000126832 001__ 126832
000126832 005__ 20241125101147.0
000126832 0247_ $$2doi$$a10.1016/j.jcp.2023.112273
000126832 0248_ $$2sideral$$a134166
000126832 037__ $$aART-2023-134166
000126832 041__ $$aeng
000126832 100__ $$0(orcid)0000-0002-3465-6898$$aNavas-Montilla, A.$$uUniversidad de Zaragoza
000126832 245__ $$aA family of well-balanced WENO and TENO schemes for atmospheric flows
000126832 260__ $$c2023
000126832 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126832 5203_ $$aWe herein present a novel methodology to construct very high order well-balanced schemes for the computation of the Euler equations with gravitational source term, with application to numerical weather prediction (NWP). The proposed method is based on augmented Riemann solvers, which allow preserving the exact equilibrium between fluxes and source terms at cell interfaces. In particular, the augmented HLL solver (HLLS) is considered. Different spatial reconstruction methods can be used to ensure a high order of accuracy in space (e.g. WENO, TENO, linear reconstruction), being the TENO reconstruction the preferred method in this work. To the knowledge of the authors, the TENO method has not been applied to NWP before, although it has been extensively used by the computational fluid dynamics community in recent years. Therefore, we offer a thorough assessment of the TENO method to evidence its suitability for NWP considering some benchmark cases which involve inertia and gravity waves as well as convective processes. The TENO method offers an enhanced behavior when dealing with turbulent flows and underresolved solutions, where the traditional WENO scheme proves to be more diffusive. The proposed methodology, based on the HLLS solver in combination with a very high-order discretization, allows carrying out the simulation of meso- and micro-scale atmospheric flows in an implicit Large Eddy Simulation manner. Due to the HLLS solver, the isothermal, adiabatic and constant Brunt-Väisälä frequency hydrostatic equilibrium states are preserved with machine accuracy.
000126832 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T32-20R$$9info:eu-repo/grantAgreement/ES/UZ/Fundación Universitaria Antonio Gargallo-2021-B010
000126832 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126832 590__ $$a3.8$$b2023
000126832 592__ $$a1.679$$b2023
000126832 591__ $$aPHYSICS, MATHEMATICAL$$b3 / 60 = 0.05$$c2023$$dQ1$$eT1
000126832 593__ $$aApplied Mathematics$$c2023$$dQ1
000126832 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b52 / 170 = 0.306$$c2023$$dQ2$$eT1
000126832 593__ $$aComputational Mathematics$$c2023$$dQ1
000126832 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1
000126832 593__ $$aModeling and Simulation$$c2023$$dQ1
000126832 593__ $$aNumerical Analysis$$c2023$$dQ1
000126832 593__ $$aComputer Science Applications$$c2023$$dQ1
000126832 594__ $$a7.6$$b2023
000126832 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126832 700__ $$0(orcid)0000-0001-8221-523X$$aEcheverribar, I.
000126832 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000126832 773__ $$g489 (2023), 112273 [26 pp.]$$pJ. comput. phys.$$tJournal of Computational Physics$$x0021-9991
000126832 8564_ $$s6143413$$uhttps://zaguan.unizar.es/record/126832/files/texto_completo.pdf$$yVersión publicada
000126832 8564_ $$s2039191$$uhttps://zaguan.unizar.es/record/126832/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126832 909CO $$ooai:zaguan.unizar.es:126832$$particulos$$pdriver
000126832 951__ $$a2024-11-22-12:04:56
000126832 980__ $$aARTICLE