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Abstract
We study the dynamics of action potentials of some electrically excitable cells: neurons
and cardiac muscle cells. Bursting, following a fast–slow dynamics, is the most character-
istic behavior of these dynamical systems, and the number of spikes may change due to
spike-adding phenomenon. Using analytical and numerical methods we give, by focusing
on the paradigmatic 3D Hindmarsh–Rose neuron model, a review of recent results on the
global organization of the parameter space of neuron models with bursting regions occurring
between saddle-node and homoclinic bifurcations (fold/hom bursting). We provide a generic
overview of the different bursting regimes that appear in the parametric phase space of the
model and the bifurcations among them. These techniques are applied in two realistic frame-
works: insect movement gait changes and the appearance of Early Afterdepolarizations in
cardiac dynamics.
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1 Introduction

Cells are covered with a membrane that isolates and protects them from the environment. It
also acts as a regulator of ionic concentrations in the cellular plasma of important elements
for biological processes, such as Ca, K, etc. As a consequence, the ionic concentration of
some elements is different on both sides of the membrane. Since the relative permeability of
the cell membrane is also different for those elements, there exists a difference in potential
between the inside and outside of the cell, which is called the membrane potential. This is
particularly important for the study of electrically excitable cells (muscle cells, secretory cells
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Fig. 1 Left: Fast/slow decomposition that illustrates the bifurcation scenario in which a fold/hom (or square-
wave) bursting occurs in the HR model (1). Fixed points occur along the Meq curve (stable when continuous,
unstable when discontinuous), and limit cycles occur between both branches of Mlc . Andronov–Hopf (AH),
saddle-node (SN) and primary homoclinic (Hom) bifurcations are shown. Right: Zoom showing a fold/hom
bursting orbit in blue. For more details see [7]

and neurons), which perform their functions by actively changing their membrane potential
and thus generating electrical signals, called action potentials (APs). Therefore, to understand
the behavior of an excitable cell we should study the dynamics of their APs. The excitable
cells that concern us are neurons and cardiac muscle cells.

Hodgkin and Huxley proposed the first neuron (HH) model [1] describing the action
potentials in the neuron membrane. It has given rise to several mathematical models for
diverse kinds of neurons in different animals. Among them, some simplified models, like
the 3D Hindmarsh–Rose (HR) model, have been developed to help in the study of realistic
models based on the HH framework [1].We consider the HRmodel [2] for a detailed analysis
(a similar study can be carried out to other models) given that, even if it is computationally
simple, it reproduces quite well the rich firing patterns exhibited by a biological neuron as
well as the main behavior in general. The HR model is the following set of three nonlinear
ODEs

⎧
⎨

⎩

ẋ = y − ax3 + bx2 − z + I ,
ẏ = c − dx2 − y,

ż = ε[s(x − x0) − z],
(1)

where x , y and z are the membrane potential, the fast and the slow gating variables, respec-
tively. Regarding parameters, (a, c, d, s, x0) are set to the typical values (1, 1, 5, 4,−1.6),
(b, I ) take values in specific ranges where the bursting or spiking behavior is exhibited and,
along the paper, the value of the small parameter ε is taken from different intervals in which
it has different magnitude to achieve a global analysis of this fast–slow system.

Bursting is the main behavior present in neuron models, and follows a fast–slow dynamics
[3] (it is also common in laser dynamics and chemical reactions, among other practical
applications [4, 5]). The fold/hom (or square-wave) bursting, following the Izhikevich [6]
classification, is one of the main bursting regimes. In a fold/hom bursting, the active regime
begins in a fold (or saddle-node) bifurcation of equilibria and ends at a homoclinic bifurcation
in the fast subsystem. In Fig. 1, the conditions for this type of bursting in the HR model and
one orbit are shown. Spike-adding bifurcations are a common set of bifurcations in systems
that present fast–slow dynamics. Such special bifurcations give rise to the appearance of extra
spikes (turns) in the fast manifold region. They are of interest due to the progressive change
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Fig. 2 Taken from [7] (Figure 6). Left: 3D projections of bursting orbits of the HR model (1) for three
different values of parameter b. Right: Waveforms of four bursting orbits (three of them shown on the left) of
Hindmarsh–Rose model for a fixed value of I and four distinct values of parameter b. A spike-adding process
can be appreciated when going from A to D

that they cause in the spectrum of periodic orbits and the structure of chaotic attractors of the
system [8–11]. In Fig. 2 several bursting orbits and a spike-adding process in the HR model
are represented. In the aforementioned type of bursting, this spike-adding phenomenon is
associated with the existence of canard explosions and certain codimension-two homoclinic
bifurcations (inclination-flip and orbit-flip) [8, 12–14].

This paper is organized as follows. Section2 deals with the description of the dynamical
properties of the HR model, and is divided into three parts: Sect. 2.1 is devoted to studying
slices of the three-parameter space for the HR model, with each slice determined by the
values of ε within a standard range of small values; Sect. 2.2 presents the changes observed
when we consider the full three-parameter space and the parameter ε is allowed to take larger
values, and it also shows the geometric bifurcations that can be found in the HR model;
Sect. 2.3 shows the limit behavior when the small parameter ε ↘ 0. Section3 introduces
more realistic models of Hodgkin–Huxley type, one used to analyze insect gait movement
changes in Sect. 3.1, and the other to study Early Afterdepolarizations in cardiac dynam-
ics in Subsection 3.2. Section4 gives some conclusions. Finally, Appendix A provides for
completion some theoretical aspects of the homoclinic bifurcations used in the paper.

2 Characterization of the HR neuronmodel

In this section we provide an exhaustive analysis of the dynamical characteristics of the HR
model introduced in (1), and in particular we show how they depend on the values of the small
parameter ε. Each of the following subsections deals with a different situation regarding this
parameter.

2.1 Dynamics at standard values of the small parameter "

In this section, we study the behavior of the HR model when the small parameter ε is in a
standard range. The main bifurcations of the system are described, thus providing a complete
description of the parameter space.
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Fig. 3 Taken from [19] with modifications (Figures 1 and 4). Top: Spike-counting (SC) diagram on the (b, I )
plane, for ε = 0.05 and ε = 0.01, classifying the AP as quiescent (0 spikes, i.e. fixed point), spiking (1 spike)
or bursting (2 or more spikes). Andronov–Hopf (AH) and primary homoclinic (Hom) bifurcations correspond
to curves shown in red and black, respectively. Bottom: The first primary homoclinic bifurcations curves are
shown for different values of the small parameter ε. The curves have been computed using the continuation
software AUTO [17, 18]

In recent years, the HR model has been thoroughly analyzed (see [7, 8, 15, 16]) applying
different techniques, such as the spike-counting (SC) method [7, 16]. This technique, applied
to a periodic orbit of a dynamical system, determines the number of spikes that a certain
variable shows during a period. In the case of excitable cells, the SC technique allows us to
compute the number of spikes of the membrane potential during each activation period of
the cell. Figure3 shows the number of spikes of the membrane potential for stable solutions
of the HR model, codified with colors, along the (b, I )-plane. This allows us to distinguish
between the regions of chaotic bursting, periodic tonic spiking and regular bursting. Stable
spiking is shown as APs with a single spike, while quiescence of neurons occur when a
fixed point is reached (in SC terms, the AP shows 0 spikes). Ranging from blue to green,
we can see the stripes of a spike-adding cascade that corresponds to bursting that becomes
chaotic in a chain of onion-like bulbs colored in brown [8]. In this review paper, we briefly
focus on the development of a global study of the complete homoclinic structure that gives
rise to the complete phenomena. To that goal, a detailed numerical study with continuation
techniques is required (we used the well-known software AUTO [17, 18]) as well as with the
SC technique.

Andronov–Hopf (AH) bifurcations, in red, and primary homoclinic (Hom) bifurcations,
in black, are superimposed in both representations of Fig. 3. These bifurcations, further char-
acterized in [19], correspond to bifurcations shown in Fig. 1. Also in [19], it was studied how
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Fig. 4 a Theoretical unfolding of the codimension-two IF and OF homoclinic bifurcations of types Cin and
Cout describing the pencils of period-doubling and fold bifurcations. b Spike-counting diagram on the (b, I )
plane for ε = 0.01. Superimposed, the bifurcation curves (yellow—fold or saddle-node of periodic orbits,
red—period-doubling (PD), black—primary homoclinic bifurcations) and some codimension-two bifurcation
points (purple—IF and green—OF) (Color figure online)

the first primary homoclinic bifurcation curve modifies its geometry when different values
of the small parameter ε are considered and how this phenomenon is related with being in
a fast–slow regime or not. At the bottom of Fig. 3, it is shown that the number of “visible”
foldings (with respect to parameter b) of the homoclinic curve varies when larger values of
ε are considered [19].

A deep use of the SC and continuation techniques also provides a theoretical scheme of
the generation of the spike-adding and chaotic regions in fold/hom bursters, related with
canard phenomena [20] and codimension-two homoclinic bifurcations [8], respectively. For
instance, Fig. 4b shows, for ε = 0.01, a two-parameter plot (plane (b, I )) of the HR-model
with the SC technique. Superimposed to it, the figure displays the main bifurcation curves
for the spike-adding process (yellow—fold or saddle-node of periodic orbits (SN), red—
period-doubling (PD), black—primary homoclinic bifurcations) and the codimension-two
bifurcation points (purple—inclination-flip (IF) and green—orbit-flip (OF))where the pencils
of period-doubling and fold bifurcations are generated. In Fig. 4a we depict the theoretical
unfolding ( [21] and Appendix A) of the “in” and “out” versions of the codimension-two IF
and OF homoclinic bifurcations of type C, describing the pencils of period-doubling and fold
bifurcations. Although there are more types of IF andOF bifurcations, in HRmodel only type
C is present. See Appendix A for a more detailed mathematical description of homoclinic
bifurcations.

All the above results provide us with some global information of the structure of the
parameter space of theHRsystem, but since inmost cases only the first homoclinic bifurcation
was used, this information is just partial. In Fig. 5we display the complete scenario that shows
the interlaced bifurcation diagram for the n to n + 1 spike-adding process when ε is small.
Note that the homoclinic curves contain the codimension-two homoclinic bifurcation points
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Fig. 5 Taken from [22] with modifications (Figure 6). Generic theoretical scenario (for the case of n > 2)
that shows the interlaced bifurcation diagram for the n to n + 1 spike-adding process when ε is small. The
notation hom(n,n+1) is used for the isola of homoclinic bifurcations for which parameters on one side generate
homoclinic orbits with n spikes and on the other side with n + 1 spikes

that generate the bifurcations leading to the change from n to n + 1 spikes, and that they
are connected with the other homoclinic curves and with chaotic regions. Moreover, these
homoclinic curves are isolas, that is, closed curves in the parameter space. See [22, 23] for
a complete description of the theoretical scheme.

The discovery of the relevant role of the homoclinic bifurcations in the fold/hom spike-
adding process [8, 12] also allows us to classify the different types of spike-adding processes
[14]. See in Fig. 6 how the homoclinic bifurcation acts as a boundary of a continuous case
spike-adding involving canard orbits (to the left) and the isola-type one (to the right). The
top plot shows the AUTO L2-norm of the periodic orbits, while the bottom plot displays the
Interspike Bifurcation Diagram (IBD), giving the time between two consecutive spikes of
the periodic orbits. The bottom plot clearly indicates the number of spikes per orbit, while
the top plot indicates the type of spike-adding process (see [14] for more details).

2.2 A global three-parameter analysis: case " ↗ O(1)

The previous subsection showed the behavior of the parameter planes when the small param-
eter ε was taken in a standard range. In this subsection we focus on studying the global
parametric phase space. Just to give an idea of the global parametric panorama, Fig. 7 presents
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Fig. 6 Taken from [22] with modifications (Figure 11). Top: AUTO L2-norm of the orbit for x0 = −1,
b = 2.7 and ε = 0.01 (several fold and period-doubling bifurcations are represented with black and red
points, respectively). Bottom: IBD for the same orbit (Color figure online)

a three-parameter plot using the spike-counting technique. As it can be seen from two-
parameter plots on the right side of Fig. 7, bifurcation curves of periodic orbits emerge from
codimension-two homoclinic bifurcation points, in this case, the HR model exhibits IF, OF
and Belyakov bifurcations (see [13] for a complete description). Further details about the
bifurcations shown in Fig. 7 will be provided later, but the figure shows us that, by increasing
the small parameter ε, some structures change and even disappear. Two-parameter plots show
that some color bands and also some codimension-two bifurcation points are present no more
when the value of parameter ε is larger than its standard values. This fact leads us to wonder
if there are codimension-three bifurcation points or any other mechanism responsible of the
disappearance of the codimension-two bifurcation points.

In most fast–slow systems with explicit small parameters, these parameters play a signifi-
cant role and drastic changes in the global phase space are exhibited under their variation. As
commented before, in the HR model, increasing ε leads to numerous changes, and in what
follows, wewant to show how theHRmodel exhibits geometric bifurcations [24]with respect
to ε that, linked with dynamical bifurcations, explain the observed phenomena. The concept
of geometric bifurcations was introduced in [24] to visually classify observed changes in
the parameter space when special points “seem” to collide and disappear in points that are
not topological bifurcations. These changes are due to the way of observing the dynamics
and, although they are not true bifurcations, provide useful insights on the global parametric
phase space of the model. Therefore, we add, to the standard codimension of a bifurcation,
extra codimensions referred to these geometric bifurcations (see [24] for more details).

We are going to show that codimension–one-plus-one, two-plus-one and one-plus-two
geometric bifurcations occur in the HR model. We will see how codimension-one bifurca-
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Fig. 7 Left: Three-parameter (b, I , ε) spike-counting diagram of the HR model. Right: Two-parameter plots
showing slices for ε = 0.018, 0.03 and 0.08, with bifurcation lines and points: homoclinic and period-doubling
codimension-one curves, IF, OF and Belyakov codimension-two bifurcation points

tion surfaces which are unfolded generically from codimension-two bifurcation curves are
affected by the existence of codimension–two-plus-one degenerations on these curves.

From the analysis in [13], it follows that in the HR model there exist many codimension-
one homoclinic bifurcation surfaces which are exponentially close to each other, and that
their number grows to infinity when the small parameter ε tends to zero. The intersection
of each surface with horizontal planes produces isolas (closed curves) as these homoclinic
surfaces are tubular. Moreover, these isolas exhibit a pair of extremely sharp folds and their
width is also exponentially small. Folding points determine two different sides in each isola
and also in each bifurcation surface. Typically, the number of spikes of the homoclinic orbit
for parameter values on one side of a homoclinic bifurcation isola and on the other side differ
in 1. The isola for which parameters on one side generate homoclinic orbits with n spikes
and on the other side with n + 1 spikes, with n = 1, 2, . . ., will be denoted by hom(n,n+1),
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Fig. 8 Three-parameter plot showing codimension-one homoclinic bifurcation surfaces. In plots a–c the
homoclinic surfaces hom(1,2), hom(2,3), hom(6,7) and hom(11,12) are shown together using three points of
view to illustrate how close are one to each other and to compare their respective sizes. In plot d it is presented
the hom(11,12) homoclinic bifurcation surface with some codimension-two homoclinic bifurcation curves and
some geometric bifurcations

and so will be the corresponding surface. In Fig. 8 we show three-parameter plots with some
codimension-one homoclinic bifurcation surfaces and codimension-two homoclinic bifurca-
tion curves computed using the AUTO continuation software [17, 18]. In plots (a), (b) and
(c) the hom(1,2), hom(2,3), hom(6,7) and hom(11,12) surfaces are given. In plot (d) we include
Belyakov and IF bifurcation curves. This partial bifurcation diagram allows us to illustrate
a collection of geometric bifurcations, some of which are quite evident, while others not so
much. First, we observe the existence of some codimension–two-plus-one geometric bifur-
cations that correspond to folds, with respect to ε, of curves of codimension-two homoclinic
bifurcations. Nevertheless, we will distinguish between “visible” and “invisible” folds (see
plot (d)) depending on whether the fold is clearly visible or another kind of analysis is needed
to ensure its presence (this happens in the very sharp folds of the homoclinic isolas where it
is needed a plot of the bifurcation curve showing the AUTO L2-norm of the homoclinic orbit
as in Fig. 9). Recall that in all 2D-manifolds of codimension-one homoclinic bifurcations
we distinguish two leaves which are exponentially close (in fact the two leaves that form the
isolas) and therefore they are indistinguishable in the visualization of our numerical results.
They glue together along curves of sharp folding marked with a red line in plot (d) of Fig. 8.
If a curve of codimension-two homoclinic bifurcation folds inside one of the leaves, that
folding is said a codimension–two-plus-one visible fold. If the fold is along one of the folding
curves of the whole surface (that is, going from one leaf to the other), and hence it is hidden
for visualization, we refer to the bifurcation as a codimension–two-plus-one invisible fold. In
any case, both types of folding are codimension–two-plus-one geometric bifurcations. Note
that visible folds appear in pairs, one on each leaf, but invisible folds are unique points. In
[24] it is shown that on the surface hom(1,2), both the Belyakov and the IF bifurcation curves
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Fig. 9 Saddle-type codimension–one-plus-one geometric bifurcation located on the homoclinic bifurcation
surface hom(2,3). Bottom line: theoretical scheme showing the connection of two folds of two disconnected
isolas giving rise to just one isola. Middle-top lines: numerical continuation illustrating the saddle-type bifur-
cation in parameter space, showing the connection of the isolas and also a continuation in the AUTO L2-norm,
to show that really we have two or just one isola

exhibit “visible” folds, and that, on the surface hom(2,3), the Belyakov bifurcation curve also
undergoes a “visible” fold, but the IF curve presents an “invisible” fold. Note that, as shown
in Fig. 8, on the surface hom(11,12), both curves exhibit “invisible” folds.

In plots (a), (b) and (c) of Fig. 8 the homoclinic surfaces hom(1,2), hom(2,3), hom(6,7) and
hom(11,12) are shown together using three different points of view to show how close they
are to each other and to compare their respective sizes. The hom(1,2) homoclinic surface is
the biggest one and so over this surface mainly “visible” folds are observed. On the contrary,
over the other surfaces, as the size of the homoclinic surface is smaller, and some bifurcations
are located in a small region, there are some “invisible” folds because the codimension-one
curves reach the fold of the homoclinic isola and go to the other side of the homoclinic surface
via an “invisible” fold.
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Fig. 10 “Invisible” fold phenomenon giving rise to a codimension-two Belyakov homoclinic bifurcation isola
on the surface hom(6,7). a Theoretical scheme of the process. b Projection of the homoclinic surface on the
(b, ε) parameter plane and location of the Belyakov isola. c–e Homoclinic orbits on the Belyakov isola on
both sides of the curve for the indicated values of I . One side has one extra spike as shown both on the time
series (t, x) and (z, x) pictures for three values of the parameter b

Now, looking for codimension–one-plus-one geometric bifurcations, we pay attention to
the bifurcation surfaces themselves. In Fig. 8d we see how hom(11,12) splits into two discon-
nected components and each of them has a maximum (with respect to ε). These two points
are isola-type codimension–one-plus-one geometric bifurcations with respect to ε. Also, a
saddle-type codimension–one-plus-one geometric bifurcation is detected on the bifurcation
surfaces hom(2,3) and hom(6,7) (see Fig. 9). Saddle-type codimension–one-plus-one bifurca-
tions do not appear on hom(1,2) for the studied values of ε, but they are present in hom(n,n+1),
when 1 < n < ns , for certain small ns . Nevertheless, for n ≥ ns , the surface hom(n,n+1)

splits into two pieces (see Fig. 8d) and hence saddle-type codimension–one-plus-one bifur-
cations are no longer present. Most likely, isola-type codimension–one-plus-one geometric
bifurcations are present in all homoclinic surfaces if the small parameter ε is large enough.
This fact explains why, as the small parameter grows, fewer color bands appear in the 3D
graph of Fig. 7 indicating that the bursting orbits have fewer spikes. Note that this struc-
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ture provides a complete explanation of the maximum number of spikes in models once the
parameter ε is no longer small.

In order to show more clearly a saddle-type codimension–one-plus-one bifurcation we
show in Fig. 9 the theoretical scheme of the connection of two folds of two disconnected
isolas giving rise to an isola, and therefore giving rise to just one tubular surface from two
previous tubular surfaces. On the upper plots, several numerical continuation results permit
to illustrate the saddle-type bifurcation in parameter space showing the connection of the
isolas. AUTO L2-norm is used to show that really we have isolas of homoclinic bifurcations.
Note that the numerical software AUTO stops the continuation process at the dotted areas
of the blue curves because of numerical limitations. The magnifications illustrate the very
sharp folds of the isolas, only visible with zooms on the AUTO L2-norm plots up to some
parameter values due to the numerical precision of the program.

The phenomenon of the “invisible” folds is a direct consequence of the existence of very
squashed tubular structures (and therefore isolas when a two-parameter section is considered)
where the two leaves are infinitesimally close to each other. Thus, if a codimension-two
homoclinic bifurcation curve reaches the homoclinic surface folding curve, then it continues
to the other side because the conditions in the phase space that are required to have the
codimension-two bifurcation are still satisfied on the other side. So, the bifurcation curve
has experimented an “invisible” fold. Figure10 details a complete process of creation of
“invisible” folds on a codimension-twoBelyakov homoclinic bifurcation curve on the surface
hom(6,7). The plot (a) shows the theoretical scheme of the process and illustrates how one
side of the Belyakov isola is on one leaf of the tubular surface and the other side on the other
leaf, and so we have “invisible” folds due to the very small distance between the leaves. On
the plot (b) the projection of the homoclinic surface on the (b, ε) parameter plane and the
location of the Belyakov isola are shown. In order to illustrate that indeed the Belyakov curve
forms an isola on both leaves of the homoclinic surface, we present on plots (c), (d) and (e)
the time series (t, x) and (z, x) pictures of two homoclinic orbits, one on each side of the
surface, for three values of parameter b: b = 2.1597, 2.1999 and 2.2478, respectively. Note
that on one side the homoclinic orbit has one extra spike (7 spikes versus 6 spikes).

Figure 7 shows how some codimension-two points disappear. Now we have enough ele-
ments to describe the process and also to explain that a subsidiary effect is the fact that different
curves of periodic bifurcations may connect together. We can connect all these phenomena
with some geometric bifurcations illustrated in Fig. 8, in particular “visible” or “invisible”
folds depending on the size of the homoclinic isolas. As ε increases, the first geometric bifur-
cation shown in Fig. 8 that explains what happens in Fig. 7 is a codimension–two-plus-one
bifurcation on the IF homoclinic bifurcation curve. For the hom(1,2) case, as the homoclinic
surface is big enough, what happens is a maximum of each of the IF curves (one on each
leaf of the tubular surface), and so we have a “visible” fold and we observe the geometric
“collision” of two pairs of IF points, one pair on each of the leaves of the homoclinic surface
(the white points on the figure). On the contrary, for the rest of homoclinic surfaces, the IF
bifurcation curves have “invisible” folds, as they are smaller and the surfaces are composed
of isolas disconnected for small values of the parameter. Moreover, when n grows enough
hom(n,n+1) has only one branch of the IF curve, that is, IF points are only present on one of
the two disconnected components of the isolas for a small value of ε. In these cases, the IF
point seems to disappear on the limit of a homoclinic curve, and what really happens is that
geometrically “collides” with the corresponding point of the another leaf of the surface that
we cannot see. The evolution of the Belyakov curve is similar but for higher values of the
small parameter ε.
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Fig. 11 Left: Fold/hom homoclinic “mille-feuille" organization. Right: Simile of the structure on the left.
The behavior of the curves of codimension-two bifurcations is compared to the spine-of-a-book placed on
a bookstore that corresponds with the homoclinic surface. The pages of such books consist of surfaces of
bifurcations of periodic orbits and secondary homoclinic bifurcations involved in the spike-adding process

Finally, Fig. 11a shows the schematic distribution of the homoclinic bifurcation surfaces
giving rise to what we have called fold/hom homoclinic “mille-feuille" organization [13]. On
plot (b) we show a simile comparing the structure with a bookstore, where each homoclinic
surface is compared with a bookstore shelf, and where each book will take the role of the
codimension-two homoclinic bifurcations on the homoclinic surface. They will give rise to
the spine-of-a-book structure (plot (c)) with the countable set of bifurcations emanating from
the codimension-two points (the “sheets of the book”). Note that this structure provides a
complete explanation of the global homoclinic bifurcation in the HR model and in other
fold/hom bursters.

2.3 Topological structure of chaotic attractors: limit case " ↘ 0

In addition to studying the different bifurcations that periodic orbits undergo, we can analyze
the topological structure of chaotic attractors and their evolution when the parameter values
vary. One of the fundamental tools in such analysis for dissipative three-dimensional dynam-
ical systems are topological templates, which are constructed as a version of the system in the
limit case of infinite dissipation. That is, a projection of its flow is made by squeezing it along
its stable direction, so that the three-dimensional flow becomes a two-dimensional branched
manifold (see Fig. 12). The projection preserves the relative positions of the periodic orbits,
so that the crossings between them are neither created nor destroyed in the projection. The
template is therefore a useful tool for analyzing the stretching and squeezing processes that
shape the chaotic attractor and how the unstable periodic orbits (UPOs) are organized in
these processes. To determine the topological template, the intertwining of the low-period
periodic orbits must be studied through their topological periods (number of spikes) and link-
ing numbers (number of turns that one orbit makes around another). With that information,
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Fig. 12 Top: Basic elements of topological template analysis. Bottom: Global topological template obtained
for HR model, the complete Smale horseshoe template. See [25] for the analysis of the templates and the
description of allowed and forbidden symbolic sequences associated to periodic orbits

the corresponding topological template will be the simplest one that has the characteristics
detected in the UPOs.

When the chaotic attractor is hyperbolic, there is a biunivocal correspondence between
the periodic orbits of the template and those which foliate the attractor. In the case of the
HR system, the attractor is not hyperbolic, which implies that some orbits in the template
do not appear in the attractor. However, those that do exist in the attractor have the same
internal organization as in the template. This results in the concrete template of the attractor
being a subtemplate of the global template in which certain paths of the template are closed
(those corresponding to the orbits that are not in the attractor). This gives a Cantor structure
in the subtemplate depending on the closed paths and corresponding to the structure of the
chaotic attractor, where the “holes” correspond to the periodic orbits laying on those close
paths. See [25] for a full analysis of these templates, making use of symbolic dynamics,
topological templates and first return maps (FRMs) [26, 27]. In that study, it was found
that the topological template of each chaotic attractor corresponds to a subtemplate of the
complete Smale horseshoe template where there are paths that are closed, and how they relate
with certain forbidden symbolic sequences (Fig. 12).

Following a line crossing different chaotic regions in the parameter space, we can study
how the chaotic attractor changes in the different regions. To do this, we can take, for example,
ε = 0.01 and I = (100 − 26.5b)/6.91 (see Fig. 4). The upper part of Fig. 13 shows how the
shape of these attractors changes along that line. Now, using the symbolic dynamics theory,
we get that those chaotic invariants with more foliated periodic orbits have more symbolic
chains allowed in their topological template than those with a smaller number of them. That
is, depending on the number of periodic orbits that foliate (or not) the chaotic attractor, its
generic topological template will have certain open (or closed) paths forming a subtemplate
with holes.

According to the classification of the different types of spike-adding processes provided
in [14], we have a chaos-induced discontinuous spike-adding (Terman [11]) case. This case
is generated by a type C OF homoclinic bifurcation (see Sect. 2.1). This codimension-two
point generates a countable set of saddle-node and period-doubling bifurcation pencils.More-
over, in [25] it was seen that a symbolic-flip bifurcation occurs before each period-doubling
bifurcation. This bifurcation does not change the stability of the periodic orbit or any of its
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Fig. 13 Top: Chaotic attractors for different values of b in the line I = (100 − 26.5b)/6.91 (with ε = 0.01).
Middle-bottom: Two of these chaotic attractors with all their UPOs with multiplicity m from 1 to 4. We can
check how, when parameter b decreases, the number of orbits foliated to the attractor increases

topological properties, but it does modify the symbolic sequence of the periodic orbit and
it allows generating new symbolic chains. That is why, as more spike-adding pencils are
traversed, more symbolic chains are allowed. Figure14 plots the number of spikes reached
by the periodic attractor as a function of the values of b and ε. The number of spikes grows
exponentially as ε decreases to zero.

Thus, we can elaborate the hypothesis represented schematically in Fig. 15. The template
of any chaotic attractor in the system is a subtemplate of the complete Smale template with
closed paths corresponding to the forbidden symbolic chains in the symbolic dynamics of
that chaotic attractor. However, when ε tends to zero, choosing the right path to go through
all the different spike-adding pencils as they occur indefinitely, the subtemplate is being filled
in and the Smale horseshoe template is completed as the limit case.
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Fig. 14 Spike-counting in the bursting attractor along the line I = 14.4 − 4b for ε ∈ [10−4, 10−2] (in
logarithmic scale to show exponential increment in the number of spikes) and b ∈ [2.9, 3.25]. The time series
for three particular examples are shown too

Fig. 15 Theoretical scheme showing how, through infinite spike-adding pencils, the topological template of
the chaotic attractors fills more andmore gaps and tends (when ε tends to zero) to the complete Smale template
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Fig. 16 Left and center: Illustration of the tetrapod and tripod insect movement gaits. Each leg is associated
to a neuron, whose activation (bursting) sets the leg into motion. Bottom figures show the temporal bursting
pattern, from left to right, of each neuron, with shaded regions indicating the activation of the corresponding
neuron. Right: Network of neurons used as a model for hexapods, with the corresponding connections. Each
connection from neuron j to neuron k has an associated non-symmetric relative inhibitory strength c j,k , with

the indicated values: c1,2 = 1
2 , c2,1 = 1, and so on

3 Realistic models applications

In this section we illustrate how spike-adding phenomena are involved in several real pro-
cesses, such as changes in movement gaits and the creation of Early Afterdepolarizations in
cardiac dynamics.

3.1 Insect gait movement changes

The generation of rhythmic or coordinated behaviors in different organisms, such as heart-
beat, respiration, swimming or walking, is an important research topic in neuroscience with
applications to other fields like biological-inspired robotics.

Many animals, including humans, present Central Pattern Generators (CPGs) to produce
the basics of such rhythms (see [28] and the references therein). A CPG is a small biological
neuron circuit, a small network of interconnected neurons, that produces a rhythmic output
without needing a rhythmic input, while also adapting it when an input is present. Hence,
the organism can modify the rhythms according to the environment as needed. Its dynamics
depends on intracellular, synaptic, and network level phenomena.

Classic examples of CPGs driven rhythmic behavior are direct-reverse flow of circulatory
system on leeches [29, 30] and locomotive patterns [31–33]. Of special interest, on both
insect movement and robotics research, is the case of the movement of hexapods. In Nature,
hexapod insects can present different gaits, most common (and idealized) ones are shown in
Fig. 16. In the tetrapod gait there are four legs in the ground and the other two are moving,
while in tripod gait, usually present when the insect wants to go faster, three legs are moving
while the other three are at rest.

Researchers on both mentioned areas have proposed simplified CPGs to describe those
movements, usually including six motoneurons [34–40]. There are more complex models
which include biomechanical information [41–43], but those simplifiedCPGs are rich enough
to represent the usual patterns and exhibit some of the changes one may observe in the
movement of real insects.
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Fig. 17 The spike-counting diagram for an isolated neuron varying the parameters Iext and vth
K S of (2). On the

right there are three selected membrane potential time series showing the usual behavior in the three different
regions [37, 38, 44]

Ghigliazza and Holmes [37, 38] introduced one of those simple models for the movement
of cockroaches, and examined it analytically using some reductions, which unfortunately
hide some non-symmetric patterns that may occur. In this subsection we want to explore its
dynamics numerically without resorting to such reductions.

The dynamics of one isolated neuron is described in terms of a fast nonlinear calcium
current ICa , a slow potassium current IK , a very slow potassium current IK S [37], a linear
leakage current IL and an external current Iext . The ODEs describing the dynamics of the
membrane potential v, the potassium gate variable m, and the slow potassium gating variable
w are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C v̇ = −(ICa + IK + IK S + IL) + Iext ,

ṁ = ε

τm(v)
[m∞(v) − m],

ẇ = δ

τw(v)
[w∞(v) − w],

(2)

with the auxiliary ionic current functions defined by

ICa = gCa n∞(v) (v − ECa), IK = gK m (v − EK ),

IL = gL (v − EL), IK S = gK S w (v − EK ),

and where the different time scales and steady state gating variables are

τm(v) = sech
(
k0K (v − vth

K )/2
)
, τw(v) = sech

(
k0K S (v − vth

K S)/2
)
,

m∞(v) = (
1 + e−2k0K (v−vth

K )
)−1

, w∞(v) = (
1 + e−2k0K S (v−vth

K S)
)−1

,

n∞(v) = (
1 + e−2k0Ca (v−vth

Ca)
)−1

.

The parameters C , ε and δ determine the time scales of v, m and w, EX are the Nernst
potentials, gX are maximal conductances, k0X is the steepness of the transition happening at
threshold potential vth

X , where X denotes each of the considered ions. See [37, 38, 44] for
the parameters and the exact values used in the simulations.
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Figure 17 shows the behavior of the membrane potential for the stable periodic orbit
when varying parameters vth

K S and Iext . Within the colorful droplet-shaped region we can
observe the characteristic neuronal bursting of the model. Outside of it we have two opposite
behaviors: quiescence (an attracting equilibrium) and spiking (a small periodic orbit with
one spike). The global picture is similar for any other set of parameters [44].

When the six neurons (each driving the movement of a leg of the hexapod) are coupled,
they are arranged in a network shown in the right part of Fig. 16.We assume that the inhibitory
coupling is achieved via synapses that produce negative postsynaptic currents (we obtain this
by subtraction of positive postsynaptic currents instead of adding negative terms as in the
original model). Therefore, the first equation of (2) is modified in each neuron i from 1 to 6
to include the postsynaptic current Is,i :

C v̇i = −(ICa,i + IK ,i + IL,i + IK S,i ) + Iext − Is,i , Is,i = gs(vi − E post
s )

∑

j∈Ni

c j,i s j ,

with Ni the set of neighbors of neuron i as indicated in Fig. 16, c j,i the network parameters
shown in the same picture, and a new synapse variable si associated to each neuron, whose
dynamics is described by

ṡi = αs∞(vi )(1 − si ) − βsi , s∞(vi ) = Tmax

1 + e−ks (vi −E pre
s )

,

where α and β are voltage-independent forward and backward rate constants, and gs , Tmax ,
E pre

s and E post
s are parameters describing the synapses (see [44] for details).

Having a roadmap (Fig. 17) for the dynamics of a single neuron allows us to explore the
connected case, focusing on the relevant regions of the parameter space. To exemplify this,
let us consider the straight line Iext = 35.5 in the plane depicted in Fig. 17. We perform a
quasi-Monte Carlo sweeping, that is, we sweep for values of vth

K S between−30 to−22.5 and
we compute for each parameter set the orbits for 200 initial conditions selected using a low
discrepancy sequence to cover nicely the region of reasonable initial conditions (remember
that the phase space is 24-dimensional). For each of these orbits we compute the periodic
orbit towards which it converges after a large transient of 105 ms and automatically deduce
the patterns (as in Fig. 16) it describes. We are not interested in the number of spikes in this
case, but only in knowing if a neuron is active (bursting) or not. Figure18 shows the results of
this numerical experiment. At the bottom of the figure, we can see the main obtained patterns.

The histogram represents the perceptual amount of initial conditions that converges to
a particular pattern. Patterns related by symmetry (interchanging either left and right or
front and back neurons) are considered identical. Below the histogram, we have the spike-
counting diagram on the line Iext = 35.5. We can observe that the spike-adding areas affect
the smoothness of the transition among patterns, which helps us to locate the regions where
most changes are performed. Those changes are related with bifurcations on the system that
are explained in [45].

The main observation about our computations is the fact that the tripod gait is ubiquitous:
it is a possible movement pattern for any choice of the parameters, although it is unstable
for some parameter values. However, when it becomes stable, for vth

K S > −25, it quickly
becomes dominant. This result is general, in the sense thatwe canobserve the samedominance
for other sets of parameters. Those results are quite stable under small perturbations [45].
An open problem regarding the different existing gaits and their stability is the interesting
question of the dynamic change between them when parameters are varied. While animals
are able to change from one gait to another one without tripping, it yet remains to be solved
how these smooth transitions can be incorporated in the model.
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Fig. 18 The histogram with the percentage of the different gaits corresponding to the parametric line Iext =
35.5 for variable vth

K S using 200 initial conditions for each parametric set. The main patterns are depicted at
the bottom. The thick black lines describe the bursting time of each neuron along the periodic orbit; for each
pattern, time goes from left to right, and neurons i = 1 to i = 6 from top to bottom. See [44] for details

3.2 Early afterdepolarizations in cardiac dynamics

In previous sections we have centered our study in neurons, either isolated or connected.
Nowwe are going to study other excitable cells, the myocytes (or muscle cells), in particular,
heart myocytes. We want to show how the spike-adding phenomenon is relevant in cardiac
dynamics, but now with the name of Early Afterdepolarization (EAD).

Although the Hodkin–Huxley model [1] was initially proposed to simulate the behavior
of a neuron, this model established a useful mathematical formalism to describe the ionic
kinetics of themembranewhich has been used as a basis for the development of mathematical
models for other excitable cells. In thisway,DenisNoble [46] published the firstmathematical
model of a cardiac cell based on the adaptation of the equations of the Hodkin–Huxleymodel.
After some improvement byMcAllister et al. [47], Beeler and Reuter [48] developed the first
ventricular myocyte model in 1977, later reformulated by Luo and Rudy in 1991 [49] and
1994 [50, 51].

In the left plot of Fig. 19a we can see an example of an AP for a cardiomyocyte. It has
several phases. The first one, after being stimulated, is an increment in their transmembrane
voltage (depolarization or phase 0). This increment is followed by a small partial voltage
decrease (transient repolarization or phase 1) and a prolonged phase where voltage remains
approximately constant (plateau phase or phase 2). In the final part of the AP, transmem-
brane voltage decreases (repolarization or phase 3) while returning to the resting potential
level, which is maintained until receiving the next stimulus. The time elapsed between two
stimuli applied to the cell is called Pacing Cycle Length (PCL). Under some circumstances,
transmembrane potential can experience an unexpected rise during AP phase 2 or phase
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Fig. 19 In the top panel (a) we can see different APs without (left) with one (middle) and with several (right)
EADs depending on the PCL value (taken from Fig. 1 of [52]). In lower panel (b) we show some experimental
recordings where for different values of the PCL we detect some APs with one EAD (taken from Fig. 1A of
[53]). This is also observed in our numerical simulation (taken from Fig. 1c and d of [54]) for a biophysical
realistic model (c) and for a simpler one (d). In all cases, as we increase the PCL, more and more APs show
an EAD

3, which is termed Early Afterdepolarization (EAD). If EADs at cellular level are of large
enough magnitude and occur over a substantial tissue area, they can lead to triggered activ-
ity and arrhythmias [55] which makes the study of EADs highly relevant. Recall that, in
the mathematical neuroscience notation, the creation of EADs is denoted as a spike-adding
process.

For our study we have used two mathematical models, the biophysically realistic Sato
model [53] (with 27 variables) and a simpler one (the 3D Luo–Rudy model [49, 56] with
just three variables). As we can see in Fig. 19c, d both models show the EADs observed in
experimental recordings (as illustrated in Fig. 19b).

The high-dimensional model, updated by Sato et al. [53] to properly reproduce EADs,
simulates a rabbit ventricular myocyte. The total ionic current is the sum of nine ionic
currents including the L-type Ca2+ current, the fast sodium current (INa), five components
of the potassium current and two pump currents (INaK transporting potassium into the cell
in exchange for sodium out of the cell and INaCa transporting sodium in and calcium out of
the cell). An additional stimulus current Istim is included, which in this study is delivered at a
constant stimulus period defined by the PCL. The complete description of the ionic currents
involves 27 ordinary differential equations for the 27 state variables, in which 177 model
parameters are used (see [53, 57, 58] for full details and equations).

In Fig. 20 we show some results obtained for the Sato model [59]. In Fig. 20a we show
the biparametric bifurcation diagram taking into account the PCL and the Km Nao parameter
which is the extracellular sodium dissociation constant used to calculate the INaCa current
and, in turn, update sodium and calcium concentrations. For each configuration we integrate
until we find the periodic orbit and we count the number of peaks and the number of APs.
The ratio between both quantities indicates the progressive appearance of EADs: a ratio of 1
indicates that no EADs are present, while a ratio of 2 shows that every AP has an EAD; a ratio
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Fig. 20 Results for the EAD transition region using the high dimensional Sato model. In plot a we show the
biparametric bifurcation diagram taking into account the PCL and the Km Nao. In b one-parameter bifurcation
diagram varying PCL. The points correspond to the transmembrane potential of the AP-peaks. See text for
explanation

of 1.5would thus indicate that an EAD is present in one out of twoAPs, and so on. This ratio is
plotted following a color code. The red bar in the diagram corresponds to the transition region
from no EAD to EAD for the standard value of the Km Nao. The one-parameter bifurcation
diagram varying PCL is plotted in Fig. 20b. The points correspond to the peaks of the AP.
On the left (where only the blue line is visible) the ratio is 1 and all APs have a single peak,
i.e. present no EADs. On the right (where two red lines are present) the orbit will show two
APs: one with EAD and another one without it (both with different AP-peak). Blue points
are obtained for increasing PCL values (from left to right) and red points for decreasing PCL
values (from right to left). It can be seen that for some PCLs there is coexistence phenomenon,
it means that for the same configuration but different initial conditions we obtain different
periodic orbits (one with EAD and another one without EADs). Based on our simulations
[59] using the 27D Sato model we can conjecture one possible theoretical scheme of the
creation of the EAD. First, a torus bifurcation occurs, which allows the creation of alternans
and an orbit with different APs. Moving on the bifurcation line, some of the APs of the
orbit start to create an EAD and the orbit goes from the configuration without EAD (ratio
1, blue region) towards the configuration with EAD (ratio 1.5, green region). We plot white
points and gray lines in Fig. 20b to explain this conjecture. To prove this conjecture we need
a simpler model to do a theoretical study.

As with the Hodkin–Huxley model, where a more simplified model was used (the three-
dimensional HR model), also for the myocyte we use a more simplified model than Sato,
the modified Luo–Rudy 3D model. This model meets, like the HR model, the two basic
conditions of being computationally simple but at the same time capable of reproducing the
behavior we want to study: the EADs.

The Luo–Rudy 3Dmodel [49, 56] is a simplification of the original Luo–Rudymodel [49]
following the approach of [56]. This simplified model contains an intermediate time-scale
Ca current and a slow K current. The fast Na current was discarded due to its little effects
on EAD generation, as it is activated mostly during the AP upstroke but it is practically
null during the plateau and repolarization AP phases where the EAD appears. We include,
as in Sato model, an additional stimulus current Istim at a constant period defined by the
PCL. The three variables of this model correspond to the inactivation gating variable of the
Ca current ( f ), the activation gating variable of the K current (x) and the transmembrane
potential (V ). After checking that both models experience similar behavior [54], we study
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Fig. 21 Taken from [54]withmodifications (Figure 6). The top panel shows the EAD transition region between
periodic orbits (PO) without and with EAD using the transmembrane potential of the AP-peaks for the low
dimensional Luo–Rudy 3D model. The lower panel shows the above bifurcation diagram, but with the AUTO
L2-norm (‖ · ‖2) of the periodic orbits. We can also see some time series of the existing attractors for three
different values of the PCL. See explanation on the text

the same transition from non-EAD to EAD obtaining the complete families of periodic orbits
(stable and unstable ones) using the AUTO continuation software [17, 18].

We can see the results in Fig. 21. Top panel shows the EAD transition region between
periodic orbits without and with EAD for the Luo–Rudy 3D model. This bifurcation dia-
gram has been completed with the unstable branches calculated by the AUTO continuation
software. This gives us the opportunity to visualize the complete evolution of the different
periodic orbits [54]. The main bifurcations (period-doubling (PD, in red), and fold of limit
cycles (in yellow)) that influence the stability of the periodic orbits are marked with dots
of different colors. We distinguish between P D1, responsible of the alternans generation,
and P D2, responsible of destabilization of the red family and creation of some transient
behaviors. In the fold point the periodic orbit family turns generating hysteresis phenomena
with different coexistence orbits (with or without bistability). We are also able to detect the
EAD generation point (blue dot) which is located in the top plot as the point where a low
voltage peak is created in the unstable branch. This point is not visible in the lower panel
where we represent the AUTO L2-norm of the periodic orbits but with this representation is
more evident the hysteresis phenomena since it can be easily seen how both stable branches
connect through an unstable branch that evolves continuously from one to the other as we
conjectured with Sato model in Fig. 20. The bistability and coexistence regions have been
marked in green and purple, respectively.

This theoretical scheme explains what we observe in the more biophysical realistic model,
i.e., a possible mechanism in the generation of the first EAD. This mechanism is not unique,
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alternans generation can be caused by another type of bifurcations, but it seems that the
generation of alternans is a necessary previous step for the subsequent appearance of the first
EADs.

In summary, we have observed, in both the Sato model and the Luo–Rudy 3D model,
how the periodic orbit without EAD experiences a bifurcation (torus bifurcation or period-
doubling bifurcation) that generates the appearance of alternans. Later, the family with
alternans evolves and some of them begin to experience EADs. This evolution occurs in
the unstable branch, so it can only be detected by continuing that branch, but its effects are
evident in the stable branch.

4 Conclusions

Simplified neuron models can be used to better understand more complex models, once we
have ensured that they faithfully reproduce the main dynamic patterns of the complex ones.
Low-dimensional fold/hom bursting models can be studied in detail using analytical and
numerical methods in order to obtain a full portrait of the different dynamical regimes and
bifurcations that appear in their parametric phase space. We have exemplified this for the 3D
Hindmarsh–Rose neuron model. We have provided an account of recent results about the
behavior of this model when its parameters ε, b and I take values along some specific ranges.
Our analysis can be reproduced for other models as well.

For fixed values of the small parameter ε, spike-counting methods give snapshots of the
different bursting regions into which the (b, I ) parameter plane is divided and the bifurcation
lines between them. Adding continuation techniques provides a deeper understanding of
these snapshots. Homoclinic bifurcations appear as a key element in spike-adding processes
that allows to classify them. We have given a complete theoretical scenario of the interlaced
bifurcation diagram for the n to n + 1 spike-adding process.

If we let the parameter ε vary, new phenomena are observed. For each number of spikes
there appears a homoclinic codimension-one bifurcation surface having a spike-adding role
(themodel has different number of spikes on different sides of the surface). These surfaces are
exponentially close to each other, and their number grows as the small parameter ε tends to
zero. Using continuation techniques we have been able to give a detailed description of these
surfaces through the concept of geometric bifurcations. Some of these geometric bifurcations
are “visible”: they can be easily detected from the plots; but some others (“invisible”) require
further analysis in order to be detected.

The topological structure of chaotic attractors changes with the parameters of the system.
We have studied these changes using symbolic dynamics and topological templates. The
topological templates of the attractors appear as subtemplates of the complete Smale horse-
shoe template. Moreover, the complete Smale template is obtained as a limit case when the
parameter ε tends to zero.

These types of analysis can be applied to other models and in different realistic situations.
We have illustrated this with two examples. Once we have tools for studying the dynamics of
a single neuron in the 3D Hindmarsh–Rose neuron model, we have studied the dynamics of
sets of neurons that are coupled via synapses having inhibitory effect. In particular, we have
studied a network of six neurons modeling a CPG for hexapod insects movement. Different
values of the parameters for the neuronmodel produce different gait movements of the insect,
and we have shown that some of the main gait movements observed in Nature (tripod and
tetrapod gaits) appear as dominant gaits for some regions of the parameter space. Finally, we
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have studied a different type of electrically excitable cells: cardiomyocytes (cardiac muscle
cells). In this case, spike-adding processes are related with Early Afterdepolarization (EAD),
a phenomenon of high clinical interest. Numerical simulations on high-dimensional Sato
model of the APs of these cells allowed us to conjecture a theoretical scheme for the creation
of EADs. As we did in the neuron case, we have driven a more detailed study on a simplified
model (Luo–Rudy 3Dmodel), and this study has proved the conjecture about EADgeneration
that we stated for the high-dimensional model.

Summarizing, spike-adding phenomena are present in numerous theoretical and realistic
excitable cells as key ingredients in important changes of the cells.
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Appendix A: Short survey on homoclinic bifurcations

Since this paper deals with homoclinic structures arising in the HRmodel, we include, for the
convenience of the reader, an overview about homoclinic bifurcations, with focus on those
detected in the HR model. We mainly follow [21, 60].

Consider a smooth family of vector fields Xμ on R
3 depending on a parameter μ ∈ R

k

and suppose that there exist μ0 ∈ R
k and p0 ∈ R

3 such that p0 is a saddle type hyperbolic
equilibrium point of Xμ0 . Without loss of generality we can assume μ0 = 0 and p0 = 0.
In fact we can assume that Xμ(0) = 0 for all μ ∈ R

k . Because this is the case in the HR
model, we only pay attention to saddles with stability index 1 (note that the discussion in the
case of stability index equals 2 is identical, but reversing time); hence the vector field has
a one-dimensional stable manifold W s(0) and a 2-dimensional unstable manifold W u(0).
Suppose now that �0 is a homoclinic orbit of X0 asymptotic to 0. We distinguish two cases:

• All eigenvalues of DX0(0) are real.
• Unstable eigenvalues of DX0(0) are complex conjugate.

Moreover, we assume that the connection splits generically when μ = 0.
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Fig. 22 Unstable manifold, when followed backwards along the homoclinic orbit, can change its orientation

Remark 1 A distance function 	(μ) between W s(0) and W u(0) is well defined (see [21])
and we say that the splitting of the connection is generic when Dμ	(0) does not vanish.
Roughly speaking, using Fig. 22 as reference, genericity of the splitting means that W s(0)
splits inwards or outwards, that is, to the left or to the right of W u , according to the sign of
μ.

A.1 Codimension-one homoclinic bifurcations

A.1.1 All eigenvalues are real

In this case, DX0(0) has real eigenvalues λs , λu and λuu such that λs < 0 < λu < λuu and
we define the so called saddle quantity

σ = λs + λu . (3)

A negative (resp. positive) saddle quantity means, geometrically, that the local forward (resp.
backward) flow contracts area.

Codimension 1 homoclinic orbits are characterized by the following conditions:

(H1) σ �= 0.
(H2) �0 �⊂ W uu(0).
(H3) W cs(0) intersects W u(0) transversally along �0.

Here W uu(0) denotes the one-dimensional strong unstable manifold at 0, whose tangent
space at 0 is given by the eigenspace associated with the eigenvalue λuu (the strong unstable
direction), and W cs(0) denotes the 2-dimensional center-stable manifold at 0, whose tangent
space at 0 is given by the eigenspace associated with eigenvalues λu and λs (see Fig. 22).

Condition (H1) is a non-resonance condition and (H2) means that �0 is tangent to the
weak unstable direction, that is, the direction given by the eigenspace associated with the
weak unstable eigenvalue λu . Condition (H3) is a non-inclination property and it requires
that the 2-dimensional unstable invariant manifold W u(0), when followed by the backward
flow along �, returns along the strong unstable manifold W uu or, equivalently, a transverse
intersection between W u(0) and W cs(0) along the homoclinic connection.

When σ > 0, a single unstable (repelling) periodic orbit is born from the homoclinic loop
whenμ > 0 and there is no periodic orbit whenμ ≤ 0 (see [60, Theorem 13.6]). For positive
saddle quantities (H2) and (H3) play no role. Nevertheless, when σ < 0 those hypotheses
are required and moreover one needs to pay attention to orientability (see Fig. 22) of W u

when followed by the backward flow (see [60, Theorem 13.7]). In the orientable (resp. non-
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orientable) case a saddle periodic orbit with orientable (resp. non-orientable) stable invariant
manifold emerges when μ < 0 (resp. μ > 0).

A.1.2 Complex eigenvalues

In this case the linearization at the equilibrium point has a pair of complex unstable eigen-
values ρu ± ωu i and a real stable eigenvalue λs , and we define again the saddle quantity as
σ = ρu + λs . When σ > 0, the result [[60], Theorem 13.6] remains valid and we know
that there exists an unstable periodic orbit when μ > 0. When σ < 0 it follows from [[60],
Theorem 13.8] the existence of infinitely many saddle periodic orbits in any neighborhood
of the homoclinic orbit. In fact, as argued in [61], there exist infinitely many horseshoes in
any neighborhood of the homoclinic orbit �0. Whenμ �= 0 and the connection splits, finitely
many of the horseshoes persist and hence it follows the existence of an infinite number of
periodic solutions for any value of μ small enough. In fact, each time that a horseshoe is
created or destroyed more complex dynamics emerge.

A.2 Codimension-two homoclinic bifurcations

Attending to the description of codimension-one homoclinic bifurcations contained in the
previous section, it follows that there may appear the following codimension-two cases:

• Resonant bifurcation: σ = 0.
• Orbit-flip (OF) bifurcation: σ < 0 and �0 ⊂ W uu(0).
• Inclination flip (IF) bifurcation: σ < 0 and the intersection between W cs(0) and W u(0)

is not transversal along �0.

Since no resonant bifurcation is detected in the HR model, we do not discuss details of
its unfolding. Nevertheless, orbit- and inclination-flips do appear and seem to be essential
ingredients in the dynamics of the system.

A.2.1 Inclination-flips

The essential feature of an inclination-flip is that the intersection between W cs(0) and W u(0)
is not transversal along�0.As afirst consequence, the biparametric unfolding includes a curve
of homoclinic bifurcations but the orientation is reversed (see Fig. 22) at the IF point.

We introduce the following ratios between eigenvalues

α = −λuu

λs
, β = −λu

λs
, (4)

and note that α > β. We distinguish the following three cases (see Fig. 23):

Case A: β > 1.
Case B: α > 1 and 1

2 < β < 1.
Case C: α < 1 or β < 1

2 .

Each case has its own bifurcation diagram, but we only pay attention to Case C (see Fig. 4).

Hypothesis 1 Type C inclination-flips are codimension-two bifurcations characterized by the
following generic assumptions:

(I1) σ < 0.
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Fig. 23 Regions in the (α, β)-plane corresponding to different cases of orbit-flip (left) and inclination-flip
(right)

(I2) β �= 1
2α.

(I3) If β > 1
2α, the homoclinic orbit does not lie in the unique smooth leading unstable

manifold.
(I4) If β < 1

2α, there is a quadratic tangency between W cs(0) and W u(0) along the
homoclinic orbit.

Hypothesis (I3) makes sense in the region C1 depicted in Fig. 23 (right). In this case there
exists a unique leading unstable manifold which is smooth. Hypothesis (I4) makes sense in
the region C2 depicted in Fig. 23 (right). In this case, when followed by the backward flow,
W u(0) strikes out a parabola-shaped curve on the local center-stable (see lower part of Figure
2 in [62]). Moreover, when β < 1

2α, W cs(0) is a C2 manifold and hence a quadratic tangency
is feasible and both branches (the two branches separated by the connection) converge to the
same branch of the local strong unstable manifold. Note that in the region C1 the tangency
is not assumed to be quadratic.

Theorem 2 ([21, 60]) Assume Hypothesis 1 is satisfied. Depending on a global condition on
the stable and unstable manifolds, the bifurcation diagram is given by one of the two cases
shown in Fig.4a. In particular, infinitely many one-sided curves of N-homoclinics emerge
for each N ≥ 2 from the inclination-flip point at μ = 0 on the branch of primary homoclinic
orbits.

To explain the global condition stated in Theorem 2 we need to consider the Poincaré map
around the homoclinic orbit. As before, let �0 denote the homoclinic orbit and take a cross-
section � transversely intersecting �0 at a point p0. It is easy to verify that the Poincaré map
� is defined on a cusp-shaped domain D ⊂ � bounded by curves a, b and c as in Fig. 24 and
such that the point p0 is the cusp point but it is not in D. This domain is mapped by � to
a region �(D) limited by curves a′, b′, c′, images of a, b, and c, respectively, and a curve
lu = W u ∩ �. There are two possibilities, either a′ is above lu (left panels in Fig. 24), or
a′ is below lu (right panels in Fig. 24). The first (resp. second) case is called inward (resp.
outward) twist and leads to bifurcation diagrams as that depicted in the left (resp. right) panel
of Fig. 4 and labeled as type Cin (resp. Cout ).

Let lcs = W cs ∩ � and note that � is split into two connected components by lcs . When
β > 1

2α, to assume that, as in hypothesis (I3), the homoclinic orbit does not lie in the unique
smooth leading unstable manifold means, geometrically, that D is included in one of such
connected components (see top panels in Fig. 24). Note that in these cases the tangency
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Fig. 24 Blue colored regions represent the domain D where the Poincaré map � is defined. Red colored
regions correspond to �(D). Top (resp. bottom) panels correspond to the case β > α

2 (resp. β < α
2 ). Left

(resp. right) panels correspond to the inward (resp. outer) twist

between lu and lcs is not assumed to be quadratic. On the other hand, hypothesis (I4) means
that lu and lcs have a quadratic contact at p0 (see bottom panels in Fig. 24).

The distinction between regions C1 and C2 corresponds to different ways that a curve
which is tangent to the local center stablemanifold evolves by local transitions. If (α, β) ∈ C1

then, by a local transition map, such curve will leave a neighborhood of the equilibrium
through a weak unstable direction, otherwise, if (α, β) ∈ C2, it will do it through a strong
unstable direction (see details in [62]). Nonetheless, this local property, which only depends
on eigenvalues, does not lead to differences in the bifurcation diagrams. Another distinction,
which leads to different unfoldings and does not depend on eigenvalues, has to do with
the behavior of a normal vector when followed by the non-local flow in between two local
cross-sections along the homoclinic orbit. This leads to the cases Cin and Cout .

It should be noticed that following a homoclinic orbit through a primary homoclinic bifur-
cation curve, an inclination (or orbit) flip bifurcation point drives a change in the orientation
of the unstable manifold (see Fig. 22). In both cases Cin and Cout a region of parameters
corresponding to a horseshoe dynamics exists. For inclination-flips of type Cin the closure
of such region contains one of the branches of primary homoclinic bifurcations; namely, the
branch of orientable homoclinic orbits. This is not the case for inclination-flips of type Cout ;
the closure of the region corresponding to shift dynamics does not contain any of the branches
of primary homoclinic bifurcations. On the other hand, in both unfoldings a homoclinic dou-
bling cascade appears but, in case Cin one of the primary branches of homoclinic orbits
separates the cascade from the region of horseshoe dynamics while, in case Cout , one of such
branches is placed at the beginning of the cascade. As shown in Fig. 4 the region of horseshoe
dynamics is placed in between a homoclinic doubling cascade, as already mentioned, and a
complicated structure of period-doubling cascades and saddle-node bifurcations of periodic
orbits.
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A.2.2 Orbit-flips

Bifurcation diagrams at orbit-flips closely resemble those at inclination-flips. The essential
feature of an orbit-flip is that the homoclinic orbit approaches the equilibrium along the
strong unstable manifold as t → −∞. With α and β as defined in (4), we distinguish the
following three cases (see Fig. 23):

Case A: β > 1.
Case B: β < 1 and α > 1.
Case C: α < 1.

As we do for inclination-flips, we only pay attention to Case C because none of the others
arises in the HR model. Additionally, the following nondegeneracy conditions are required:

(O1) σ < 0.
(O2) W cs(0) intersects W u(0) transversally along �0.

Theorem 3 ([21, 60]) Assume that the nondegeneracy conditions (O1) and (O2) are satis-
fied. Depending on a global condition on the stable and unstable manifolds, the bifurcation
diagram is given by one of the two cases shown in Fig.4a. In particular, infinitely many
one-sided curves of N-homoclinics emerge for each N ≥ 2 from the orbit-flip point at μ = 0
on the branch of primary homoclinic orbits.

A.2.3 Belyakov points

The last codimension-two homoclinic bifurcation that we need for our purposes is the
Belyakov bifurcation. Original analysis is due to Belyakov [63] but we follow [64] and
[21].

Main feature of a Belyakov homoclinic bifurcation is that DX0(0) has a simple negative
real eigenvalue λs and a double positive real eigenvalue λu with geometric multiplicity one.

We recall that the imaginary part of the unstable eigenvalues at 0 is nonzero if the dis-
criminant 	(μ) of DXμ(0) restricted to the unstable generalized eigenspace is negative.
Considering μ = (μ1, μ2) we can assume, without loss of generality, that ∂	/∂μ1(0) �= 0.

We assume that λu < −λs . Otherwise, the bifurcation set is simple, a unique unstable
cycle bifurcates from the homoclinic orbit forμ2 > 0. In both cases, crossing the lineμ2 = 0
when μ1 < 0 results in the appearance of a single limit cycle.

As in the previous configurations, the splitting of the homoclinic connections is supposed to
be generic, and hence the two-parameter unfolding includes a curve of homoclinic bifurcation
through μ = 0 and crossing transversely the line μ1 = 0.

We also assume conditions which play the role of non orbit-flip and non inclination-
flip properties. We assume that the homoclinic orbit does not belong to the strong unstable
manifold, that is, ‖h(t)‖ ≈ K teλu t as t → −∞, where h(t) denotes the homoclinic orbit.
Moreover following the unstable manifold backwards along the homoclinic orbit, the mani-
fold tends toward the strong unstable direction.

Hence we have the following result:

Theorem 4 ([21, 60]) We may assume that the primary homoclinic orbit exists for μ2 = 0.
Hence the homoclinic orbits are of saddle-focus type for μ1 > 0 and of saddle-node type
for μ2 < 0. There are then infinitely many one-sided curves of 2-homoclinic orbits in the
half plane μ1 > 0 that emerge from μ = 0, they are tangent to μ2 = 0 at μ = (0, 0) and
accumulate onto μ2 = 0 from one side. Furthermore, there are infinitely many one-sided
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curves of saddle-node and period-doubling bifurcation of periodic orbits in μ2 > 0 that
emerge from μ = 0. They are tangent to μ2 = 0 at μ = (0, 0), and accumulate onto μ2 = 0
from both sides.

Bifurcation diagrams are similar to those in Fig. 4a (right panel) but saddle-node and period-
doubling bifurcations curves arise at both sides of the homoclinic bifurcation curve.

Remark 2 It can also be proved that N -homoclinic orbits bifurcate for each N ≥ 2.
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