
Journal of Parallel and Distributed Computing 156 (2021) 38–52

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

A learning experience toward the understanding of abstraction-level
interactions in parallel applications

Alejandro Valero ∗, Rubén Gran-Tejero, Darío Suárez-Gracia, Emanuel A. Georgescu,
Joaquín Ezpeleta, Pedro Álvarez, Adolfo Muñoz, Luis M. Ramos, Pablo Ibáñez

Department of Computer Science and Systems Engineering, Universidad de Zaragoza, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 October 2020
Received in revised form 22 February 2021
Accepted 18 May 2021
Available online 27 May 2021

Keywords:
Ray tracing
Task queue
Semaphore
Futex
Assembly instructions

In the curriculum of a Computer Engineering program, concepts like parallelism, concurrency, consistency,
or atomicity are usually addressed in separate courses due to their thoroughness and extension. Isolating
such concepts in courses helps students not only to focus on specific aspects, but also to experience the
reality of working with modern computer systems, where those concepts are often detached in different
abstraction levels. However, due to such an isolation, it exists a risk of inducing to the students an
absence of interactions between these concepts, and, by extension, between the different abstraction
levels of a system.
This paper proposes a learning experience showcasing the interactions between abstraction levels
addressed in laboratory sessions of different courses. The driving example is a parallel ray tracer. In the
different courses, students implement and assemble components of this application from the algorithmic
level of the tracer to the assembly instructions required to guarantee atomicity. Each lab focuses on a
single abstraction level, but shows students the interactions with the rest of the levels. Technical results
and student learning outcomes through the analysis of surveys validate the proposed experience and
confirm the students learning improvement with a more integrated view of the system.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of a Computer Engineering (CE) program must
catch up with the fast evolution of the field. Since the end of the
2000s decade, technological limitations have led to an increase in
the number of execution contexts running in parallel on a com-
puter system. This requires the ability to not only implement algo-
rithms that expose as much parallelism as possible, but also make
an efficient use of hardware mechanisms to guarantee safe parallel
execution. In this sense, following the recommendations of both
the NSF/IEEE-TCPP Curriculum Committee [32] and the ACM/IEEE
Joint Task Force on Computing Curricula [1], numerous approaches
have made an effort to increase the presence or to reinforce Paral-
lel and Distributed Computing (PDC) in CE programs. Recent work
distributes PDC topics across different courses through the inte-
gration of modules into existing courses [7,20,38], introducing par-
allel programming in lower-level courses [6,18,42], the proposal
of research-oriented teaching methodologies [16,22,30], or the cre-
ation of new courses [12,28,35].

* Corresponding author.
E-mail address: alvabre@unizar.es (A. Valero).
https://doi.org/10.1016/j.jpdc.2021.05.008
0743-7315/© 2021 The Author(s). Published by Elsevier Inc. This is an open access artic
A common approach to design and explain a computer system
is to split the complexity of the whole system into self-contained
levels. Since such levels relate to each other, each level provides a
working interface to the remaining levels. These interfaces model
a simplified abstraction of the underlying complexity and establish
clear boundaries across the different parts of a system [21].

In most CE programs, each course typically resorts to abstrac-
tions in order to design and explain computer systems. Abstrac-
tions help to strengthen the learning process, since they make
students focus on specific aspects. However, in our experience, stu-
dents often lose the overall view of a computer system with such
an approach. This may lead students to the conclusion that some
courses are self-contained and do not relate to each other. Partic-
ularly, many of them forget the hardware implications underlying
high-level abstractions, in terms of performance and power.

Previous work has proposed to teach PDC topics from the per-
spective of either high-level abstractions to ease both algorithm
and software designs [13,17], or low-level abstractions such as as-
sembly programming to understand what is required to support
parallel execution [24]. Unlike these approaches, this paper rein-
forces PDC topics from the highest to the lowest level of abstrac-
tion that underlie complex parallel applications in a computer sys-
tem [9]. More precisely, this work exposes to the students how the
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2021.05.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.05.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alvabre@unizar.es
https://doi.org/10.1016/j.jpdc.2021.05.008
http://creativecommons.org/licenses/by/4.0/

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
Instruction Set Architecture (ISA) and the operating system pro-
vide the required support to high-level synchronization operations,
which in turn help strengthen the knowledge on how the essential
concepts of parallelism, concurrency, consistency, and atomicity
entangle among them and with the hardware [2,23,37].

To better understand the relations among the aforementioned
concepts, this paper proposes to develop multiple components that
at the end build a fully parallel ray tracing application. Ray tracing
has been used in the past as a cross teaching experience to in-
tegrate two upper-level courses referring to high-level abstractions
such as CUDA programming and advanced rendering concepts [25].
On the contrary, we present a learning experience involving mul-
tiple laboratory sessions of lower-level and upper-level courses
of a CE program. The ray tracer serves as a motivating example
that uses a concurrent queue to assign tasks to different execu-
tion threads. The queue is accessed in mutual exclusion to pre-
serve data integrity. With this purpose, the access to the queue is
managed according to each abstraction level, with mutexes imple-
mented with library functions, system calls, or directly in assembly
language. This way, the proposed learning experience covers four
abstraction levels: Application, Library, Operating System, and ISA.
Each abstraction level implicates a different course.

Each proposed lab is mainly tied to the interaction of two spe-
cific levels of abstraction, and purposely endowed with a context
referring to the rest of the levels, contributing this way to inte-
grate the different abstraction levels. In this work, we introduce
the main guidelines, objectives, and results of the proposed ex-
perience, which allow to implement other experiences reinforcing
inter-course learning.

Prior work has proved the suitability of a single-board com-
puter for teaching parallel computing over mobile devices, student
laptops, virtual machines, or remote multicore servers [26,27,45].
We build upon these studies by using a common hardware board
in all the proposed labs, which contributes to consolidate an inte-
grated view of the system. To this end, we analyze several boards
and conclude that Raspberry Pi meets the vast majority of the
hardware and software requirements of an inter-course learning
experience.

The presented experience is the result of a project carried out
in a CE program during the current and the past two academic
years, in which assessment studies of the proposal have been al-
ready carried out thanks to a set of volunteer students. For the
current 2020/2021 academic year, all the proposed labs are fully
deployed and all the enrolled students in the involved courses are
taking part in the proposed experience. This paper discusses ex-
perimental results for all the proposed labs, including both the
technical details of the lab assignments and the students learn-
ing outcomes using pre/post surveys. These surveys expose that
students effectively demand a deeper understanding of the in-
teractions between the abstraction levels, and such demands are
fulfilled after the completion of the labs.

The remainder of this paper is organized as follows. Section 2
introduces the context of the CE program and specific courses in
which the proposed experience is established. Section 3 describes
in depth the learning experience. Section 4 discusses the require-
ments to implement inter-course learning and the suitability of the
selected boards. Section 5 shows the technical results. Section 6
presents a qualitative assessment of the applied learning method
and students learning outcomes. Finally, Section 7 summarizes the
paper.

2. Context

This section describes the organization of the CE program, in-
cluding a brief description of the types of courses in each academic
39
year. In addition, the syllabus of the involved courses in the pro-
posed learning experience is described in more detail.

2.1. CE program

The proposed experience is planned to be fully integrated in the
CE program at the Universidad de Zaragoza (UNIZAR). This program
consists of four academic years, 240 ECTS1 credits in total.2 The
first two and a half years are common for all students. The core
courses in this period mostly focus on the knowledge that any CE
graduate should learn: algebra, calculus, discrete mathematics, pro-
gramming theory, data structures and algorithms, computer archi-
tecture and organization, operating systems, physics and electron-
ics, computer networks, databases, distributed systems, software
engineering, artificial intelligence, and human-computer interac-
tion. Afterward, students reinforce their knowledge in the major
that most interests them within five available options: Computing,
Computer Engineering, Information Systems, Information Technol-
ogy, and Software Engineering. Each major consists of eight com-
pulsory courses. In addition, students select two optional courses
from any other major, as well as two core courses that are studied
regardless of the chosen major. Finally, the students achieve the
program by undertaking an undergraduate dissertation of 12 ECTS.

The CE program focuses on the application of theoretical knowl-
edge in real-life problems, including the development of labs and
projects. This approach is ideal to help students with the assimila-
tion of the concepts studied in the different courses. Each course
offers a well-though out lab sessions tailored to reinforce the the-
oretical contents. At best, they are coordinated with other courses
that belong to the same area of knowledge. As mentioned above,
this can lead students to perceive a course, or a group of courses,
as isolated islands, which makes it difficult for them to apply the
knowledge acquired in each course in their professional career. In
fact, these divisions are purely organizational, and all the courses
have many interactions with each other. According to the Com-
puter Engineering Curricula [2], students should learn the devel-
opment of a whole computer in the lab experiments that include
exposure to hardware and operating systems in the context of a
relevant application, which is, in our case, the ray tracing algo-
rithm.

2.2. Involved courses

The proposed experience implicates four different courses
within the program to jointly face the problem. These courses are
Computer Graphics, Distributed and Concurrent Systems Program-
ming, Operating Systems, and Multiprocessors, which are related
to the Application, Library, Operating System, and ISA abstraction
levels, respectively.

Computer Graphics (CG) is a core course of the Computing ma-
jor, and an optional course in other majors. CG focuses on mathe-
matical models and algorithms that generate synthetic images (or
videos) in which performance is a must. Students learn the under-
lying mathematical and physical concepts that define appearance
and, as practical assignments, develop algorithms like ray tracing
that output images from such concepts. Parallelization is key to
the performance of such algorithms, and different parallelization
strategies (static/dynamic, with different high level structures and
partitions) must be explored.

Distributed and Concurrent Systems Programming (DCSP) is a
core course that concentrates on the fundamentals of program-

1 ECTS refers to European Credit Transfer and accumulation System:
http://ec .europa .eu /education /resources -and -tools /european -credit -transfer-and -
accumulation -system -ects _en.

2 https://estudios .unizar.es /estudio /ver ?id =148.

http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
http://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
https://estudios.unizar.es/estudio/ver?id=148

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52

Table 1
Relations among the abstraction levels, courses, activities, academic years, semesters, and chronological order.

Abstraction
level

Course Activity Academic
year

Semester Chronological
order

Application CG Ray tracing 4th Fall 4th

Library DCSP Concurrent
task queue

2nd Fall 1st

Operating System OS Futex
system calls

2nd Fall 2nd

ISA MP Futexes with
assembly code

3rd Spring 3rd
ming such classes of systems. In the case of concurrency, the lec-
tures focus on the explanation of the problems that arise when
a set of processes have to share data and resources, and the way
such a problem has been solved, from the main mutual exclusion
algorithms based on shared variables to higher level structures
such as semaphores and monitors. In the case of distributed sys-
tems, students learn how to coordinate processes by means of syn-
chronous and asynchronous message passing as well as by means
of the use of a shared tuple space. Besides studying the concepts
from a conceptual point of view, students work in a set of lab-
oratory sessions and a final team project in which they have to
develop some programs where the studied concepts are a crucial
part.

Operating Systems (OS) is a core course that presents in a com-
prehensive way the structure and functions of an operating system.
The operating system is presented as a resource manager and as a
service provider at the system call and command interpreter lev-
els. At each level, the student acquires concepts and skills related
to the management and the use of the main system resources such
as the processor, memory, and input/output devices. In relation to
the topic presented in this paper, the course presents the synchro-
nization primitives offered in the pthread library and studies the
keys to their implementation. First, it analyzes the implementation
of spinning primitives with the support offered by the processor
in the form of atomic memory access instructions and then it mo-
tivates the need of the operating system support to implement
sleeping primitives.

Multiprocessors (MP) is a core course of the Computer Engi-
neering major, and an optional course in other majors. MP focuses
on the mechanisms that support the parallel execution of tasks
in a computer system from the point of view of the architecture
and the organization of a computer. More precisely, this course fo-
cuses on parallel processors with shared memory, which are basic
elements of current complex digital systems. The covered topics
include performance analysis, performance modeling, on-chip net-
works, atomicity, consistency, and coherence in the memory hi-
erarchy of a parallel processor. In the laboratory sessions of the
course, OpenMP is presented and used as a tool for parallel pro-
gramming of computers, as well as tools for performance measure-
ment.

3. Proposed learning experience

This section presents the proposed experience that helps stu-
dents to accomplish an integrated view of a computer system. The
lab materials and resources for each abstraction level consist of a
description of the work to be done, code snippets, and a series
of milestones, where each one builds on top of the previous one.
The experience involves a total of eight hours, since each lab ses-
sion comprises two hours in the course associated with the level.
Interested readers may refer to the following repository with the
source code of every lab: https://github .com /universidad -zaragoza /
learning -experience -ray-tracing.
40
3.1. Overview

The proposed learning experience allows students to consol-
idate the concepts of parallelism, concurrency, consistency, and
atomicity exploitable in current multicore computers. We focus on
ray tracing, an appealing application which can be efficiently par-
allelized by learning and using the above concepts. Table 1 shows
the involved four levels of abstraction and the associated courses.
The table also shows, for each course, the academic year, semester,
and chronological order in which the activities take place.

According to the chronological order, students start the expe-
rience in the second academic year. The first lab, which belongs
to the DCSP core course, focuses on the library level. This lab
deals with the implementation and management of a task queue
with concurrent access by multiple threads. Synchronization as-
pects must be considered in order to avoid race conditions. To do
so, students use a semaphore library for handling such synchro-
nization questions.

The subsequent lab takes place shortly, during the same aca-
demic year and semester, and focuses on the Operating System
level. In this core lab, a mutex is implemented with a futex (fast
userspace mutex) mechanism through atomic primitives and op-
erating system calls that are only invoked when the mutex is
contested [14]. This mutex is then used to implement a new
semaphore library, which replaces the one used in the previous
lab.

The following academic year covers the third lab, that is, the
Assembly level, which is developed in the optional MP course. In
this lab, assembly instructions are used to implement the mutex/-
futex, which have the potential to achieve a greater efficiency in
energy consumption and performance compared to library func-
tions and system calls.

Finally, in the fourth year, the students focus on the Applica-
tion level by implementing a ray tracer in a lab of the CG optional
course. In this activity, the rendering of an image is parallelized by
dividing the image into regions. These regions are assigned to dif-
ferent threads by using the concurrent task queue. At this moment,
the students fully evaluate and state the differences of protecting
concurrent accesses to the task queue by using library functions,
system calls, or assembly instructions.

Note that the development of the presented experience is sub-
ject to certain risks; e.g., students transferring from one institution
to another, or students failing a course or simply not choosing the
involved optional courses would not complete the full experience.
To mitigate such risks, all the labs include two parts. The first
one, which is self-contained, includes the material for the actual
lab, and the second part links the lab with the others. Therefore,
if a student does not complete a preceding or following lab as-
signment, the faculty can provide a solution, so that students can
accomplish the second part of the lab and establish the links be-
tween the abstraction levels.

https://github.com/universidad-zaragoza/learning-experience-ray-tracing
https://github.com/universidad-zaragoza/learning-experience-ray-tracing

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
3.2. Abstraction levels

The application under study is presented in the next sections
following the chronological order that students will experience.

3.2.1. Concurrent task queue
The aim of this lab is the implementation of one of the most

common concurrent data structures: a queue. Queues, whose se-
quential approach has already been studied in a previous course
of Data Structures and Algorithms, are a very suitable mechanism
for the collaborative work of a set of processes. In the considered
case, producers and consumers can, in a natural way, use one or
more queues to share information and to synchronize [44]. As in
any shared data structure, in order to preserve data integrity, the
concurrent access to the shared data requires the use of some syn-
chronization mechanisms.

In this context, the main objectives of this lab work are as fol-
lows: i) to implement a concurrent bounded queue for generic
data types, ii) to get familiarity with semaphores as a mean for
solving synchronization problems, and iii) to use a general and
powerful approach to solve general synchronization problems us-
ing semaphores.

Controlling the concurrent access to a queue requires to con-
sider not only mutual exclusion access to some queue components,
but also condition synchronization (no first element exists in an
empty queue, or no new element can be inserted when the queue
is full). According to the focus proposed for the DCSP course, as
a first assignment, students have to design the concurrent access
to the queue using the coarse-grain atomic statement <await B
S>, where B is a boolean guard, usually concerning shared data,
and S is a block of sequential statements. The semantics of the
statement ensures that S starts its execution being B true, and the
whole statement is atomically executed. The high-level point of
view of such a statement makes easier the task of designing cor-
rect concurrent programs, which is one of the aims of the course.
This will be done in the generic class ConcurrentBoundedQueue
sketched in Listing 1, which includes a BoundedQueue as one of
its attributes. Students have to code the complete data structure,
including both enqueue and dequeue operations using semaphores
for synchronization.

template < class T>
class ConcurrentBoundedQueue {
public :

void enqueue (const T d) ;
/ / <await this −>bq−>length () <N
/ / this −>bq−>enqueue (d)
/ / >

void dequeue () ;
/ / <await this −>bq−>length () >0
/ / this −>bq−>dequeue ()
/ / >
. . .

private :
int N; / / s ize of the bounded queue
BoundedQueue<T> ∗bq ; / / data storage
. . .

} ;

Listing 1: ConcurrentBoundedQueue generic class.

In previous lectures, students have seen the pass the baton tech-
nique [3] to implement <await ...> statements using (binary)
semaphores. This technique works as follows. Let us consider all
the <await Bi Si> and <S j> sections that must be synchronized
together. A mutex semaphore ensures exclusive access to such code
areas. For each different Bi , a (binary) semaphore bi with an initial
count equal to 0 is added to block a process in the <await Bi Si>
41
Fig. 1. Implementation of critical sections using (binary) semaphores.

statement when Bi is false. In addition, a counter di with an initial
value set to 0 is included to store the number of processes blocked
at Bi . Fig. 1 illustrates an implementation of both <await Bi Si>

and <S j> sections. The pass the baton implementation is sketched
in Listing 2.

void pass_the_baton () {
switch {

. . .
Bi and di >0:

di− −
s i g n a l (bi)

. . .
otherwise :

s i g n a l (mutex)
}

}

Listing 2: pass_the_baton function.

In the case of the concurrent bounded queue, there are
only two conditions: non-empty and non-full. Therefore, three
semaphores and two counters will be used. The private part of
the ConcurrentBoundedQueue class can be extended as shown
in Listing 3.

template < class T>
class ConcurrentBoundedQueue {
public :

. . .
private :

int N; / / s ize of the bounded queue
BoundedQueue<T> ∗bq ; / / data storage
Semaphore ∗mutex ; / / i n i t i a l count w i l l be 1
Semaphore ∗b_not_fu l l ; / / to block u n t i l queue i s not f u l l
Semaphore ∗b_not_empty ; / / to block u n t i l queue i s not empty
int d_not_fu l l ; / / # of b_not_ful l−blocked processes
int d_not_empty ; / /# of b_not_emtpy−blocked processes
void pass_the_baton () ; / / to pass the baton

} ;

Listing 3: ConcurrentBoundedQueue class including a synchro-
nization mechanism.

Since we want students to finally implement general sema-
phores, the presented technique will be developed using general
semaphores instead of binary semaphores. Anyway, notice that the
way the technique is implemented, every semaphore count is al-
ways 1 or 0, having a behavior equivalent to binary semaphores. At
this level, the (binary) semaphores are the lowest abstraction con-
struct to manage synchronization, considered as an abstract data
type. The students know two possible semantics, equivalent from

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52

Fig. 2. Lock and unlock procedures of spin-lock and sleep mutexes. The sleep implementations include operating system calls to change the thread status.
a safeness point of view, but with possible different liveness prop-
erties. However, they still do not know how a semaphore can be
implemented and how operates internally, whether it makes a pro-
cess spin until the access is granted or the process goes to sleep
controlled by the operating system. These issues are outlined in
the lab, and students will find out the answers by implementing
the semaphore abstract data type in the two following labs.

As a final and optional lab assignment, students are asked to
implement a second approach of the concurrent queue. In the first
one, each operation on the queue is executed in mutual exclusion.
In the second one, students have to adapt the readers-writers ap-
proach so as to allow multiple access to reading operations (oper-
ations with no side effects on the queue) while preserving mutual
exclusion access for writing operations, giving priority to writers
in case of conflict. During the lectures, students have already de-
signed a solution based on the <await ...> instruction, whereas
this assignment deals with the implementation.

After completing this lab, students will have reinforced their
knowledge about the main concepts related to semaphore-based
synchronization. In addition, the proposed assignments also deal
with the use of design techniques focusing on the synthesis of cor-
rect concurrent programs.

3.2.2. Task queue protection with futex system calls
This lab is intended to present the mechanisms required by the

operating system to provide synchronization in concurrent algo-
rithms. The main objectives of this lab are: i) show the operating
system as a service provider for the user through system calls, ii)
learn an efficient use of the futex system calls and the primitives
of atomic instructions provided by the operating system and the
C standard library, iii) understand the necessary mechanisms to
provide execution in mutual exclusion with futexes and atomic in-
structions, and iv) show and use self-implemented lock and unlock
primitives of a mutex abstraction to manage the access to the con-
current task queue implemented in the previous activity.

The lab material firstly describes the C11 atomic instructions
from stdatomic.h and solicits the students to implement a mu-
tex with spin-lock based on atomic instructions. Next, the sleep
approach of a mutex is motivated, introducing the mandatory in-
tervention of the operating system to change the thread status, and
providing a naive approach of the sleep mutex using hypothetical
sleep and wakeup system calls as well as management operations
on a system queue. The limitations of this approach are used to
motivate the futex system calls. Then, the syntax and use of the
parameters of the futex_wait and futex_wake system calls are
described. By using these calls, the students are guided to imple-
ment an intuitive and straightforward version of the sleep mutex
referred to as basic implementation. Finally, the pseudo-code algo-
rithm of a more efficient mutex is offered as a guideline to code
an advanced implementation. This approach is based on the mutex
implementation proposed by U. Drepper [10], which is integrated
into the Linux kernel [11].

Fig. 2(a) shows the lock and unlock procedures of a Spin-Lock
(SL) mutex protecting a critical section. The value of the userspace
42
val variable represents the two states of the mutex: not taken
(val=0) and taken (val=1). The test_and_set atomic instruction
changes the mutex state.3 More precisely, this instruction sets val

to 1 and loads its previous value into c without the overhead of
a system call. Then, a thread enters into the critical section if the
lock is uncontested (c=0). Otherwise, the thread keeps spinning
in the lock. In the unlock procedure, the thread simply sets val

to 0 to release the mutex. Since the SL mutex leaves all the waiter
threads in the lock awake, it may suffer system performance losses
when the mutex is contested.

Fig. 2(b) illustrates the naive-sleep approach of a mutex. These
procedures are similar to other versions offered in textbooks of op-
erating system concepts such as [36,39], and [5]. This code is only
correct if both procedures are executed atomically. However, as-
suming a non-atomic execution presents several problems that are
listed in the lab material and should be understood by the stu-
dents, specifically: i) the reading and writing operations of val
are not atomically performed, which can lead to multiple threads
reading the lock as not taken, ii) the reading of the lock and the
insertion of the thread in the queue are neither atomic, which can
lead to an indefinitely suspended thread if the lock is freed be-
tween the reading and insertion operations, and iii) after waking
up from the sleep call, a thread has no guarantee of obtaining
the lock in mutual exclusion since another thread can enter into
the critical section before the former takes the lock.

Fig. 2(c) shows the Basic-Sleep (BS) implementation address-
ing all the incorrect behaviors stated above. In the lock function,
the atomic operation changes the state of the mutex. If the lock is
uncontested, the kernel is not invoked and the thread enters into
the critical section. Otherwise, the futex_wait system call is in-
voked. It suspends the calling thread in a system queue if the lock
is still taken (val=1), or it returns immediately if the lock has been
released in the meantime (val=0). In the first case, the thread re-
mains suspended until another thread wakes it up. Notice too that
every time futex_wait returns, the thread tries to acquire the
lock again.

The unlock procedure sets val to 0 and calls futex_wake. This
system call wakes up a number of threads stated in the second
argument (1 in the example as only a single thread is allowed to
enter into the critical section) from those suspended in the system
queue. Notice that such a call is invoked regardless of the lock is
uncontested or not, which may impact on the system performance.

The Advanced-Sleep (AS) implementation shown in Fig. 2(d) ad-
dresses the performance problem of the basic approach. In this
case, there are three mutex states: not taken (val=0), taken and no
waiter threads (val=1), and taken and at least one waiter thread
(val=2). In the lock procedure, test_and_set is no longer useful
since val takes three values. Instead, the atomic cmpxchg primi-
tive is used, in which a 1 (desired third argument) is loaded into

3 For the sake of brevity, we have shortened the original stdatomic.h function
names; e.g., test_and_set corresponds to atomic_flag_test_and_set and
the assignment operator for val refers to atomic_store.

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
val on a successful comparison between val and 0 (expected sec-
ond argument). Regardless of the result of the comparison, the
original value of val is loaded into c. If c==0, the calling thread
updates the state of the mutex as taken and no waiters, and then
enters into the critical section. Otherwise, the thread is suspended
in the system queue by calling futex_wait. Previously, the sec-
ond cmpxchg sets val to 2 if necessary, updating the state of the
mutex as taken and at least one waiter. Note that, if the lock is
freed between the first and second cmpxchg, the latter returns 0
and the thread is not suspended. The third cmpxchg ensures that a
thread takes the mutex only if a 0 is returned. In such a case, val
is set to 2 because there is no certainty of the number of waiters.

The unlock method subtracts 1 to val with the atomic fetch_
sub, which returns the previous value of the argument. The fu-
tex_wake call is invoked just in the case of a suspended thread
in the lock, avoiding such costly system calls when there are no
waiter threads. The reader is referred to [10] for further details
about the AS mutex implementation.

Once the different mutexes have been coded and understood,
the students use them to support a complex abstraction, that is,
the concurrent task queue implemented in the previous lab. List-
ing 4 shows an implementation alternative of the Semaphore class
introduced in Listing 1, referred to as Library. This approach uses
standard library mutexes (std::unique_lock <mutex>) to en-
sure mutual exclusion in Semaphore class methods. On the other
hand, Listing 5 shows a different implementation of the same class,
referred to as Thread-suspension, in which the lock and un-
lock methods are replaced by the procedures of each mutex ver-
sion (see Fig. 2).

class Semaphore {
private :

std : : mutex mtx;
std : : condit ion_variable_any cv ;
int count = 0;

public :
. . .

void Semaphore : : s i g n a l () {
std : : unique_lock <mutex> lck (mtx) ;
count = 1;
cv . n o t i f y _ a l l () ;

}

void Semaphore : : wait () {
std : : unique_lock <mutex> lck (mtx) ;
while (count ==0)

cv . wait (lck) ;
count = 0;

}
} ;

Listing 4: Library implementation alternative of the Semaphore
class.

For both implementation alternatives, the wait method con-
sists of a loop over a count variable, but, if count equals to
0, the current thread suspends its execution. On the other hand,
the signal method wakes up all suspended threads after free-
ing the semaphore. In order to implement such a functional-
ity for Thread-suspension, the suspend and wakeup methods
are coded by the students using futex system calls. On the con-
trary, the Library approach relies on condition variables to sus-
pend/wake up threads. Using both alternatives, the students assess
the suitability of not only their coded spin-lock and sleep mu-
texes, but also a library mutex by measuring the execution time
and the chip temperature under different contention scenarios (see
Section 5.2).

Overall, the students will be able to use futex system calls and
atomic instructions to implement spin-lock and sleep versions of
43
class Semaphore {
private :

std : : mutex mtx;
int count = 0;

public :
. . .

/ / suspends thread i f f ve!= count
void Semaphore : : suspend (int ve) {

s y s c a l l (__NR_futex , &(count) , FUTEX_WAIT , ve , NULL , 0 , 0) ;
}

/ / wake up a l l suspended threads
void Semaphore : : wakeup () {

s y s c a l l (__NR_futex , &(count) , FUTEX_WAKE, INT_MAX , NULL ,
0 , 0) ;

}

void Semaphore : : s i g n a l () {
mtx . lock () ;
count = 1;
wakeup () ;
mtx . unlock () ;

}

void Semaphore : : wait () {
mtx . lock () ;
while (count ==0) {

int vr = count ;
mtx . unlock () ;
suspend (vr) ;
mtx . lock () ;

}
count = 0;
mtx . unlock () ;

}
} ;

Listing 5: Thread-suspension implementation alternative of the
Semaphore class. Mutex lock and unlock procedures refer to the
different approaches from Fig. 2.

a basic synchronization abstraction such as a mutex, incorporate
such approaches to protect the concurrent task queue, and experi-
mentally state the performance differences among them.

3.2.3. Futexes with assembly code
The main purpose of this lab is to help students understand

the support provided by the ISA level to implement fast and re-
liable mutual exclusion, in terms of consistency and atomicity.
The ARM processors include load-link/store-conditional instruc-
tions and memory barriers, providing the foundation for higher
level structures such as mutexes and futexes. In addition, these in-
structions do not require any privilege level for being executed, so
programmers can directly exploit them to improve efficiency and
reduce the overhead of systems calls.

By the end of this lab, students will have accomplished the fol-
lowing goals: i) understand how atomic instructions operate at the
ISA level for the ARMv8 processors, ii) know why data memory
barriers are often required when writing atomic instructions, and
iii) learn the performance and energy implications of the different
mutex implementations.

The assignments of this lab are designed to help students to
engage with complex code enhancing their low-level programming
skills, especially concerning performance and energy efficiency. In
addition, they show how important is for an ISA to provide support
for complex high-level constructors such as the mutexes used by
operating systems, libraries, and applications. Finally, students gain
knowledge on the relation between the C/C++11 memory model
and the corresponding consistency models at the ISA level.

The lab material of this session is organized in two parts. In the
first part, the students are asked to generate a race condition with
the writing of a multi-threaded program that reduces an array by

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
Fig. 3. Lock and unlock procedures with ARMv8 assembly code.

adding all the elements without synchronization primitives. Then,
the students code a fetch and add primitive with ARMv8’s load-link
(ldaxr) and store-conditional (stlxr) instructions [4]. The imple-
mented fetch and add is included in the previous program to verify
that the code is now free of race conditions.

The second part comprises two assignments. The first one pro-
poses a basic implementation of lock and unlock mutex functions
based on ldaxr/stlxr instructions as plotted in Fig. 3(a). Threads
in the lock function spin until they acquire the lock. This mu-
tex approach is referred to as SL-ASM. The spinning can occur
at the two cbnz instructions. Either if the lock is already taken
(first cbnz) or the stxr instruction fails the attempt to take the
lock (second cbnz), the branch instructions return the flow to the
beginning of the loop. Notice too that, likewise the SL and BS im-
plementations from the OS level, just two mutex states, taken and
not taken, are considered in the assembly level.

The second assignment proposes an advanced implementa-
tion of the lock function by replacing the power-hungry spin-lock
with a wfe instruction. This instruction puts the core into a low-
power state without returning the control to the operating system.
Fig. 3(b) shows such an energy-efficient implementation, referred
to as LPS-ASM, also with the two mutex states taken and not taken.
The student will learn how the operating system considers that the
program is running, while it is actually waiting for the lock to be
released, and how the thread can regain the lock without a system
call. In particular, the stlr instruction, located in the unlock func-
tion, performs a store with a release barrier and wakes up any core
that could be in a low-power state after executing a wfe instruc-
tion. To guarantee progress, the cores also leave the low-power
state after an interruption occurs (e.g., a context switch).

With both SL-ASM and LPS-ASM implementations, students will
carry out a quick comparison between them in terms of perfor-
mance and energy consumption. Since Raspberry does not provide
energy hardware counters, as an indirect measurement, we period-
ically measure the temperature provided by the chip itself, which
is mapped by the OS in the filesystem.4

3.2.4. Parallel ray tracing
The CG course proposes a practical assignment involving the

implementation of a ray tracing algorithm [43], which is paral-
lelized by assigning different tasks (partitions or regions of the

4 Temperature can be found in the path /sys/devices/virtual/ther-
mal/thermal_zone0/temp.
44
Fig. 4. Diagrams of a 2D image split into render tasks with different kinds of image
regions and sizes.

expected synthesized image) to different threads. The main ob-
jectives of this lab are: i) find and understand the computational
bottlenecks of the algorithm, ii) devise parallelization strategies
that affect performance without any accuracy loss, and iii) test, ex-
plore, and analyze the impact (and overhead) of the combination
of different parallelization strategies, including partitioning struc-
tures and thread assignment methodologies, on performance.

The contents of this lab include a description of the ray tracer,
and an introduction on how to parallelize it. In particular, this as-
signment makes use of the minimalist C++ smallpt ray tracer by K.
Beason.5 This algorithm generates a 2D image from a 3D represen-
tation of a virtual scene, including geometry and optical properties
of the objects and physical characterizations of sensors (cameras)
and light sources. In practice, the algorithm simulates light trans-
port paths across the virtual scene in order to obtain the final color
that reaches each of the pixels of the image. Paths are generated
from the camera and traverse each pixel independently. Since the
computation associated to each pixel is independent, the algorithm
is highly parallelizable. Moreover, such a parallelization is worth-
while because the algorithm is computational intensive and takes
quite a long time to converge (about 1 or 2 hours for a good qual-
ity result for a simple virtual scene, and even days in the case of
more complex scenes).

A common ray tracing parallelization strategy is to subdivide
the image into different regions, converting the computation of
each of the regions into a render task to be assigned to an exe-
cution thread. The students are required to explore different paral-
lelization strategies in different dimensions as illustrated in Fig. 4:

• Different kinds of image regions: pixels, lines, columns, or
rectangles.

• Different region sizes: smaller or larger rectangles and line or
column batches.

Depending on the geometry and other properties of the virtual
scene, and the different implementation details of the algorithm,
the computational load can vary greatly from one region to an-
other [31]. For this reason, we need a safe mechanism to distribute
tasks among threads. This assignment can be static (pre-assigned
per thread) or dynamic (using a concurrent task queue).

Listing 6 shows the implementation of a static parallelization
assignment, distinguishing between the generation of the regions
and the rendering process. In this strategy, prefixed indices are
computed as a vector of regions and threads access to such in-
dices during the rendering process.

Since it is impossible to estimate the computational load of
each task beforehand, a dynamic assignment is likely to be more
efficient. Listing 7 shows this implementation, where the vector of
regions is replaced by the ConcurrentBoundedQueue class from
the former lab, including the enqueue and dequeue operations in
the generation and rendering processes, respectively. Fig. 5 depicts
a diagram of such a concurrent task queue where a main thread
generates and enqueues tasks, whereas multiple worker threads
dequeue tasks and perform the rendering process in parallel. Fi-

5 http://www.kevinbeason .com /smallpt/.

http://www.kevinbeason.com/smallpt/

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
struct Region {
int row0 , col0 , row1 , col1 , spp ;

} ;

/ / Producer
void generate () {

Image image (width , height) ;
std : : vector <Region > regions ;
for (region in <regions according to strategy >)

regions . push_back (region) ;
std : : vector <std : : thread > threads ;
for (int i =0; i <n_th ; ++ i)

threads . push_back (std : : thread (render , i , n_th , regions ,
image)) ;

for (auto &t : threads)
t . jo in () ;

}

/ / Consumer
void render (unsigned int thread , unsigned int nthreads ,
std : : vector <Region>& parts , Image& image) {

for (int p=thread ; p< parts . s ize () ; p+=nthreads)
for (int row= parts [p] . row0; row< parts [p] . row1; ++row)

for (int col = parts [p] . col0 ; row< parts [p] . col1 ; ++ col)
for (int s =0; s <spp ; ++s) / / rays per pixel

image (row , col) += c a l c u l a t e p i x e l (row , col) ;
}

Listing 6: Static parallelization strategy for computer graphics al-
gorithms.

/ / Producer (main thread)
void generate () {

Image image (width , height) ;
std : : vector <std : : thread > threads ;
ConcurrentBoundedQueue<Region > regions ;
for (int i =0; i <n_th ; ++ i)

threads . push_back (std : : thread (render , i , n_th , regions ,
image)) ;

for (region in <regions according to strategy >)
regions . enqueue (region) ;

for (auto &t : threads)
t . jo in () ;

}

/ / Consumer (worker threads)
void render (unsigned int thread , unsigned int nthreads ,
ConcurrentBoundedQueue<Region>& parts , Image& image) {

while (! parts . done ()) {
Region part = parts . dequeue () ;
for (int row= part . row0; row< part . row1; ++row)

for (int col = part . col0 ; row< part . col1 ; ++ col)
for (int s =0; s <spp ; ++s) / / rays per pixel

image (row , col) += c a l c u l a t e p i x e l (row , col) ;
}

}

Listing 7: Dynamic parallelization strategy for computer graphics
algorithms.

Fig. 5. Concurrent thread-safe task queue to assign tasks to different worker threads.

nally, notice too that both static and dynamic strategies are or-
thogonal to the region distributions depicted in Fig. 4.

The students should identify the different pros and cons of each
of the approaches, analyzing and justifying their impact on perfor-
mance. For instance, the students should answer questions such as
which is the optimal region size? Which of the mutex approaches of the
task queue work best and under which circumstances?
45
The final part of the lab notes that the proposed approach relies
on low-level programming constructs that are helpful to showcase
the interactions with the rest of the abstraction levels. However,
to boost productivity and get the most of heterogeneous systems,
which are standard nowadays, students should be advised to opt
for higher level approaches [15,19,34].

Overall, the implementation and parallelization of the path-
tracing algorithm together with the performance evaluation of
each mutex will help students understand and analyze the effect of
low-level mechanisms, decisions, and implementation details with
high-level applications and algorithms, which will reinforce the in-
tegrated view of a computer system.

4. Experimental environment

To consolidate the overall view of the presented computer sys-
tem, we propose to use the same single-board computer in all the
labs. To this end, we have analyzed a subset of commonly used
boards that fulfilled two key restrictions: low-cost (price below 50
$) and multiprocessing (parallelism experiments cannot be run in
single-core boards).

The selected boards are Raspberry Pi 3 Model B [40], Clock-
workPi,6 Rock64,7 AML-S905X-CC (Le Potato),8 Orange Pi Zero
Plus [29], NanoPi M1 Plus,9 and Pine A64-LTS.10

Table 2 summarizes the most relevant hardware and software
requirements for the development of this experience, and which
of them are met by the selected boards. Of course, there are other
boards offering better performance or more functionality but at a
higher cost such as DragonBoard 410C [33], HiKey 960,11 or Bea-
gleBoard X-15 [8]. Such highly-priced boards are not considered in
this study.

The list of requirements is mainly focused on the subset of
courses taking part in the presented experience. Nevertheless, it
is desirable to choose a base board that allows future expansions
by adding more courses to the experience. Therefore, we consider
a broader range of requirements that would facilitate the use of
the selected board for additional courses, such as Computer Archi-
tecture and Organization, Systems Administration, Computer Net-
works, Security, Artificial Intelligence, Machine Learning, Embed-
ded Systems, Robotics, Video-games, or Computer Vision, among
others.

Considering the results from our study of boards, requirements,
and potential courses that could use them, Raspberry Pi, Orange
Pi, and NanoPi turn out good choices to be used in our experience,
since they meet all the requirements but the JTAG support. How-
ever, we finally chose Raspberry Pi primarily due to its broader
usage and large amounts of open source and available materi-
als [41].

5. Technical results

This section presents the main technical results and conclusions
that should be obtained by students from the proposed lab assign-
ments. More precisely, the impact on the system performance and
chip temperature obtained for every mutex implementation is an-
alyzed under different contention scenarios.

All the experiments are run in a Raspberry Pi 3 Model B, which
includes a quad-core processor where each core is single-thread.

6 https://wiki .clockworkpi .com /index .php /Main _Page.
7 https://wiki .pine64 .org /index .php ?title =ROCK64.
8 https://libre .computer /products /boards /aml -s905x -cc/.
9 http://wiki .friendlyarm .com /wiki /index .php /NanoPi _M1 _Plus.

10 https://wiki .pine64 .org /index .php ?title =Main _Page.
11 https://www.96boards .org /documentation /consumer /hikey960 /hardware -docs /

hardware -user-manual .md .html.

https://wiki.clockworkpi.com/index.php/Main_Page
https://wiki.pine64.org/index.php?title=ROCK64
https://libre.computer/products/boards/aml-s905x-cc/
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_M1_Plus
https://wiki.pine64.org/index.php?title=Main_Page
https://www.96boards.org/documentation/consumer/hikey960/hardware-docs/hardware-user-manual.md.html
https://www.96boards.org/documentation/consumer/hikey960/hardware-docs/hardware-user-manual.md.html

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52

Table 2
Hardware (H) and Software (S) requirements evaluated for the following boards: Raspberry Pi 3 Model B (RP), ClockworkPi (CP), Rock64 (RC), Le Potato (LP), Orange Pi zero
plus (OP), NanoPi M1 Plus (NP), and Pine A64-LTS (PA).

Type Description RP CP RC LP OP NP PA

H JTAG ✗ ✗ ✗ ✗ ✗ ✗ ✗

H Ethernet � � � � � � �
H WiFi � � ✗ ✗ � � ✗

H Camera � ✗ ✗ ✗ � � ✗

H Virtualization support � � � � � � �
H I/O Extensions (screen, buttons...) � � � � � � �
H GPU � � � � � � �
S Development Framework options � ✗ � ✗ � � �
S SDK and runtime GPU support � ✗ � ✗ � � �
S High-level/Standard OS support � ✗ � � � � �
H&S Bare metal (no OS) support � � � � � � �

Fig. 6. Performance and temperature of the OS mutex implementations varying the number of threads.
We assumed a fixed CPU frequency of 1.4 GHz (performance gov-
ernor) for all the experiments to guarantee reproducibility. The OS
is an Ubuntu 18.04.3 LTS release with a gcc 7.5.0 compiler. Before
running each experiment, we wait until the chip temperature de-
creases to a defined threshold of 60 ºC (the reported experiments
were carried out during summer and the board does not include
any heat dissipator nor fans). Once an experiment finishes, we cal-
culate the execution time and the chip temperature increase and
wait for the CPU to cool down before running the next experiment.

All the presented experiments are run from 1 to 64 threads.
Taking into account the quad-core processor and the fact that
the studied applications are CPU-bound, the thread oversubscrip-
tion (i.e., a number of threads higher than the number of physical
cores) penalizes performance, which is a key insight for students.
In addition, another important key insight from thread oversub-
scription is that the implementation of each mutex affects perfor-
mance differently.

5.1. OS level

The first lab assignment deals with the implementation of the
concurrent bounded queues and the experiments are limited to en-
sure the correctness of such queues (Section 3.2.1). In the second
lab, the first assignment refers to the implementation of the SL,
BS, and AS mutexes using futexes (Section 3.2.2). This section eval-
uates such implementations.

Bars and lines in Fig. 6 show respectively the execution time in
seconds (s) and the chip temperature increase in Celsius degrees
(ºC). Threads access a shared variable protected with a mutex. In
particular, each thread acquiring the lock increments by one the
value of this variable and then releases the lock. The execution
finishes when the shared variable reaches a value of a million.
46
Two different contention scenarios are considered, referred to
as real and synthetic. In the real scenario, a thread releasing the
lock computes some private work consisting of a series of trigono-
metric functions with the shared variable as input. On the other
hand, in the synthetic scenario, after releasing the lock, a thread
immediately competes for the lock without performing any private
work. The latter scenario covers an extreme case where students
observe how a change in the amount of private work leads to un-
expected conclusions.

In the real scenario, all the mutexes obtain a very similar per-
formance for a given number of threads greater or equal than 4.
For a low number of threads between 1 and 12, the overhead of
always invoking a futex system call in the unlock method and the
subsequent context switch in BS leads to a slight increase of the
execution time compared to SL and AS. However, as the number
of threads increases, SL progressively enlarges a bit the execution,
since threads spin in a more disputed lock. On the other hand, the
sleep mutexes maintain the same execution time as the number of
threads increases. With this experiment students realize that, for
this kind of application, the thread oversubscription does not im-
prove performance but, on the contrary, depending on the mutex
implementation, performance can be hurt.

The increase in the chip temperature is quite steady for a num-
ber of threads greater than one, and both the private work and the
chip temperature limit (around 80 ºC) prevents from obtaining sig-
nificant CPU temperature differences among the different mutexes.
However, SL reaches a lower temperature in most cases, which
suggests that invoking futex systems calls has a greater thermal
signature.

There is no parallelism to be exploited in the synthetic scenario,
meaning that single-threaded executions should exhibit the best

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52

Fig. 7. Performance and temperature of the OS mutex implementations protecting a concurrent bounded queue. A library mutex is included for comparison purposes.
performance for a given mutex implementation. This is the case
for both SL and AS mutexes. For the studied mutexes, SL obtains
the lowest execution time both in the single-threaded execution
and when the number of threads coincides with the number of
physical cores. This confirms the overhead of the futex system calls
in both BS and AS approaches. On the other hand, similarly to
the previous scenario, under the thread oversubscription, spinning
largely increases the execution time over the sleep approaches,
whereas such mutexes maintain roughly the same performance.

An interesting observation is that, for a single thread, BS has
a much larger execution time not only compared to the other
mutexes but also compared to itself when multiple threads are
considered. This confirms the overhead of always invoking costly
futex_wake system calls in the unlock function even when there
are no waiter threads in the lock. Regarding the chip temperature,
the execution time is not sufficiently large to observe significant
temperature differences before and after the execution.

5.2. Library level

This section refers to the evaluation of the OS second lab as-
signment, where the previous mutexes are used to support the
concurrent task queue. Fig. 7 shows the results. A library mutex
from the DCSP lab is included for comparison purposes. The length
of the queue is a million of elements and its initial state is full.
Threads within the critical section dequeue values from the queue
until it is empty. The private work of each thread is the same as
described in the previous section.

The real scenario confirms that the best performing number of
threads is 4, where both SL and the library mutex obtain the best
performance. This suggests that the library mutex implements a
spin-lock mechanism for such a number of threads. The thread
oversubscription leads to larger execution times, especially for SL,
BS, and AS. The library mutex clearly outperforms all the other
mutexes for any number of threads greater than 4, suggesting
that, differently from the spin-lock and OS-based solutions, the
library implementation possibly throttles unnecessary threads ac-
cording to the number of processor cores and/or exploits an in-
ternal userspace sleep-queue to minimize thread context switches.
Contrary to the previous experiments, SL always performs better
than AS and BS mutexes. This is mainly due to the additional over-
head of the futex system calls from the new suspend and wakeup
methods in the Semaphore class. As expected, AS largely reduces
the execution time with respect to BS due to the additional cost of
always invoking futex_wake system calls. Similarly to the previ-
ous study, SL shows a slightly lower increase in the CPU tempera-
ture compared to the other mutexes, including the library mutex.
47
Surprisingly, the synthetic scenario greatly affects the library
mutex with the number of threads, which points out that such
an extreme contention scenario has not been considered in the li-
brary mutex development. The higher contention also affects SL,
although in a lesser way. In this scenario, with a sufficient num-
ber of threads, the overhead of the system calls and subsequent
context switches compensates the distribution of CPU time among
all the active threads spinning in the lock. Removing the private
work allows to see significant temperature differences. The results
confirm the lower thermal signature of SL, even in those cases
where SL enlarges the execution time with respect to the other ap-
proaches. On the other hand, the library mutex shows the highest
temperature increase, most likely due to the extended execution
times.

Overall, the library mutex is a convenient choice in scenarios
where there is a relatively high amount of private work to be
done. In this case, the library likely exploits a hybrid management
by combining spin-lock, thread throttling, and/or a sleep-queue to
provide an adaptive mechanism to the most frequent case. How-
ever, in the synthetic scenario, the library heuristics fail to adapt
to such an atypical case, making the OS-based mutexes the prefer-
able choice.

5.3. Assembly level

This study evaluates the SL-ASM and LPS-ASM mutexes protect-
ing the concurrent task queue (see Section 3.2.3). The initial state
of the queue and the amount of private work is the same as in
the previous study. Fig. 8 depicts the results. For illustrative pur-
poses, just the best performing mutexes with 4 threads from the
previous study (library and SL for real and synthetic contention,
respectively) are shown.

Similarly to the previous studies, the spin-lock solution in-
creases the execution time with the thread oversubscription in
the real contention scenario. Compared to SL-ASM, LPS-ASM has a
lower execution time since putting cores in a low-power state until
a context switch is triggered reduces the lock contention. However,
this does not prevent the library mutex to obtain better perfor-
mance thanks to an enhanced management of the lock. Differently
from previous approaches, the LPS-ASM alternative shows a tem-
perature reduction with the thread oversubscription. This is mainly
due to, with a higher number of threads, the chance to put cores in
a low-power state increases. On the contrary, the steady temper-
ature of the library mutex suggests that such an implementation
does not change the state of the cores.

In the synthetic scenario, both spin-lock alternatives progres-
sively increase the execution time with the number of threads.

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52

Fig. 8. Performance and temperature of assembly mutexes protecting a concurrent bounded queue. The best performing solutions from the previous study are also shown.
Fig. 9. Performance of all the mutex implementations at the path-tracing application
level assuming a dynamic parallelization strategy.

However, implementing the spin-lock in a higher abstraction level
with respect to the ISA level introduces a performance overhead
according to the timing differences between SL and SL-ASM. Fi-
nally, the LPS-ASM solution clearly reduces the temperature with
respect to both spin-lock approaches, which show very similar
temperature numbers.

5.4. Application level

This section evaluates all the mutexes in the ray tracing applica-
tion using the dynamic parallelization strategy with the concurrent
task queue (see Section 3.2.4). Fig. 9 plots the results, which are
restricted to performance for illustrative purposes. The rendered
scene in all the experiments is forest.12 For simplification purposes,
the image is partitioned in fixed-size rectangular regions.

As expected from the real scenarios of the previous studies, the
best performing number of threads is 4 according to the number
of physical cores, where all the analyzed mutexes exhibit a very
similar performance. In addition, the performance of the ray tracer
scales with the number of threads, since the execution time with
4 threads reduces by 4× with respect to the single-threaded per-
formance. Results under the thread oversubscription corroborate
the previous findings from lower abstraction levels: the OS over-
head largely penalizes the AS mutex and especially the BS mutex,
whereas the OS-free solutions like SL and the assembly mutexes

12 http://www.kevinbeason .com /smallpt /extraScenes .txt.
48
show similar results. Finally, the library mutex is scarcely affected
by the thread oversubscription.

6. Experience assessment

This section provides a qualitative assessment of all the pro-
posed labs. The attendance to such labs was voluntary (37 stu-
dents participated in each lab of the DCSP and OS courses, and
12 students participated in each lab of the MP and CG courses).
All labs were scheduled after the completion of the courses, giv-
ing the students the opportunity to compare between the current
lab assignments (i.e., no direct interactions with any other lab) and
the proposed lab assignments. Notice too that this experience has
been carried out for three consecutive academic years, meaning
that those students that have participated in the latest CG lab have
also participated in the remaining ones. Assessment results col-
lected for the DCSP and OS labs correspond to two years: current
and previous, whereas results for the MP and CG labs correspond
to the previous and current year, respectively. In the first year, the
first two labs were run without collecting assessment results.

Two different surveys were designed for each lab, referred to as
pre-survey and post-survey. Students filled out the surveys before
and after completing the proposed lab sessions. Every pre-survey
consists of two types of questions: a series of questions for mea-
suring the perception of students about the interactions among the
courses of the CE program in general and particularly among the
involved courses in the experience, and 22 theoretical and prac-
tical questions for assessing the knowledge of students about the
covered PDC topics.

Every post-survey is structured in four parts: a set of ques-
tions for stressing in the interactions among the courses, a series
of questions for valuing the proposed lab experiences, other ques-
tions referring to the obtained technical results, and the same 22
theoretical and practical questions from the pre-surveys. The main
conclusions extracted from these surveys are summarized next.

Before the lab sessions, the students considered that all the
courses of the program are somehow related (8.0 points out of
10, where the edge scores 0 and 10 indicate no relation at all and
totally related, respectively), but that the faculty should make an
effort to make this relation more explicit (the effort was rated
7.9 out of 10). Regarding the courses involved in this learning
experience, the students were very conclusive. All of them consid-
ered that the four courses are strongly related to other courses of
the program, including between themselves. The responses of the
post-surveys strengthened the previous results, since the students
conveyed that the courses are more related to each other (8.7 out
of 10).

http://www.kevinbeason.com/smallpt/extraScenes.txt

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
Table 3
Correct answer rates of the common questions for pre and post surveys.

DCSP

Q1 Q2 Q3 Q4

Pre 100 72.9 27.1 56.7
Post 100 97.3 43.2 59.5

OS

Q5 Q6 Q7 Q8 Q9 Q10

97.3 81.1 48.7 67.6 81.1 10.8
97.3 97.3 91.9 100 100 100

MP

Q11 Q12 Q13 Q14 Q15

75 41.7 41.7 41.7 33.3
100 91.7 83.3 100 75

CG

Q16 Q17 Q18 Q19 Q20 Q21 Q22

75.0 83.3 33.3 41.7 33.3 50.0 58.8
91.7 100 66.7 83.3 100 83.3 83.3

Table 3 compares the correct answer rates of the 22 theoretical
and practical questions that were included in both kind of surveys.
Questions Q1-Q4 were proposed by the faculty of the DCSP course
and mainly focus on the concept of mutual exclusion, the seman-
tics of semaphores, and the use of semaphores to solve certain
critical section problems. Questions Q5-Q10 refer to the OS session
and are about the low-level requirements to implement different
types of semaphores. Questions Q11-Q15 refer to the MP course
and are about the role of atomicity and consistency in thread syn-
chronization. Questions Q16-Q22 correspond to the CG course and
deal with the impact of the different abstraction levels in the par-
allel ray tracing application. The reader is referred to Appendix A
for further details about these questions, including the possible
and the correct/desired answers, highlighted in boldface.

In general, the post-survey rates improve the correct answer
rates obtained in the pre-surveys. Overall, the results support the
interest of the experience and the usefulness from the students
point of view. On average, the correct answer rate of the post-
surveys is 88.0% versus 57.3% obtained before the beginning of
the sessions. One remarkable aspect to be noticed is the rather
low rate of correct answers to questions Q3 and Q4. In our opin-
ion, the main reason is that the conceptual study of the different
semantics of the semaphore abstract data type has been presented
and discussed two months before the experience has been carried
out. For a set of reasons, we are currently thinking about the pos-
sibility of changing the order in which concepts are introduced at
the OS course, so as to be able to study the semaphore abstraction
and implementation closer in time. Maybe this fact will help us to
get more information to understand the reason for such a low rate.

When comparing year-on-year results of the surveys, we have
shown some striking facts. This is the case of questions Q16 and
Q17 of the CG lab, which are the same as questions Q8 and Q9
of the OS lab. In the survey after the OS lab, 100% of the students
answered them correctly. However, two years later in the previous
survey of the CG lab, these same questions were answered cor-
rectly by only 75% and 83.3% of the students, respectively. These
results demonstrate the effect of time on students’ memory. For-
tunately, the CG lab session helps to refresh students’ memory by
reaching 91.7% and 100% on the post-survey.

The post-surveys revealed that all the lab sessions were well
received. All the students completed the lab assignments, and they
gave an overall score of 8.8 out of 10 to the quality of the lab
designs, the materials and resources, and the faculty assistance.
When asked about their opinion in the CG lab, one student men-
49
tioned that he/she “liked a lot the idea of unifying several courses in a
single learning experience, and this should be done more often to consol-
idate the learning”. Another student pointed out that “this is a very
positive initiative to put together everything we have seen in multiple
courses”.

In general, after completing the labs, the students have reached
a broader view of the interactions among operating systems, com-
puter architecture, and parallel and distributed computing. As
learning outcomes, students discerned among the different mutex
implementation alternatives and clearly identified the programma-
bility, execution time, and efficiency trade-offs at each abstraction
level.

7. Conclusions

The current structure of the Computer Engineering (CE) pro-
gram, arranged in isolated courses, causes students to lose sight of
the overall view of a typical computer system organized in abstrac-
tion levels. This paper has presented a learning experience that
aims to reinforce this vision as a whole.

The presented experience covers the abstraction levels of Appli-
cation, Library, Operating System, and Instruction Set Architecture,
and consists in the implementation of a parallel ray tracing al-
gorithm that uses a concurrent queue to assign tasks to different
execution threads. The accesses in mutual exclusion to this queue
are managed by mutexes implemented with either library func-
tions, system calls, or assembly instructions.

The aforementioned abstraction levels have been introduced
and related to each other in a subset of laboratories from different
courses of a CE program, allowing students to consolidate the con-
cepts of parallelism, concurrency, atomicity, and consistency. This
paper has presented the structure and contents of each proposed
lab, as well as the interactions with the remaining labs. In addi-
tion, a detailed study of the hardware and software requirements
and the consequent choice of Raspberry Pi as the common hard-
ware development platform is also discussed.

Experimental results consisted of a technical evaluation and an
assessment study of the proposed learning experience. The techni-
cal results referred to an evaluation and discussion of the perfor-
mance and temperature differences of the implemented mutexes
in each lab. The experience assessment consisted of a series of
pre/post surveys. Most students pointed out an enhancement in
the design of the labs and a greater exposure to the relations be-
tween courses. In addition, the students showed an enhancement
in the integrated perception of the addressed concepts and the
acquisition of the knowledge, since the correct responses to the
technical questions from the surveys improved by 30.7% after the
experience.

Declaration of competing interest

There are no conflicts of interest to report for this submission.

Acknowledgments

All authors acknowledge support from grants (1) PIIDUZ_18_246
from Universidad de Zaragoza, (2) PID2019-105660RB-C21 / AEI
/ 10.13039/501100011033 from Agencia Estatal de Investigación
(AEI) and European Regional Development Fund (ERDF), (3) gaZ:
T58_20R research group from Aragon Government and Euro-
pean Social Fund (ESF), (4) 2014-2020 “Construyendo Europa desde
Aragón” from ERDF, (5) TIN2017-84796-C2-2-R from Spanish Minis-
terio de Economía y Competitividad, (6) DisCo-T21-20R from Aragon
Government, (7) PID2019-105004GB-I00 from Spanish Ministry of
Science and Innovation, and (8) CHAMELEON, grant No. 682080
from European Research Council (ERC) under the EU’s Horizon
2020 research and innovation programme.

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
Appendix A. Surveys

A.1. DCSP survey

Q1 Do you understand the importance of mutual exclusion?
• Yes
• No
• I have a rough idea

Q2 When a P process is said to use an S semaphore with busy-
wait semantics, which of the following operations refers to
wait(S)?:
• Option 1:

< i f S . V>0
S . V := S . V−1

else
S . L := S . L ∪ {P}
P . s t a t e := blocked

end
>

• Option 2:

< await S . V>0
S . V := S . V−1

>

• To anyone, both are equivalent
Q3 If the semantics for semaphores in the first two answers from

the previous question are taken into account, which of the fol-
lowing statements can be considered as true?
• Since they are equivalent, there are no differences in terms

of liveliness and safety properties
• There are no differences in terms of safety properties, but

there are differences in terms of liveliness
• There are no differences in terms of liveliness properties, but

there are differences in terms of safety
• Although they are not equivalent, there are no differences in

terms of liveliness and safety properties
Q4 Consider the following scheme to solve the problem of the

critical section, S being a semaphore with busy-wait seman-
tics. Which of the following statements is correct?

Semaphore S:=1
Process P Process Q

loop forever loop forever
SNC SNC
wait (S) wait (S)
SC SC
s i g n a l (S) s i g n a l (S)

end end
end end

• The solution can generate fairness problems
• There are no fairness issues
• There will be fairness issues depending on the first process

that gets access to the semaphore

A.2. OS survey

Q5 Do you know the advantages and shortcomings of a mutex
with/without active waiting?
• Yes
• No
• There are no differences

Q6 Would you be able to implement a mutex with busy waiting?
• Yes
• No
• I am not sure

Q7 Would you be able to implement a mutex without busy wait-
ing?
• Yes
50
• No
• I am not sure

Q8 What do you consider essential to implement a mutex with
busy waiting (multiple choices can be selected)?
• Atomic memory reading and writing instructions
• OS support
• A shared memory space
• Nothing, any system supports it by default

Q9 What do you consider essential to implement a mutex without
busy waiting (multiple choices can be selected)?
• Atomic memory reading and writing instructions
• OS support
• A shared memory space
• Nothing, any system supports it by default

Q10 Do you know what a futex is?
• Yes
• No
• I have a rough idea

A.3. MP survey

Q11 The consistency model defined by ARMv8 is...
• Sequential
• Relaxed
• None of them

Q12 Which of the following instructions puts the processor on a
low power state?
• sevl
• dbm
• wfe
• All of the above
• None of the above

Q13 For a fetch and add, would you use any of the following ARMv8
instructions?
• wfe, sevl
• DMB, DSB, ISB
• ldaxr, stlr
• None of the above

Q14 What of the following synchronization alternatives would you
use in a low-contention scenario for the next program?

/ / run concurrently by several threads
long long my_add = 0;
while (work_index<n_elements) {

/ / how do you protect the next code l i n e s ?
int my_work_index_ini = work_index ;
work_index = work_index + chunk ;
int my_work_index_end = work_index ;

for (int i =my_work_index_ini ; i <my_work_index_end ; i ++)
my_add = my_add + v_elems [i] ;

}

• Fetch and add
• Mutex
• Energy-efficient mutex

Q15 What of the following synchronization alternatives would you
use in a high-contention scenario for the same program as in
the previous question?
• Fetch and add
• Mutex
• Energy-efficient mutex

A.4. CG survey

Q16 What are the minimal requirements to implement a non
busy-wait mutex (several choices can be valid)?
• Atomic instructions

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
• OS support
• A shared memory space
• Nothing, all systems support non busy-wait mutexes

Q17 What are the minimal requirements to implement a busy-
wait mutex (several choices can be valid)?
• Atomic instructions
• OS support
• A shared memory space
• Nothing, all systems support non busy-wait mutexes

Q18 For a parallel application such as a ray tracer, which imple-
mentation would be faster in a scenario where the number of
logical threads is lower than the number of physical execution
contexts of the processor?
• OS mutex
• Library mutex
• Assembly mutex
• All three should have a similar behavior

Q19 For a parallel application such as a ray tracer, which imple-
mentation would be faster in a scenario where the number of
logical threads is equal to the number of physical execution
contexts of the processor?
• OS mutex
• Library mutex
• Assembly mutex
• All three should have a similar behavior

Q20 For a parallel application such as a ray tracer, which imple-
mentation would be faster in a scenario where the number of
logical threads is higher than the number of physical execution
contexts of the processor?
• OS mutex
• Library mutex
• Assembly mutex
• All three should have a similar behavior

Q21 Many algorithms, such as ray tracing, whose output is a ma-
trix of pixels (or an image), are easily parallelizable. Which is
the best parallelization strategy for such algorithms?
• Static: pixels are pre-assigned to a worker thread by rows,

columns, or regions. In this approach, workers perform their
tasks without synchronizing with other workers

• Dynamic-per-pixel: each worker continuously fetches single-
pixel tasks until completion. It requires synchronization
among workers

• Dynamic-per-region: each worker continuously fetches re-
gion tasks until completion. It requires synchronization
among workers

• Hard to guess: the best strategy depends on the variability
of the execution time of each task

Q22 In a parallel ray tracing algorithm, where each pixel can be in-
dependently generated, assuming a dynamic-per-region strat-
egy, under which circumstance reducing the region size can
improve performance?
• When there is variability in the pixel-generation time
• When there are image areas where is known beforehand

that the pixel-generation time is smaller than that of other
areas

• When the region task delay is significantly larger than the
synchronization delay produced by the region

• When the resulting image has many color disturbances

References

[1] ACM/IEEE, Computer Science Curricula 2013: Curriculum Guidelines for Under-
graduate Degree Programs in Computer Science, 2013.

[2] ACM/IEEE, Computer Engineering Curricula 2016: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engineering, 2016.

[3] G.R. Andrews, Concurrent Programming. Principles and Practice, 1st edition,
The Benjamin/Cummings Publishing Company, Inc., 1991.
51
[4] ARM, ARM DS-5 Development Studio Examples, 2018.
[5] R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, Operating Systems: Three Easy

Pieces, 1st edition, Arpaci-Dusseau Books, LLC, 2018.
[6] S.A. Bogaerts, One step at a time: parallelism in an introductory programming

course, J. Parallel Distrib. Comput. 105 (2017) 4–17.
[7] M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir, H. Thiry, A module-based

approach to adopting the 2013 ACM curricular recommendations on parallel
computing, in: Proceedings of the 46th ACM Technical Symposium on Com-
puter Science Education, 2015, pp. 36–41.

[8] G. Coley, BeagleBoard X15 system reference manual, BeagleBoard .org, 2016.
[9] J. Cuenca, D. Giménez, A parallel programming course based on an execution

time-energy consumption optimization problem, in: Proceedings of the IEEE
International Parallel and Distributed Processing Symposium Workshops, 2016,
pp. 996–1003.

[10] U. Drepper, Futexes are tricky, http://people .redhat .com /drepper /futex .pdf,
2011.

[11] U. Drepper, I. Molnar, The native POSIX thread library for Linux, https://akkadia .
org /drepper /nptl -design .pdf, 2005.

[12] J. Eckroth, A course on big data analytics, J. Parallel Distrib. Comput. 118 (P1)
(2018) 166–176.

[13] C. Ferner, B. Wilkinson, B. Heath, Toward using higher-level abstractions to
teach parallel computing, in: Proceedings of the IEEE International Parallel and
Distributed Processing Symposium Workshops, 2013, pp. 1291–1296.

[14] H. Franke, R. Russell, M. Kirkwood, Fuss, futexes and furwocks: fast user-
level locking in Linux, in: Proceedings of the Ottawa Linux Symposium, 2002,
pp. 479–495.

[15] B. Gaster, L. Howes, D.R. Kaeli, P. Mistry, D. Schaa, Heterogeneous Computing
with OpenCL, 1st edition, Morgan Kaufmann Publishers Inc., 2011.

[16] N. Giacaman, O. Sinnen EA, Research-infused teaching of parallel program-
ming concepts for undergraduate software engineering students, in: IEEE
International Parallel Distributed Processing Symposium Workshops, 2014,
pp. 1099–1105.

[17] D. Ginat, Y. Blau, Multiple levels of abstraction in algorithmic problem solving,
in: Proceedings of the ACM SIGCSE Technical Symposium on Computer Science
Education, 2017, pp. 237–242.

[18] M. Grossman, M. Aziz, H. Chi, A. Tibrewal, S. Imam, V. Sarkar, Pedagogy and
tools for teaching parallel computing at the sophomore undergraduate level, J.
Parallel Distrib. Comput. 105 (2017) 18–30.

[19] M. Haidl, S. Gorlatch, PACXX: towards a unified programming model for pro-
gramming accelerators using C++14, in: Proceedings of the LLVM Compiler
Infrastructure in HPC, 2014, pp. 1–11.

[20] D.J. John, S.J. Thomas, Parallel and distributed computing across the computer
science curriculum, in: Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, 2014, pp. 1085–1090.

[21] J. Kramer, Is abstraction the key to computing?, Commun. ACM 50 (4) (2007)
36–42.

[22] S. Kumar, Research-oriented teaching of PDC topics in integration with other
undergraduate courses at multiple levels: a multi-year report, J. Parallel Distrib.
Comput. 105 (2017) 92–104.

[23] V. Kumar, Introduction to Parallel Computing, 2nd edition, Addison-Wesley
Longman Publishing Co., Inc., 2002.

[24] B. Levandowski, D. Perouli, D. Brylow, Using embedded Xinu and the raspberry
Pi 3 to teach parallel computing in assembly programming, in: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium Work-
shops, 2019, pp. 334–341.

[25] C. Lupo, Z.J. Wood, C. Victorino, Cross teaching parallelism and ray tracing: a
project-based approach to teaching applied parallel computing, in: Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education, 2012,
pp. 523–528.

[26] S.J. Matthews, Teaching with parallella: a first look in an undergraduate parallel
computing course, J. Comput. Sci. Coll. 31 (3) (2016) 18–27.

[27] S.J. Matthews, J.C. Adams, R.A. Brown, E. Shoop, Portable parallel computing
with the raspberry Pi, in: Proceedings of the ACM SIGCSE Technical Symposium
on Computer Science Education, 2018, pp. 92–97.

[28] T. Newhall, A. Danner, K.C. Webb, Pervasive parallel and distributed comput-
ing in a liberal arts college curriculum, J. Parallel Distrib. Comput. 105 (2017)
53–62.

[29] Orange Pi Zero H2 User Manual, version 0.9.1, Shenzhen Xunlong Software Co.,
Ltd..

[30] S. Petit, J. Sahuquillo, M.E. Gómez, V. Selfa, A research-oriented course on ad-
vanced multicore architecture: contents and active learning methodologies, J.
Parallel Distrib. Comput. 105 (2017) 63–72.

[31] M. Pharr, W. Jakob, G. Humphreys, Physically Based Rendering: From Theory to
Implementation, 3rd edition, Morgan Kaufmann Publishers Inc., 2017.

[32] S.K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja, K. Kant, A.
La Salle, R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert,
A. Rosenberg, S. Sahni, B. Shirazi, A. Sussman, C. Weems, J. Wu, NSF/IEEE-TCPP
curriculum initiative on parallel and distributed computing - core topics for
undergraduates, version I, http://tcpp .cs .gsu .edu /curriculum/, 2012.

http://refhub.elsevier.com/S0743-7315(21)00113-1/bib053AE2A0B72E43C7A2C7572CECF37EF4s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib053AE2A0B72E43C7A2C7572CECF37EF4s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7642F187BDE051EFD1D83A118BDCC546s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7642F187BDE051EFD1D83A118BDCC546s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibBB19817018153E26E35C9A12ADC6FC65s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibBB19817018153E26E35C9A12ADC6FC65s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4D09FAD9EF330FE1F173FADA26129A39s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib69C549F49F6B4211693390ABF1595F5As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib69C549F49F6B4211693390ABF1595F5As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4CD9216D7FFA85C3EFC286B1FDF7F9B6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4CD9216D7FFA85C3EFC286B1FDF7F9B6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibDC415158798D1265D0F4E903C7A7E364s1
http://BeagleBoard.org
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD9D67737A74F3A815B837136B17E3217s1
http://people.redhat.com/drepper/futex.pdf
https://akkadia.org/drepper/nptl-design.pdf
https://akkadia.org/drepper/nptl-design.pdf
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibEB4106C498CEB74B07D4502A3B48DEB1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibEB4106C498CEB74B07D4502A3B48DEB1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD4FB78A25BD10385797022A6DE16042Es1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD4FB78A25BD10385797022A6DE16042Es1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD4FB78A25BD10385797022A6DE16042Es1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib299BC2D0C0B1BB2E1123890C0BB0B133s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib299BC2D0C0B1BB2E1123890C0BB0B133s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib299BC2D0C0B1BB2E1123890C0BB0B133s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA284AED09999D94CDBFDFB8356D0E728s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA284AED09999D94CDBFDFB8356D0E728s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib7412DF2B1DB8CD2A5D4AAFDB6C2090D3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib38DFBE39EB926ECB2F4AC75805977DECs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib38DFBE39EB926ECB2F4AC75805977DECs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib38DFBE39EB926ECB2F4AC75805977DECs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0B4B633F3B914E8A7C656928816D01FBs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0B4B633F3B914E8A7C656928816D01FBs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0B4B633F3B914E8A7C656928816D01FBs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib9E9B999B3040FE514DD5EA7B3FADFAAAs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib9E9B999B3040FE514DD5EA7B3FADFAAAs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib9E9B999B3040FE514DD5EA7B3FADFAAAs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA314F4A559EEAE1A1668EAF74E248746s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA314F4A559EEAE1A1668EAF74E248746s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA314F4A559EEAE1A1668EAF74E248746s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0E6EEE16975896D5191D8FE7F372CED9s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib0E6EEE16975896D5191D8FE7F372CED9s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB4C217AEAFFD2E7A376B6C7207D3745As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB4C217AEAFFD2E7A376B6C7207D3745As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB4C217AEAFFD2E7A376B6C7207D3745As1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib6BFEF5D5DB4A5344FB9C4EECDA34DD0Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib6BFEF5D5DB4A5344FB9C4EECDA34DD0Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib08D5F9E9048E2000531C3170F4B833B1s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib4B272863588574688F039BDBFADF6833s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib483C130EBAEDC01A43EE5EC888E0CB94s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib483C130EBAEDC01A43EE5EC888E0CB94s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib64052A600CA02ADA0A38F07CDC4EC304s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib64052A600CA02ADA0A38F07CDC4EC304s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib64052A600CA02ADA0A38F07CDC4EC304s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib935480B5153338F7B4E34DC5653B41E3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib935480B5153338F7B4E34DC5653B41E3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib935480B5153338F7B4E34DC5653B41E3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib629B0B5BDED7CBA81BB61B9292597696s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib629B0B5BDED7CBA81BB61B9292597696s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib629B0B5BDED7CBA81BB61B9292597696s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA19B3FB142EDC1D69ABAF3EB43EA8214s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibA19B3FB142EDC1D69ABAF3EB43EA8214s1
http://tcpp.cs.gsu.edu/curriculum/

A. Valero, R. Gran-Tejero, D. Suárez-Gracia et al. Journal of Parallel and Distributed Computing 156 (2021) 38–52
[33] Qualcomm, DragonBoard™410C based on Qualcomm®Snapdragon™410E pro-
cessor. Peripherals Programming Guide Linux Android, Qualcomm Technolo-
gies, Inc., 2016.

[34] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, X. Tian, Data
Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems Us-
ing C++ and SYCL, Springer Nature, 2021.

[35] E. Saule, Experiences on teaching parallel and distributed computing for un-
dergraduates, in: IEEE International Parallel and Distributed Processing Sympo-
sium Workshops, 2018, pp. 361–368.

[36] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, 9th edition,
Wiley Publishing, 2012.

[37] D.J. Sorin, M.D. Hill, D.A. Wood, A Primer on Memory Consistency and Cache
Coherence, 1st edition, Morgan & Claypool Publishers, 2011.

[38] S. Srivastava, M. Smith, A. Ghimire, S. Gao, Assessing the integration of par-
allel and distributed computing in early undergraduate computer science cur-
riculum using unplugged activities, in: IEEE/ACM Workshop on Education for
High-Performance Computing, 2019, pp. 17–24.

[39] W. Stallings, Operating Systems: Internals and Design Principles, 6th edition,
Prentice Hall Press, 2008.

[40] E. Upton, G. Halfacree, Raspberry Pi User Guide, John Wiley & Sons Ltd., 2014.
[41] E. Upton, J. Duntemann, R. Roberts, T. Mamtora, B. Everard, Learning Computer

Architecture with Raspberry Pi, 1st edition, Wiley Publishing, 2016.
[42] L.B.A. Vasconcelos, F.A.L. Soares, P.H.M.M. Penna, M.V. Machado, L.F.W. Góes,

C.A.P.S. Martins, H.C. Freitas, Teaching parallel programming to freshmen in an
undergraduate computer science program, in: IEEE Frontiers in Education Con-
ference, 2019, pp. 1–8.

[43] E. Veach, Robust Monte Carlo Methods for Light Transport Simulation, Ph.D.
thesis, Stanford University, 1998.

[44] A. Williams, C++ Concurrency in Action, Manning Publications, 2012.
[45] A.A. Younis, R. Sunderraman, M. Metzler, A.G. Bourgeois, Case study: using

project based learning to develop parallel programing and soft skills, in: IEEE
International Parallel and Distributed Processing Symposium Workshops, 2019,
pp. 304–311.

Alejandro Valero received the Ph.D. degree in
Computer Engineering from the Universitat Politèc-
nica de València, Spain, in 2013. From 2013 to 2015,
he was a visiting researcher with Northeastern Uni-
versity, Boston, MA, USA, and the University of Cam-
bridge, UK. Since 2016, he has been a professor with
the Department of Computer Science and Systems En-
gineering, Universidad de Zaragoza, Spain, where he
teaches several courses on computer organization and

has been involved in multiple teaching innovation projects. His research
interests include GPU architectures, memory hierarchy design, energy ef-
ficiency, fault tolerance, and computer architecture education. Prof. Valero
is a member of the Aragon Institute of Engineering Research (I3A) and the
HiPEAC European NoE.

Rubén Gran-Tejero has been teaching for the last
fourteen years at the Department of Computer Sci-
ence and Systems Engineering of the University of
Zaragoza. He has conducted lectures on operating
systems, systems architecture, computer architecture,
parallel multiprocessors, and high performance com-
puting. He has been involved in several teaching in-
novation projects as collaborator and principal inves-
tigator. His research interests include hard real-time

systems, hardware for reducing worst-case execution time and energy
consumption, efficient processor microarchitecture, and effective program-
ming for parallel and heterogeneous systems.

Darío Suárez-Gracia received the Ph.D. degree
in Computer Engineering from the Universidad de
Zaragoza, Spain, in 2011. From 2012 to 2015, he was
with Qualcomm Research Silicon Valley. He is cur-
rently an Associate Professor with the Universidad de
Zaragoza. His research interests include parallel pro-
gramming, heterogeneous computing, fault-tolerance
and computer architecture education. He is a recip-
ient of the best paper award at the Workshop on

Computer Architecture Education. He is a member of the Aragon Insti-
tute of Engineering Research (I3A), the IEEE Computer Society, ACM, and
the HiPEAC European NoE.

Emanuel A. Georgescu is an Undergraduate Stu-
dent of the Telecommunications Engineering Program
at the Universidad de Zaragoza. His undergraduate
thesis explores how different mutex implementations
impact on the performance of a ray tracer application.

Joaquín Ezpeleta received the M.S. degree in
Mathematics and the Ph.D. degree in Computer Sci-
ence from the University of Zaragoza, Spain. He is a
Full Professor of the Dept. of Computer Science and
Systems Engineering of the University of Zaragoza,
where he conducts lectures on formal methods for
sequential and concurrent programming as well as
service-oriented architectures. His research focuses on
the problem of modeling, analysis, and control syn-

thesis for concurrent systems and the application of formal techniques to
help in the development of correct distributed systems based on Internet
and cloud technologies, as well as on the parallel processing of data and
intensive computing problems.

Pedro Álvarez received the Ph.D. degree in Com-
puter Science Engineering from the University of
Zaragoza, Zaragoza, Spain, in 2004. He works as Senior
Lecturer Professor at this University since 2000. His
current research interests focus on the development
and application of novel techniques for the analysis of
large-scale data repositories. The proposed solutions
have been applied in different fields, such as cyber-
security, e-commerce and e-business, or e-health and

sports. During the last years these research results have been transferred
to the academic context in order to understand students’ behavior and to
improve the learning-teaching methods.

Adolfo Muñoz is an Associate Professor at the De-
partment of Computer Science and Systems Engineer-
ing of the University of Zaragoza. For the last fifteen
years, he has been teaching in diverse courses related
to programming, software engineering and computer
graphics in varied undergrad and master level engi-
neering and computer science studies. He has partici-
pated in several teaching innovation projects, and has
applied innovative methodologies throughout the dif-

ferent courses he has participated in. He is recently involved in a new
master in Robotics, Graphics, and Computer Vision.

Luis M. Ramos is an Associate Professor at the
Department of Computer Science and Systems Engi-
neering of the University of Zaragoza. He received the
Ph.D. degree in Computer Engineering from the Uni-
versity of Zaragoza in 2009. For the last 25 years
he has been teaching in diverse courses related to
logic design, computer architecture, high performance
computing, and operating systems. He has partici-
pated in several teaching innovation projects. His re-

search interests include hardware data prefetching and computer architec-
ture education. He received the Best Paper Award at the First JILP Data
Prefetching Championship.

Pablo Ibáñez received the M.S. degree in Com-
puter Science from the Universitat Politècnica de
Catalunya, Spain, in 1989, and the Ph.D. degree in
Computer Science from the Universidad de Zaragoza,
Spain, in 1998. He is an Associate Professor with the
Computer Science and Systems Engineering Depart-
ment, University of Zaragoza. His research interests
include processor microarchitecture, memory hierar-
chy, parallel computer architecture, and high perfor-

mance computing applications.
52

http://refhub.elsevier.com/S0743-7315(21)00113-1/bib8621FFDBC5698829397D97767AC13DB3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib8621FFDBC5698829397D97767AC13DB3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib8621FFDBC5698829397D97767AC13DB3s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibC177FE2314F955662359E9EDA833C13Cs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibC177FE2314F955662359E9EDA833C13Cs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibC177FE2314F955662359E9EDA833C13Cs1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib800B412A66EB35EF7DA1524D3A33FD98s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib800B412A66EB35EF7DA1524D3A33FD98s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib800B412A66EB35EF7DA1524D3A33FD98s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib3AC15AE38512CFD2908B8A6140B21678s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib3AC15AE38512CFD2908B8A6140B21678s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB9CB8600343670F6ED8BDD68EDB7C123s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB9CB8600343670F6ED8BDD68EDB7C123s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibD6C71ED47DDE3EC13501F3A3566617D6s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB8BA2352250B843548465E51537E05E7s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibB8BA2352250B843548465E51537E05E7s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib2CFE1A659338E52FCD4FC00040EF09A9s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib80EC56EC7B1B2D406A96BE667E996A07s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib80EC56EC7B1B2D406A96BE667E996A07s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bibFE1B5BF7A9C3BE911E28AE6B58B7169Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib885F7590CBD847454474D85E3A568F20s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib885F7590CBD847454474D85E3A568F20s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib5BE4F588B56AE69A3B3045959457CE49s1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1
http://refhub.elsevier.com/S0743-7315(21)00113-1/bib66ACFC3A4A258B57BF6C927C856BE73Ds1

	A learning experience toward the understanding of abstraction-level interactions in parallel applications
	1 Introduction
	2 Context
	2.1 CE program
	2.2 Involved courses

	3 Proposed learning experience
	3.1 Overview
	3.2 Abstraction levels
	3.2.1 Concurrent task queue
	3.2.2 Task queue protection with futex system calls
	3.2.3 Futexes with assembly code
	3.2.4 Parallel ray tracing

	4 Experimental environment
	5 Technical results
	5.1 OS level
	5.2 Library level
	5.3 Assembly level
	5.4 Application level

	6 Experience assessment
	7 Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A Surveys
	A.1 DCSP survey
	A.2 OS survey
	A.3 MP survey
	A.4 CG survey

	References

