000127017 001__ 127017
000127017 005__ 20241125101155.0
000127017 0247_ $$2doi$$a10.1113/JP281885
000127017 0248_ $$2sideral$$a134340
000127017 037__ $$aART-2023-134340
000127017 041__ $$aeng
000127017 100__ $$aSpampinato, Danny Adrian
000127017 245__ $$aMotor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system
000127017 260__ $$c2023
000127017 5060_ $$aAccess copy available to the general public$$fUnrestricted
000127017 5203_ $$aTranscranial magnetic stimulation (TMS) is a non‐invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor‐evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak‐to‐peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state‐related changes in corticomotor excitability.
000127017 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-031905-I
000127017 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000127017 590__ $$a4.7$$b2023
000127017 592__ $$a1.708$$b2023
000127017 591__ $$aPHYSIOLOGY$$b10 / 85 = 0.118$$c2023$$dQ1$$eT1
000127017 593__ $$aSports Science$$c2023$$dQ1
000127017 591__ $$aNEUROSCIENCES$$b63 / 310 = 0.203$$c2023$$dQ1$$eT1
000127017 593__ $$aPhysiology$$c2023$$dQ1
000127017 594__ $$a9.7$$b2023
000127017 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000127017 700__ $$0(orcid)0000-0001-8439-151X$$aIbáñez, Jaime$$uUniversidad de Zaragoza
000127017 700__ $$aRocchi, Lorenzo
000127017 700__ $$aRothwell, John
000127017 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000127017 773__ $$g601, 14 (2023), 2827-2851$$pJ. physiol.$$tJOURNAL OF PHYSIOLOGY-LONDON$$x0022-3751
000127017 8564_ $$s1131920$$uhttps://zaguan.unizar.es/record/127017/files/texto_completo.pdf$$yVersión publicada
000127017 8564_ $$s1920044$$uhttps://zaguan.unizar.es/record/127017/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000127017 909CO $$ooai:zaguan.unizar.es:127017$$particulos$$pdriver
000127017 951__ $$a2024-11-22-12:08:39
000127017 980__ $$aARTICLE