A generative framework for image-based editing of material appearance using perceptual attributes
Financiación H2020 / H2020 Funds
Resumen: Single-image appearance editing is a challenging task, traditionally requiring the estimation of additional scene properties such as geometry or illumination. Moreover, the exact interaction of light, shape and material reflectance that elicits a given perceptual impression is still not well understood. We present an image-based editing method that allows to modify the material appearance of an object by increasing or decreasing high-level perceptual attributes, using a single image as input. Our framework relies on a two-step generative network, where the first step drives the change in appearance and the second produces an image with high-frequency details. For training, we augment an existing material appearance dataset with perceptual judgements of high-level attributes, collected through crowd-sourced experiments, and build upon training strategies that circumvent the cumbersome need for original-edited image pairs. We demonstrate the editing capabilities of our framework on a variety of inputs, both synthetic and real, using two common perceptual attributes (Glossy and Metallic), and validate the perception of appearance in our edited images through a user study.
Idioma: Inglés
DOI: 10.1111/cgf.14446
Año: 2022
Publicado en: Computer Graphics Forum 41, 1 (2022), 453-464
ISSN: 0167-7055

Factor impacto JCR: 2.5 (2022)
Categ. JCR: COMPUTER SCIENCE, SOFTWARE ENGINEERING rank: 52 / 108 = 0.481 (2022) - Q2 - T2
Factor impacto CITESCORE: 5.3 - Computer Science (Q2)

Factor impacto SCIMAGO: 0.95 - Computer Networks and Communications (Q1) - Computer Graphics and Computer-Aided Design (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/682080/EU/Intuitive editing of visual appearance from real-world datasets/CHAMELEON
Financiación: info:eu-repo/grantAgreement/EC/H2020/765121/EU/DyViTo: Dynamics in Vision and Touch - the look and feel of stuff/DyViTo
Financiación: info:eu-repo/grantAgreement/EC/H2020/956585/EU/Predictive Rendering In Manufacture and Engineering/PRIME
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-03-18-15:28:44)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2023-08-30, última modificación el 2024-03-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)