∝ 𝛼. Additionally, it can be numerically derived that 𝜎2𝑘 ≈ 1

3 ⟨𝑘⟩,
leading to the following approximation for the second moment of the
degree distribution of the neuronal network:

⟨𝑘2⟩ ≈ ⟨𝑘⟩
(

⟨𝑘⟩ + 1
3

)

. (17)

The topological properties of the networks created following the
rules described above are determined by the chosen values of 𝛼 (and
thus ⟨𝑘⟩), 𝓁𝑀𝐴𝑋 and 𝛬. Moreover, by substituting Eq. (17) in Eq. (12),
we can obtain the same scaling 𝑔𝐶 ∼ ⟨𝑘⟩−1 observed for ER networks.
This similarity can be understood taking into account that the degree
distribution of our biologically-realistic networks is similar to that of a
network built through the ER model, although wider and with longer
tails [8].
5

Fig. 6. Dependence of 𝑔𝐶 on ⟨𝑘⟩ in spatial networks of size 𝑁 = 2000 nodes. The
plots show a comparison between the numerical solutions of spatial networks (dots)
and the theoretical prediction 𝑔𝐶 ∼ ⟨𝑘⟩−1 (lines) for two different maximum axonal
lengths, 𝓁𝑀𝐴𝑋 = 0.5 mm and 1.5 mm. The values of 𝑔𝐶 are averaged over 𝑛 = 25
network realizations for the same ⟨𝑘⟩. The theoretical predictions have been evaluated
by computing the average maximum eigenvalue of the networks and introducing it in
Eq. (12) with 𝛾 = 5.5.

As in the previous section, we now compare the numerical values
obtained for 𝑔𝐶 with their theoretical predictions. To this aim, we
fix the degree of aggregation to 𝛬 ≈ 0.6, which is a typical value
of in vitro neuronal networks [38], and considered two contrasting
axonal lengths, 𝓁𝑀𝐴𝑋 = 0.5 and 1.5 mm. Then, we generated neuronal
networks for a wide range of ⟨𝑘⟩ values. The comparison is shown in
Fig. 6. The numerically obtained values keep the 𝑔𝐶 ∼ ⟨𝑘⟩−1 scaling and
agree fairly well with the predictions of Eq. (12) for the ER model. As
stated before, we argue that this similarity is due to the similar degree
distributions of the spatial and ER models,

Finally, given the similar values of 𝑔𝐶 provided by the numerical
simulations and Eq. (12), we next explore in more detail the depen-
dence of 𝑔𝐶 on different network parameters through just Eq. (12).
Thus, we studied the dependency of 𝑔𝐶 on ⟨𝑘⟩, 𝛬 and 𝓁𝑀𝐴𝑋 when
either 𝓁𝑀𝐴𝑋 was fixed to 1.5 mm (Fig. 7(a)) or when 𝛬 was fixed
to 0.6 (Fig. 7(b)). In general, we observe that 𝑔𝐶 decreases as ⟨𝑘⟩,
𝛬 and 𝑙𝑀𝐴𝑋 grow. This is due to the fact that an increase in ⟨𝑘⟩ or
𝓁𝑀𝐴𝑋 leads a higher number of connections from a given neuron to its
neighbors. Thus, the effective amount of external inputs delivered to a
small region of the network could be sufficient to activate it, even if the
individual strength of each synaptic pulse is relatively low. For the case
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Fig. 7. Color map of the critical coupling 𝑔𝐶 as a function of the average degree of the
euronal network, ⟨𝑘⟩, the maximum axonal lengths 𝓁𝑀𝐴𝑋 = 1.5, and the aggregation

coefficient, 𝛬. In panel (a) we fix 𝛬 ≈ 0.6 and show 𝑔𝐶 (𝓁𝑀𝐴𝑋 , ⟨𝑘⟩), while in panel (b)
e fix 𝓁𝑀𝐴𝑋 = 1.5 mm and show 𝑔𝐶 (𝛬, ⟨𝑘⟩). In both panels the white curves correspond

o contour lines for a fixed value of 𝑔𝐶 . In general, 𝑔𝐶 increases as ⟨𝑘⟩, 𝛬 and 𝓁𝑀𝐴𝑋
ecrease. For both these panels a value of 𝛾 = 5.5 was used.

f increasing 𝛬 the same argument holds, since strongly aggregated
eurons shape by themselves high connectivity clusters.

. Discussion

In this work, we aimed to uncover the laws governing the activation
f neuronal networks by studying the role of connectivity, long-range
onnections, and degree of aggregation. Our approach involved de-
cribing network dynamics using the Izhikevich model and deriving the
aster Stability Function (MSF) of the system around the stable fixed

oint corresponding to an inactive neuron. This way, it is possible to
ventually derive the maximum value of the coupling between neurons,
𝐶 , that allows for the stability of the quiescent state or, in other words,
he minimum coupling necessary for the network to activate, depending
nly on the parameters of the dynamical model and the topological
roperties of the layout of connections between neurons.

Our results show that the MSF for a simple version of the Izhike-
ich model, used to estimate 𝑔𝐶 in Eq. (12), accurately predicts the
umerical estimated critical coupling obtained when implementing a
ore realistic version of both the Izhikevich dynamical model and the

rchitecture of the neuronal network. This demonstrates the ability
6

f the proposed formalism to capture the interplay between topology
nd dynamics in both simple (ER and BA models) and biologically
ealistic constructions, provided that the connectivity is large enough
or the largest component of the network to be fully formed. Based
n these results, we have used Eq. (12) to explore the behavior of the
euronal networks for different structural parameters. Specifically, we
ave studied the dynamics of a realistic, biologically-inspired model for
range of values in connectivity, axonal lengths, and aggregation. Our

esults show that lower values of synaptic strength are needed to have
n active network as the connectivity, connection distance, and degree
f aggregation increase.

In conclusion, our work provides insights into the principles govern-
ng the activation of neuronal networks and highlights the importance
f considering both intrinsic parameters of the model and topological
roperties of the layout of connections in the network. The proposed
ormalism, based on the MSF for the Izhikevich model, allows for
ccurate predictions of critical coupling in both synthetic and realis-
ic structures, making it a useful tool for exploring the behavior of
xperimental neuronal cultures under different structural conditions.
n addition, our results pave the way to the understanding of more
omplex interaction structures [17,39] as well as to the design of
rchitectures with potentially new dynamical behaviors.
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