000126859 001__ 126859
000126859 005__ 20240731103406.0
000126859 0247_ $$2doi$$a10.1016/j.est.2023.107876
000126859 0248_ $$2sideral$$a134216
000126859 037__ $$aART-2023-134216
000126859 041__ $$aeng
000126859 100__ $$aMartínez, Arnold
000126859 245__ $$aExperimentally based testing of the enthalpy-porosity method for the numerical simulation of phase change of paraffin-type PCMs
000126859 260__ $$c2023
000126859 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126859 5203_ $$aThe enthalpy-porosity method is generally applied as an economical resort for the numerical simulation of phase change materials (PCMs). However, having been developed strictly for metals, its suitability for the task is unclear, nor is the rationale for assigning its internal parameters, e.g., latent enthalpy and the constant of the momentum source term representing the “mushy” region. We first experimentally and exhaustively characterize a paraffin-type PCM, including differential scanning calorimetry (DSC) at several heating rates, T-history, and fusion visualization. Then, we develop a numerical model and systematically run simulations under different internal parameters and thermophysical properties of the PCM. Simulation results exhibit significant disagreement with experiments that cannot be reduced by any strategy for combining different material properties and model parameters. Among other effects, the constant of the momentum source term, which has to be assigned somewhat arbitrarily, has more relevance in the accuracy than any set of properties obtained by DSC and other experimental techniques. Thus, a rather negative, although interesting, conclusion is suggested: the enthalpy-porosity method may fail to model the phase change of paraffin-type PCMs. This is, of course, of paramount importance for the studies of their utilization in practical systems since it puts a fundamental point of uncertainty in any numerical study or lumped-type model derived thereof. The paper concludes with a tentative discussion of the possible causes of this failure and perspectives for developing more proper models.
000126859 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000126859 590__ $$a8.9$$b2023
000126859 592__ $$a1.595$$b2023
000126859 591__ $$aENERGY & FUELS$$b29 / 170 = 0.171$$c2023$$dQ1$$eT1
000126859 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ1
000126859 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000126859 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000126859 594__ $$a11.8$$b2023
000126859 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126859 700__ $$aCarmona, Mauricio
000126859 700__ $$0(orcid)0000-0001-6665-5331$$aCortés, Cristóbal$$uUniversidad de Zaragoza
000126859 700__ $$0(orcid)0000-0001-5473-6919$$aArauzo, Inmaculada$$uUniversidad de Zaragoza
000126859 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000126859 773__ $$g69 (2023), 107876 [14 pp.]$$pJ. energy storage$$tJournal of Energy Storage$$x2352-152X
000126859 8564_ $$s9577357$$uhttps://zaguan.unizar.es/record/126859/files/texto_completo.pdf$$yVersión publicada
000126859 8564_ $$s2542512$$uhttps://zaguan.unizar.es/record/126859/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126859 909CO $$ooai:zaguan.unizar.es:126859$$particulos$$pdriver
000126859 951__ $$a2024-07-31-10:01:39
000126859 980__ $$aARTICLE