000126920 001__ 126920
000126920 005__ 20241125101135.0
000126920 0247_ $$2doi$$a10.3390/math11143053
000126920 0248_ $$2sideral$$a134465
000126920 037__ $$aART-2023-134465
000126920 041__ $$aeng
000126920 100__ $$aLópez, José L.
000126920 245__ $$aAsymptotic expansions for Moench’s integral transform of hydrology
000126920 260__ $$c2023
000126920 5060_ $$aAccess copy available to the general public$$fUnrestricted
000126920 5203_ $$aTheis’ theory (1935), later improved by Hantush & Jacob (1955) and Moench (1971), is a technique designed to study the water level in aquifers. The key formula in this theory is a certain integral transform H[g](r,t) of the pumping function g that depends on the time t and the relative position r to the pumping point as well as on other physical parameters. Several analytic approximations of H[g](r,t) have been investigated in the literature that are valid and accurate in certain regions of r, t and the mentioned physical parameters. In this paper, the analysis of possible analytic approximations of H[g](r,t) is completed by investigating asymptotic expansions of H[g](r,t) in a region of the parameters that is of interest in practical situations, but that has not yet been investigated. Explicit and/or recursive algorithms for the computation of the coefficients of the expansions and estimates for the remainders are provided. Some numerical examples based on an actual physical experiment conducted by Layne-Western Company in 1953 illustrate the accuracy of the approximations.
000126920 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000126920 590__ $$a2.3$$b2023
000126920 592__ $$a0.475$$b2023
000126920 591__ $$aMATHEMATICS$$b21 / 490 = 0.043$$c2023$$dQ1$$eT1
000126920 593__ $$aEngineering (miscellaneous)$$c2023$$dQ2
000126920 593__ $$aMathematics (miscellaneous)$$c2023$$dQ2
000126920 593__ $$aComputer Science (miscellaneous)$$c2023$$dQ2
000126920 594__ $$a4.0$$b2023
000126920 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000126920 700__ $$aPagola, Pedro
000126920 700__ $$0(orcid)0000-0002-8021-2745$$aPérez Sinusía, Ester$$uUniversidad de Zaragoza
000126920 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000126920 773__ $$g11, 14  (2023), 3053 [14 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000126920 8564_ $$s573081$$uhttps://zaguan.unizar.es/record/126920/files/texto_completo.pdf$$yVersión publicada
000126920 8564_ $$s2408290$$uhttps://zaguan.unizar.es/record/126920/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000126920 909CO $$ooai:zaguan.unizar.es:126920$$particulos$$pdriver
000126920 951__ $$a2024-11-22-12:00:35
000126920 980__ $$aARTICLE