000126904 001__ 126904
000126904 005__ 20241125101126.0
000126904 0247_ $$2doi$$a10.1007/s10998-022-00488-0
000126904 0248_ $$2sideral$$a130335
000126904 037__ $$aART-2023-130335
000126904 041__ $$aeng
000126904 100__ $$0(orcid)0000-0002-6559-4722$$aMartin-Morales, Jorge$$uUniversidad de Zaragoza
000126904 245__ $$aNormal surface singularities with an integral homology sphere link related to space monomial curves with a plane semigroup
000126904 260__ $$c2023
000126904 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126904 5203_ $$aIn this article, we consider an infinite family of normal surface singularities with an integral homology sphere link which is related to the family of space monomial curves with a plane semigroup. These monomial curves appear as the special fibers of equisingular families of curves whose generic fibers are a complex plane branch, and the related surface singularities appear in a proof of the monodromy conjecture for these curves. To investigate whether the link of a normal surface singularity is an integral homology sphere, one can use a characterization that depends on the determinant of the intersection matrix of a (partial) resolution. To study our family, we apply this characterization with a partial toric resolution of our singularities constructed as a sequence of weighted blow-ups.
000126904 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
000126904 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126904 590__ $$a0.6$$b2023
000126904 592__ $$a0.615$$b2023
000126904 591__ $$aMATHEMATICS$$b264 / 490 = 0.539$$c2023$$dQ3$$eT2
000126904 593__ $$aMathematics (miscellaneous)$$c2023$$dQ2
000126904 591__ $$aMATHEMATICS, APPLIED$$b257 / 332 = 0.774$$c2023$$dQ4$$eT3
000126904 594__ $$a1.4$$b2023
000126904 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126904 700__ $$aVos, Lena
000126904 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000126904 773__ $$g86, 2 (2023), 303–335$$pPeriodica Mathematica Hungarica$$tPeriodica Mathematica Hungarica$$x0031-5303
000126904 8564_ $$s617859$$uhttps://zaguan.unizar.es/record/126904/files/texto_completo.pdf$$yVersión publicada
000126904 8564_ $$s1151462$$uhttps://zaguan.unizar.es/record/126904/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126904 909CO $$ooai:zaguan.unizar.es:126904$$particulos$$pdriver
000126904 951__ $$a2024-11-22-11:57:37
000126904 980__ $$aARTICLE