000126833 001__ 126833
000126833 005__ 20241125101147.0
000126833 0247_ $$2doi$$a10.1016/j.ejmp.2023.102622
000126833 0248_ $$2sideral$$a134182
000126833 037__ $$aART-2023-134182
000126833 041__ $$aeng
000126833 100__ $$aLozares-Cordero, Sergio$$uUniversidad de Zaragoza
000126833 245__ $$aAn open-source development based on photogrammetry for a real-time IORT treatment planning system
000126833 260__ $$c2023
000126833 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126833 5203_ $$aPurpose: This study presents a treatment planning system for intraoperative low-energy photon radiotherapy based on photogrammetry from real images of the surgical site taken in the operating room. Material and methods: The study population comprised 15 patients with soft-tissue sarcoma. The system obtains the images of the area to be irradiated with a smartphone or tablet, so that the absorbed doses in the tissue can be calculated from the reconstruction without the need for computed tomography. The system was commissioned using 3D printing of the reconstructions of the tumor beds. The absorbed doses at various points were verified using radiochromic films that were suitably calibrated for the corresponding energy and beam quality. Results: The average reconstruction time of the 3D model from the video sequence in the 15 patients was 229,6±7,0 s. The entire procedure, including video capture, reconstruction, planning, and dose calculation was 520,6±39,9 s. Absorbed doses were measured on the 3D printed model with radiochromic film, the differences between these measurements and those calculated by the treatment planning system were 1.4% at the applicator surface, 2.6% at 1 cm, 3.9% at 2 cm and 6.2% at 3 cm. Conclusions: The study shows a photogrammetry-based low-energy photon IORT planning system, capable of obtaining real-time images inside the operating room, immediately after removal of the tumor and immediately before irradiation. The system was commissioned with radiochromic films measurements in 3D-printed model.
000126833 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000126833 590__ $$a3.3$$b2023
000126833 592__ $$a0.943$$b2023
000126833 591__ $$aRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING$$b42 / 204 = 0.206$$c2023$$dQ1$$eT1
000126833 593__ $$aBiophysics$$c2023$$dQ1
000126833 593__ $$aRadiology, Nuclear Medicine and Imaging$$c2023$$dQ1
000126833 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1
000126833 593__ $$aMedicine (miscellaneous)$$c2023$$dQ1
000126833 594__ $$a6.8$$b2023
000126833 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000126833 700__ $$aBermejo-Barbanoj, Carlos$$uUniversidad de Zaragoza
000126833 700__ $$0(orcid)0000-0001-7639-6767$$aBadías-Herbera, Alberto
000126833 700__ $$aIbáñez-Carreras, Reyes
000126833 700__ $$aLigorred-Padilla, Luis$$uUniversidad de Zaragoza
000126833 700__ $$aPonce-Ortega, José Miguel
000126833 700__ $$aGonzález-Pérez, Víctor
000126833 700__ $$aGandía-Martínez, Almudena
000126833 700__ $$0(orcid)0000-0003-4732-7409$$aFont-Gómez, José Antonio$$uUniversidad de Zaragoza
000126833 700__ $$aBlas-Borroy, Olga
000126833 700__ $$0(orcid)0000-0003-3003-5856$$aGonzález-Ibáñez, David$$uUniversidad de Zaragoza
000126833 7102_ $$11011$$2770$$aUniversidad de Zaragoza$$bDpto. Microb.Ped.Radio.Sal.Pú.$$cÁrea Radiol. y Medicina Física
000126833 7102_ $$11013$$2090$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Cirugía
000126833 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000126833 773__ $$g112 (2023), 102622 [10 pp.]$$pPhys. med.$$tPHYSICA MEDICA$$x1120-1797
000126833 8564_ $$s2984953$$uhttps://zaguan.unizar.es/record/126833/files/texto_completo.pdf$$yPostprint
000126833 8564_ $$s1243151$$uhttps://zaguan.unizar.es/record/126833/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000126833 909CO $$ooai:zaguan.unizar.es:126833$$particulos$$pdriver
000126833 951__ $$a2024-11-22-12:05:11
000126833 980__ $$aARTICLE