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A B S T R A C T   

Electroporation is a phenomenon produced in the cell membrane when it is exposed to high pulsed electric fields 
that increases its permeability. Among other application fields, this phenomenon can be exploited in a clinical 
environment for tumor ablation therapies. In this context to achieve optimum results, it is convenient to focus the 
treatment on the tumor tissue to minimize side effects. In this work, a pre-treatment tumor location method is 
developed, with the purpose of being able to precisely target the therapy. This is done by taking different 
impedance measurements with a multi-output electroporation generator in conjunction with a multi-electrode 
structure. Data are processed by means of a vector of independent artificial neural networks, trained and 
tested with simulation data, and validated with phantom gels. This algorithm proved to provide suitable accu-
racy in spite of the low electrode count compared to the number of electrodes of a standard electrical impedance 
tomography device.   

1. Introduction 

Electroporation phenomenon consists of cell membrane per-
meabilization when they are exposed to high intensity pulsed electric 
fields. It has many application areas, such as food processing, biotech-
nology or medicine [1–8]. In this last-mentioned field, one of the most 
important clinical applications is tumor ablation. 

Electroporation based treatments for tumor ablation do not present 
the inconveniences of thermal based procedures, such as microwave or 
radiofrequency ablation, so their popularity is rising in the latest years 
[9–11]. Due to their non-thermal character, they can be used for treating 
highly irrigated tissues. They also preserve the connective matrix of the 
blood vessels [12], so they allow to minimize side effects on healthy 
tissue irrigated by blood vessels passing through or near ablated areas. 
In this way, faster recovery times after surgery are achieved [13]. 
However, there are still challenges to overcome, one of them being to 
concentrate the treatment on the tumor area where this paper is focused 
on. 

Because tumor tissue conductivity is higher than surrounding 
healthy tissue conductivity, it can be difficult to target the treatment into 
the tumor, as a consequence of the electric field concentrating on the less 
conductive tissue. Nowadays, clinical electroporation treatments tend to 
increase the electric field intensity or the number of pulses in order to 

ensure proper ablation of the desired area. This can cause side effects 
such as thermal damage [14,15], and unnecessarily ablating healthy 
tissue. Sometimes, it may even be really challenging to ensure that there 
is enough electric field on the tumor to treat it. On this way, a pre- 
treatment method to locate tumor tissue between parallel plate-based 
electrodes, with the system used to apply the treatment, is proposed. 
It is based on different directions impedance measurements, processed 
by a machine learning algorithm, that outputs the location of tumor 
tissue between electrodes, without external equipment, in order to 
target the treatment on tumor tissue in real time. 

Existing methods to locate tumor tissue before treatment are mainly 
based on MRI or echography, but they cannot be used while plate 
electrodes are placed, so it is not possible to observe the position of the 
tumor in relation to the electrodes. The method developed in this work is 
based on the same principle of an electrical impedance tomography 
(EIT), where impedance is measured on different parts of the tissue. 
Currently, several EIT based methods exist to monitor treatments 
[16–18], but not for locating tumor tissue, and they also require dis-
connecting the measurement system to avoid damaging it with high 
voltage electroporation pulses. The main difference between the pro-
posed method and an EIT is that while EIT can be used for mapping the 
impedance of the tissue and therefore finding the most conductive areas, 
it does not directly output the areas with tumor tissue. Moreover, the 
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purposed method does not try to reproduce an impedance map of the 
tissue between the electrodes, but it detects areas with tumor tissue 
where the treatment must be focused on in order to maximize the 
effectiveness of the treatment, while also minimizing side effects on the 
surrounding healthy tissue. Besides, traditional EIT algorithms require a 
high electrode count and an increased number of measurements to 
achieve a useful precision [19]. This last situation is where machine 
learning algorithms can overcome the difficulties of traditional EIT al-
gorithms, and therefore, they are selected in this work. A preliminary 
proposal of this studio was presented [20] on the 4th World Congress on 
Electroporation. 

Machine learning algorithms, while still having some drawbacks, are 
becoming increasingly popular in many application fields. As an 
example, there are high frequency irreversible electroporation treat-
ment planning methods that make use of neural networks [21]. 

2. Material and methods 

This section presents the measurement system that enabled the 
collection of impedance measurements on different parts of the tissue 
between electrodes. Then, the machine learning algorithm to locate 
tumor tissue based on the previous measurements is described. 

2.1. Electroporation and impedance measurement system 

In this paper, a versatile multi-output electroporation system has 
been used for performing the impedance measurements composed by a 
pair of differential multi-electrodes (Fig. 1 and a multi-output voltage 
generator [22]. The electrodes used with the inverter are based on two 
differential parallel plate-based electrodes, but instead single-plate 
electrodes, they were divided in a 3-by-3 matrix of plates, so each one 
can be driven independently. This implies voltage can be applied be-
tween any combination of plates of an electrode to anyone of the other 
one, creating electric field vectors with different orientations in different 
parts of the tissue without relocating the electrodes. In order to apply the 
desired voltage to each plate of the electrodes, a versatile multi-output 
inverter specifically designed to be used in conjunction with the 
mentioned electrodes is necessary in this research. It is not only capable 
of delivering high voltage pulses (continuously, in bursts, monopolar or 
bipolar, and so on) but it is also designed to be able to apply low voltage 
bursts before, during and after the treatment, thus allowing to measure 
the impedance between electrodes in real time. Thanks to its versatility, 
it can be employed not only to treat tumor tissue but also to locate tu-
mors before the treatment, which is the main purpose of this paper. 

In this research, impedance is obtained at the frequency of 10 kHz. 
This frequency is chosen because is low enough so that the electrode 
cables inductance does not add any significant impedance (relative to 
the tissue) to the measurement, thus providing more precise measure-
ments, while also keeping the measuring time under 100 ms so that 
energy translated to the tissue ion the measuring process does not heat 
up the tissue. Also, at frequencies under 100 kHz, impedance difference 
between tumor and healthy tissue is higher, so it is easier to distinguish 
between tumor and healthy tissue. In order to calculate impedance, a 
train of 10 bipolar square pulses, at 10 kHz (1 ms) is applied between the 
desired electrode plates. Then, the FFT of the measured voltage and 
current is computed at 10 kHz, and impedance is obtained from those 
values. 

This whole system also enables the application of different high 
strength electric field vectors on the tumor to increase effectiveness, 
once tumor tissue locations between the electrodes are known, and 
monitoring the therapy in real-time, even providing treatment outcome 
information. 

2.2. Data processing 

The main goal of this research is to find tumors between electrodes, 
thus allowing to target the electroporation treatment on it. 

So as to find tumors, tissue between electrodes is depicted in two 
layers of 3-by-3 voxels, a total of 18, as shown in Fig. 2b. The objective of 
this system is to identify the ones containing at least a 5% of tumor 
tissue, and therefore the tissue regions in which the treatment should be 
targeted. In order to find tumor tissue, impedance Z between 81 cell 
combinations is measured by a precision current probe and a 10 kHz 
train of 10 voltage pulses in each cell combination. The applied electric 
field is well below the reversible electroporation threshold, so that it 
does not affect the treatment or communicates any significant energy to 
the tissue [23,24]. In this work, an amplitude of 20 V is employed in the 
experimentation procedure. The designed algorithm to process these 
measurements and find tumor tissue between these electrodes is pre-
sented in the next section. 

2.2.1. Machine learning algorithm 
To process the impedance measurements a machine learning algo-

rithm was developed. It consists of a vector of 18 independent neural 
networks, ANNi, each one of them with one output θi corresponding to a 
single voxel (Fig. 3a). Each output θi states if there is (θi = 1) or not (θi =

0) tumor tissue in the associated voxel shown in Fig. 2b. This vector of 
neural networks permits them to have less neurons per layer, than a 

Fig. 1. Top and bottom view of the multi-electrodes.  
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more complex network with 18 outputs, which makes them faster and 
easier to train, with less total parameters to tune, and a smaller training 
dataset [25,26]. Another advantage of this proposal is its scalability, 
allowing to solve situations with more voxels. Every neural network is a 
simple feedforward network, which has a multi-layered perceptron 
structure, with 10 neurons in a single hidden layer, 81 inputs (the 
impedance measurements) and 1 output, as shown in Fig. 3a. The 
implemented transition function is the commonly used ReLU (Rectified 
Linear Unit, f(x) = max(0, x)), because it performs well, is efficient, and 
allows for a faster training process than other functions. This structure 
implies that every layer of the network is fully connected in each 
network, but every neural network is completely independent of the 
other ones. These neural networks have been trained with a Levenberg- 
Marquadt algorithm and a cross-validation technique, which is adequate 
for small neural networks because of its speed of convergence and ac-
curacy [27]. 

A Levenberg-Marquadt algorithm is a backpropagation algorithm 
which results in a fast and accurate training method for this problem. 
Training data is split into 2 main sets: training (85 %) and test (15 %) 
data. Data split is carried out randomly but ensuring a uniform distri-
bution of cases in the test dataset. This helps performance metrics of 
neural networks to be realistic. 

A big factor in machine learning algorithms is training dataset size: 

usually the bigger, the better. That said, it depends on several aspects 
such as training algorithm, validation algorithm, and most importantly 
total neural network parameters. A common approach is that training 
partition should be at least 5 to 10 times the number of neural network 
parameters [26]. In this paper, training dataset size is 7.7 times the total 
neural network parameters. Total neural network parameters are 
calculated as follows in (1), where Np is the total number of parameters, 
Nwi is the number of weights of each layer, and Nbi is the number of 
biases of each layer. Nl is the total number of layers, where i = 0 rep-
resents the input layer (which has no bias parameters), and l the output 
layer, so that hidden layers go from i = 1 to i = l − 1 

Np =
∑l

0
(Nwi + Nbi ). (1)  

In the proposed neural network architecture, Nw = 830 and Nb = 12, so 
Np = 842. 

Another consideration to improve network performance and avoid 
parameters overfitting, is to implement a cross-validation technique in 
the training process. Training data is cross folded in 5 sets; 20 % of the 
training set is divided into a validation subset. This validation set is 
needed to calculate the error of the network with the current training 
state, and when it starts to increase, even if the error of the training set 
continues to decrease, the training process stops, to avoid overtraining. 
This iterative process is repeated 5 times (as many as cross-folding sets), 
each with a fold of the training set, to achieve the optimal network 
parameters. Cross-validation technique maximizes training data while 
also providing validation accuracies to the training algorithm, which is 
important in this situation where training partition size is smaller than 
10 times the total number of parameters to tune. Finally, each network 
error is tested with the test partition to calculate the accuracy of the 
networks with new data. Test partition is completely new for the neural 
networks after training. 

2.2.2. Finite element model 
In order to train the machine learning algorithm, a finite element 

model has been developed by means of the software COMSOL Multi-
physics® and Matlab®, using the Electric Currents interface provided by 
COMSOL® provides. It considers the electric properties of tissues to 
determine the electric field distribution. Fig. 4 shows the geometry of 
the model. The model is based on a block that represents the biological 
tissue between the electrodes, and then the multi-electrodes. The multi- 
electrodes are modeled using the built-in materials of COMSOL®, i.e. 
copper and FR4. Then, the block that represents the biological tissue is 
composed by a 15× 15× 6 cell structure. Every cell has the same di-
mensions, and in the COMSOL® model each one is an independent en-
tity. In order to represent tumor masses and healthy tissue 
heterogeneity, it is modeled using three different materials: two of them 
are used for modeling healthy tissue and the third one for modeling 

Fig. 2. Electrode cells of upper (Cj,ku ) and lower (Cj,kl ) electrode with tissue between them (a), and tissue voxels depiction (b), where θi is the output of the neural 
network corresponding to the voxel. 

Fig. 3. Multi-layered perceptron structure of each independent neural network 
designed in Matlab® (a). Vector composed of as many independent feedforward 
neural networks as outputs needed (b). The output θi of each neural network is 
a true or false statement which describes if the voxel it is associated with 
contains tumor tissue or not. 
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tumor tissue. Materials are assigned to the corresponding cells through 
MATLAB® in every simulation. 

To assign the tumor material, firstly tumor center is located 
randomly in the block, attending tumor size, and ensuring that, if there 
is more than one tumor, they are not touching each other. Then, 
depending on tumor size, tumor material is also assigned to the corre-
sponding adjacent cells. After selecting the cells depicting the tumor 
mass, two materials are assigned to the remaining cells of the entity, 
following a uniform random distribution so that the average conduc-
tivity of the healthy tissue is the average conductivity of the healthy 
tissue materials. One of the materials has 0.7 times the base conductivity 
of the healthy tissue and the other one 1.3 times. In this way, healthy 
tissue heterogeneity is modeled. The parameters assigned to these ma-
terials are in Table 1. 

In Fig. 4b a picture of the model with materials already assigned is 

shown. Finally, the base tissue conductivity is determined based on the 
conductivity range of some biological tissues such as pig liver. Though, it 
must be noted that impedance measurements are normalized between 
0 to 1 in each case before they are used as an input of the neural net-
works, so that the method works with different tissues without the need 
for obtaining new simulation data or retraining the networks. 

To improve simulation time, a generic model without tissue mate-
rials assigned (but everything else is defined, entities already meshed, 
and frequency domain study created) is built and saved in an mph file. In 
the simulation process, this mph file is opened (this is faster than 
creating the model every time with a MATLAB® function), tissue ma-
terials are assigned to the remaining entities, and then 81 simulations 
are carried out. Each one of these 81 simulations per case changes the 
ground and electric potential (1 V) boundary conditions, assigning them 
to their corresponding electrode entities, so that the 81 desired mea-
surements are obtained. A probe that integrates the normal current 
density is assigned to the same entity that has the ground condition 
every time, and these results are stored in an array of 81 values for each 
case. 

A total of 7635 models with different tumor sizes and locations have 
been developed to train and test the neural network. The resulting 81 
impedance measurements per case are the inputs of each ANNi (Fig. 3b, 
where each θ is the same as in Fig. 2b). 

2.3. Experimental evaluation 

This section describes an experimental evaluation procedure that can 
prove the feasibility of the previously exposed method. The experi-
mentation setup shown in Fig. 5 is composed by the following parts:  

• Teledyne Lecroy® Wavesurfer 4104HD Digital Oscilloscope with 
Teledyne Lecroy® HVD3206A high voltage differential probes and 
Pearson® current sensor model 411.  

• Electroporation system: ad hoc high performance multiple output 
generator with multi-electrodes [22,28].  

• Computer with Matlab®, to process and evaluate obtained data. 

The above-mentioned oscilloscope, with its voltage probes and cur-
rent sensors, acquires electrical data from the experiments. Then, data is 
transferred to computer and it is processed in MATLAB® with the 
method described before, to obtain the location of “tumor-like”tissue. 

In order to validate the designed method described before, samples 
of phantom gel with known conductivity are used as tissue-mimic ma-
terials [29]. Their composition is described in Table 2. Conductivity 
mostly depends on the sodium chloride concentration, so its concen-
tration establishes the conductivity, between 0.05 S/m and 1.5 S/m. In 
that way, samples with precise inserts of other samples with higher 
conductivity are employed to recreate a tumor in a healthy tissue, so that 
the resulting tumor location estimated by the designed method can be 
compared with the real location of the “tumor”. 

3. Results 

3.1. Neural networks accuracy 

Test accuracy of each individual neural network, using simulation 
test data, is between 99.8 % in the worst cases, corresponding to the 
voxels of corners, and 100 % on the rest. It is important to know that the 
total accuracy of the vector of neural networks is the product of all of 
them, what gives a global test accuracy of 98.95 %. That means the 
probability to correctly predict every voxel in a case. That said, the er-
rors will be mainly focused on the corners, while the accuracy on the 
center voxels is still 100 %. Table 3 shows the True Positive rate (TP 
rate), True Negative rate (TN rate), False Positive rate (FP rate) and False 
Negative rate (FN rate) of each independent network. It is important to 
note that validation accuracy and test accuracy are very similar, which is 

Fig. 4. (a) COMSOL® generic model without biological tissue material 
assignment, where electrode plates are depicted in blue, and the entities rep-
resenting biological tissue can be seen like a coarse mesh. (b), COMSOL® model 
with material distribution; tumor tissue in dark gray, base tissue 1 in light gray 
and base tissue 2 is invisible in this representation to better show the material 
distribution. Every case has a different distribution of materials 1 and 2, and a 
different tumor size and position. 

Table 1 
Main parameters of COMSOL® model.  

Parameter Value 

Model dimensions 50 × 50 × 10 mm 
Base tissue 1 conductivity 0.13 S/m 
Base tissue 2 conductivity 0.23 S/m 
Tumor tissue conductivity 0.36, 0.54, 0.9, 1.8 S/m 

Min. Tumor size 3.33 × 3.33 × 1.67 mm 
Max. Tumor size 10 × 10 × 8.35 mm  
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a good indicator of network performance parameters accuracy. In Fig. 6 
a comparison between validation and test accuracy is shown. 

In Fig. 7, the number of cases with 0 to 5 errors is shown. This is 
relevant because the prediction errors can accumulate in a few cases, 
with several mispredictions in a single case, but they can also be isolated 
in different cases. Of the total data used for testing, 1140 cases had no 
mispredicted voxels, while five cases had one misprediction, one case 
had two mispredictions, and one case had four mispredictions. There are 
no cases (neither in test nor validation) with more than four 
mispredictions. 

3.2. Experimentation results 

Experimental evaluation using tissue-mimic gel was performed in 15 
cases. Every case was successfully predicted, which means an accuracy 
of 100 %. This proof of concept shows the viability of this proposal. The 
experimental evaluation was carried out on 10 corner cases (up to 3 
different tumors per case, occupying different voxels, and/or tumors 
occupying several voxels), and 5 simple cases (tumor touching top or 
bottom electrodes, in just one or two voxels). 

In Fig. 8 one of the experimentation cases is shown. It can be seen 
that the output of the data processing algorithm matches the real sam-
ple. In this presented case, the base agar gel has a conductivity of 0.1 S/ 
m, and the more conductive inserts, 0.2 S/m. 

Fig. 5. Experimental setup. From left to right: Tablet to control electroporation generator, Oscilloscope (in the back), sample being measured (on front), electro-
poration voltage generator, High voltage DC source for electroporation, and 12 V dc to supply logic power. 

Table 2 
Tissue-mimic phantom gel composition.  

Ingredient Quantity (per 70 ml of water) 

Water 70 g 
Glycerin 2 g 
Corn flour 25 g 
Agar 1 g 
Sodium Chloride from 0.5 g to 2 g  

Table 3 
Training results of each ANN. True Positive rate (TP rate), True Negative rate 
(TN rate), False Positive rate (FP rate) and False Negative rate (FN rate) of each 
network using test data, not used before for training.  

ANNi TP rate TN rate FP rate FN rate 

ANN1 0.9986 0.9998 0.0014 0.0002 
ANN2 1 1 0 0 
ANN3 0.9986 0.9998 0.0014 0.0002 
ANN4 1 1 0 0 
ANN5 1 1 0 0 
ANN6 1 1 0 0 
ANN7 0.9987 0.9999 0.0013 0.0001 
ANN8 1 1 0 0 
ANN9 0.9991 0.9999 0.0009 0.0001 
ANN10 0.9986 0.9998 0.0014 0.0002 
ANN11 1 1 0 0 
ANN12 0.9986 0.9998 0.0014 0.0002 
ANN13 1 1 0 0 
ANN14 1 1 0 0 
ANN15 1 1 0 0 
ANN16 0.9986 0.9998 0.0014 0.0002 
ANN17 1 1 0 0 
ANN18 1 1 0 0  

Fig. 6. Validation (blue) and test (red) accuracy of each independent network. 
Total validation accuracy is 98.97 % and total test accuracy is 98.95 %. Total 
validation accuracy evaluates the probability of all voxels to be 
correctly predicted. 

Fig. 7. Error Histogram. Number of test cases with 0 to 5 prediction errors. 
1140 cases had no mispredicted voxels, while five cases had one misprediction, 
one case had two mispredictions, and one case had four mispredictions. There 
are no cases with more than four mispredictions. 
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4. Discussion and Conclusion 

The proposed method allows to locate tumors between the electrodes 
after placing them. This may allow for a treatment planning that ensures 
enough electric field on tumor tissue while minimizing healthy tissue 
damage, thus preventing risks and side effects of the treatment. 
Although it may not have as much resolution as other methods such as 
MRI based ones, those cannot be used while electrodes are placed, so it is 
much more convenient because it is not necessary to relocate or 
reconnect neither the impedance measurement electrodes, nor the ones 
for the treatment. This enables a more precise therapy targeting, once 
the electrodes are placed on the tissue, even if they are not placed with 
huge precision. It could also allow for a treatment monitoring solution to 
provide outcome information, but this will need higher network 
complexity if addressed with machine learning. 

Besides, if more precision is needed, more electrodes placed closer to 
each other, and measuring impedance between the same plate elec-
trodes, would increase it [19]. That said, the precision obtained with this 
system is enough to ensure a proper electrode placement, plan the 
treatment, and lately apply it with the same system, targeting the tu-
mors. Moreover, this method could be translated to different multi- 
electrode setups such as needles, but a finite element model with the 
new electrodes must be developed. The same method should work as 
long as the needles have fixed positions. 

Although it is not the main of the proposed method, it is able to 
distinguish between tumor masses spaced at least 10 mm in the plane 
parallel to the electrode plates, and 2.5 mm in the perpendicular coor-
dinate. It is important to point out that the objective of this method is to 
find areas with tumor tissue, so it returns the voxels containing at least 5 
% of tumor tissue. Considering that every voxel dimensions are 10×

10× 5 mm, the minimum tumor volume that can be detected, in the 
worst-case scenario (tumor exactly between two voxels, with a con-
ductivity of just 2 times the surrounding tissue conductivity), is 50 mm3. 
This criterion is based on the principle that, although it is important to 
minimize the effects on healthy tissue, it is essential to ensure that tumor 

is completely treated. On cases where tumor conductivity is higher, and 
the tumor mass is all in one voxel, the minimum volume can be as low as 
5 mm3. Besides, the treatment-focus capabilities of the hardware are the 
same as the resolution of this method, so more resolution would not be 
useful in this scenario. 

Partial volume averaging artifacts can be a critical aspect in several 
imaging methods, such as MRI or EIT. However, the proposed meth-
odology purpose is neither mapping the impedance of the tissue nor the 
conductivity of each voxel, but only to find where tumor tissue is located 
based on several impedance measurements. It is also designed to find 
tumor tissue of only 2 times the healthy tissue conductivity, a lower ratio 
than usual, in order to detect tumor boundaries easier. So, if there is 
enough tumor tissue in a voxel to be detected, the algorithm states that 
the whole voxel contains tumor tissue. This is the criterion followed to 
train the neural network system, which has been established to avoid 
leaving untreated tumor tissue. If there is tumor tissue between two 
adjacent voxels, the algorithm will output that there is tumor tissue in 
both, and therefore both must be treated. 

The proposed algorithm to process data proved to work with the low 
electrode plates count, where it is not feasible to use the approximations 
implemented in traditional electrical impedance tomography tech-
niques. Also, the aim of this work is to provide information about where 
is the tumor tissue and not to provide an impedance tomography map or 
physiological information like other imaging methods such as MRI. In 
this sense, if more resolution is desired, the proposed algorithm could be 
scaled up using a higher electrode and ANN count. Moreover, one 
advantage of single-layered feedforward networks is the low computa-
tional cost and speed of calculation, so they can be easily implemented 
on the control hardware or software of the electroporation voltage 
generator. 
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